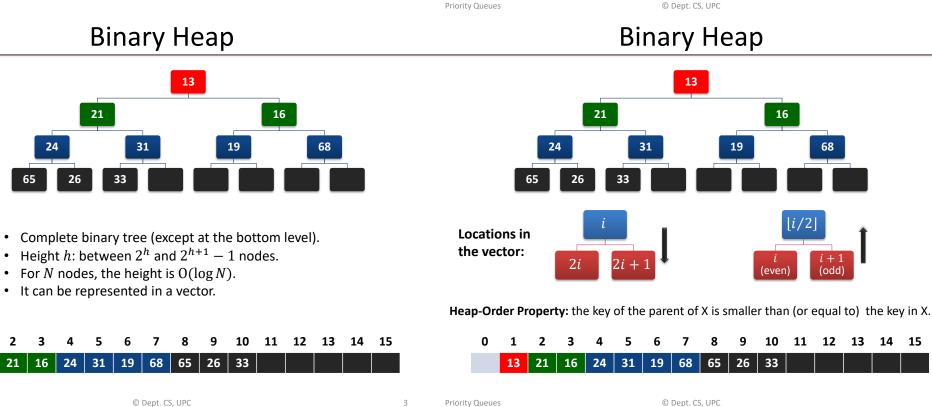
- A priority queue is a queue in which each element has a priority.
- Elements with higher priority are served before elements with lower priority.
- It can be implemented as a vector or a linked list. For a queue with *n* elements:
 - Insertion is O(n).
 - Extraction is O(1).
- A more efficient implementation can be proposed in which insertion and extraction are $O(\log n)$: *binary heap*.



h = 3

h = 2

h = 1

h = 0

21 16

Priority Queues

UP(

Jordi Cortadella and Jordi Petit

Department of Computer Science

0

14 15

4

2

Binary Heap

68

68

68

13

13

13

19

19

19

31

14

21

31

31

33

33

33

21

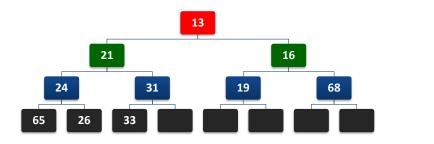
14

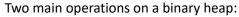
24

24

24

26





- Insert a new element
- Remove the min element

Both operations must preserve the properties of the binary heap:

- Completeness
- Heap-Order property

Priority Queues

© Dept. CS, UPC

© Dept. CS, UPC

16

16

6

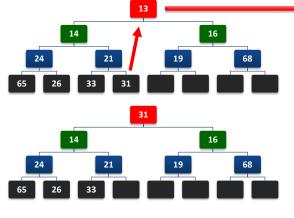
Insert in the last location

... and bubble up ...

done !

Binary Heap: remove min

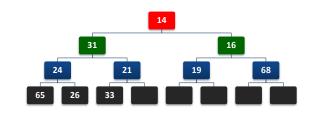
13



Extract the min element and move the last one to the root of the heap

... and bubble down ...

Binary Heap: remove min



done !

 Bubble up/down operations do at most h swaps, where h is the height of the tree and

 $h = \lfloor \log_2 N \rfloor$

- Therefore:
 - Getting the min element is O(1)
 - Inserting a new element is $O(\log N)$
 - Removing the min element is $O(\log N)$

- Let us assume that we have a method to know the location of every key in the heap.
- Increase/decrease key:
 - Modify the value of one element in the middle of the heap.
 - If decreased \rightarrow bubble up.
 - − If increased \rightarrow bubble down.
- Remove one element:
 - Set value to $-\infty$, bubble up and remove min element.

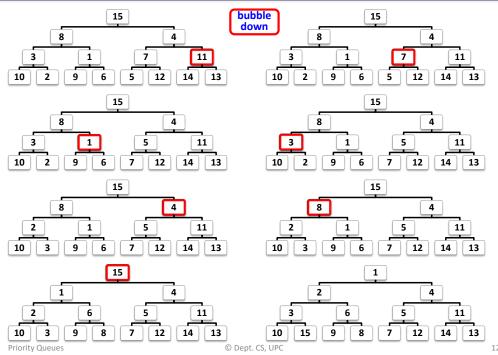
Priority Queues	© Dept. CS, UPC	9	Priority Queues	© Dept. CS, UPC

Building a heap from a set of elements

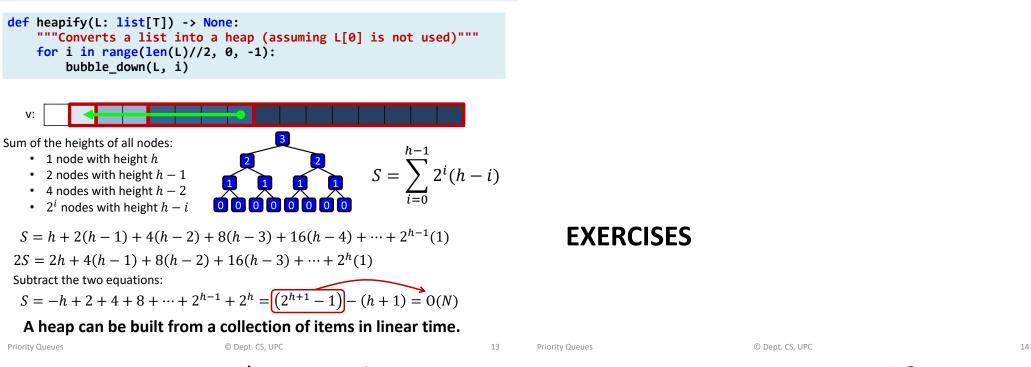
- Heaps are sometimes constructed from an initial collection of *N* elements. How much does it cost to create the heap?
 - Obvious method: do N insert operations.
 - Complexity: $O(N \log N)$
- Can it be done more efficiently?

Building a heap from a set of elements

10

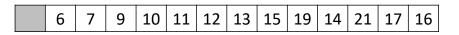


Building a heap: implementation



Exercise: insert/remove element

Given the binary heap implemented in the following vector, draw the tree represented by the vector.



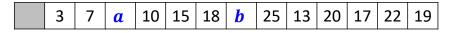
Execute the following sequence of operations

insert(8); remove_min(); insert(6); insert(18); remove_min();

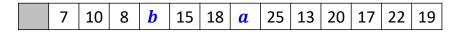
and draw the tree after the execution of each operation.

Exercise: guess a and b

Consider the binary heap of integer keys implemented by the following vector:



After executing the operations **insert(8)** and **remove_min()** the contents of the binary heap is:



Discuss about the possible values of a and b. Assume there can never be two identical keys in the heap.

© Dept. CS, UPC

Exercise: the k-th element

Exercise: bubble-up/down

Give an implementation for the methods **bubble_up** and **bubble_down** of a heap:

The *k*-th element of *n* sorted vectors.

Let us consider *n* vectors sorted in ascending order.

Design an algorithm with cost $\Theta(k \log n + n)$ that finds the k-th global smallest element.

def bubble_up(L: list[T], int i) -> None:
"""Bubbles up the element at location i"""

def bubble_down(L: list[T], int i) -> None:
"""Bubbles down the element at location i"""

© Dept. CS, UPC

17

Priority Queues

© Dept. CS, UPC