
Exception handling

Jordi Cortadella and Jordi Petit
Department of Computer Science

Quadratic equation
import math

def quadratic_equation(file: str) -> None:
"""Reads three coefficients from a file and computes

the real roots of a quadratic equation"""
a, b, c = [float(x) for x in open(file).readline().split()]
discrim = b*b - 4*a*c
if discrim < 0:

print('The equation has no real roots!')
elif discrim == 0:

root = -b / (2*a)
print(f'There is a double root at {root}')

else:
discRoot = math.sqrt(b*b - 4*a*c)
root1 = (-b + discRoot) / (2*a)
root2 = (-b - discRoot) / (2*a)
print(f'The solutions are: {root1}, {root2}')

quadratic_equation('coef.txt')

Exception handling © Dept. CS, UPC 2
Source: John Zelle, Python programming: an introduction to Computer Science, Franklin, Beedle & Associates, 2004.

Exception handling

• Very often programs are infested with if statements to detect errors
and special cases that are produced at runtime.

• It is very difficult to predict all the abnormal situations that can occur
during the execution of a program.

• Exception handling is a mechanism that allows to catch errors without
messing up the code of the algorithm.

• When an error occurs, and exception is raised, the flow of execution is
broken and transferred to an exception handler.

• Examples of exceptions: invalid input data, division by zero, square root
of a negative number, overflow, file not found, index out-of-bounds,
violation of the pre-condition of a function, etc.

Exception handling © Dept. CS, UPC 3

Exceptions in Python

def quadratic_equation(file: str) -> None:
"""Reads three coefficients from a file and computes

the real roots of a quadratic equation"""
try:

a, b, c = [float(x) for x in open(file).readline().split()]
discRoot = math.sqrt(b*b - 4*a*c)
root1 = (-b + discRoot) / (2*a)
root2 = (-b - discRoot) / (2*a)
print(f'The solutions are: {root1}, {root2}')

except ValueError:
print('No real roots')

Exception handling © Dept. CS, UPC 4

try:
<body>

except <ErrorType>:
<handler>

Exceptions in Python

def quadratic_equation(file: str) -> None:
"""Reads three coefficients from a file and computes

the real roots of a quadratic equation"""
a, b, c = [float(x) for x in open(file).readline().split()]
discRoot = math.sqrt(b*b - 4*a*c)
root1 = (-b + discRoot) / (2*a)
root2 = (-b - discRoot) / (2*a)
print(f'The solutions are: {root1}, {root2}')

Exception handling © Dept. CS, UPC 5

What if the exception is not caught?

Traceback (innermost last):
File "<stdin>", line 1, in ?
File "quadratic.py", line 13, in ?
discRoot = math.sqrt(b*b - 4*a*c)

ValueError: math domain error

Unhandled exceptions are finally caught by the Python interpreter

Exception hierarchy
• When an exception is raised, the control is

transferred to the innermost try-except statement
than handles the exception.

• There is an exception hierarchy:

Exception handling © Dept. CS, UPC 6

Exception

ArithmeticError

OverflowError FloatingPointError ZeroDivisionError

LookupError

IndexError KeyError

…

… …

Exception hierarchy

Exception handling © Dept. CS, UPC 7

Handling multiple exceptions

def quadratic_equation(file: str) -> None:
"""Reads three coefficients from a file and computes

the real roots of a quadratic equation"""
try:

a, b, c = [float(x) for x in open(file).readline().split()]
discRoot = math.sqrt(b*b - 4*a*c)
root1 = (-b + discRoot) / (2*a)
root2 = (-b - discRoot) / (2*a)
print(f'The solutions are: {root1}, {root2}')

except ValueError as error:
if str(error) == 'math domain error':

print('No real roots.')
else:

print('Wrong format for coefficients.')
except FileNotFoundError:

print(f'File {file} could not be found.')
except: # something else, e.g., division by zero

print('Something went wrong, sorry!')

Exception handling © Dept. CS, UPC 8

Raising exceptions
The program itself can generate exceptions

if x < 0:
raise ValueError('No negative numbers allowed')

if not isinstance(s, str):
raise TypeError('A string is expected')

Exception handling © Dept. CS, UPC 9

Python allows user-defined exceptions using classes (not explained here), e.g.,

class MyError(Exception):
…

Assertions
• Assertions are sanity checks used to test the program. They

are often used to check the pre-conditions of the functions
and detect internal errors of the program, e.g.,

def Kelvin2Fahrenheit(temperature: float) -> float:
assert temperature >= 0, 'Colder than absolute zero!'
return (Temperature-273)*1.8+32

• Assertions are not exceptions, but they raise an
AssertionError that can be caught by an exception
handler.

Exception handling © Dept. CS, UPC 10

Conclusions

• Use exceptions to maintain clean code and
catch abnormal program executions at runtime

• Use assertions for internal sanity-checks

• Print informative error messages:
– Non-informative message: "Unexpected error"
– Informative message: "File abc.txt not found"

Exception handling © Dept. CS, UPC 11

