Divide & Conquer (I)

Jordi Cortadella and Jordi Petit
Department of Computer Science

Divide and conquer algorithms

• Strategy:
 – Divide the problem into smaller subproblems of the same type of problem
 – Solve the subproblems recursively
 – Combine the answers to solve the original problem

• The work is done in three places:
 – In partitioning the problem into subproblems
 – In solving the basic cases at the tail of the recursion
 – In merging the answers of the subproblems to obtain the solution of the original problem

Conventional product of polynomials

Example:

\[P(x) = 2x^3 + x^2 - 4 \]
\[Q(x) = x^2 - 2x + 3 \]

\[(P \cdot Q)(x) = 2x^5 + (-4 + 1)x^4 + (6 - 2)x^3 + 8x - 12 \]
\[(P \cdot Q)(x) = 2x^5 - 3x^4 + 4x^3 + 8x - 12 \]

function PolynomialProduct(P, Q)
// P and Q are vectors of coefficients.
// Returns R = P \times Q.
// degree(P) = size(P)-1, degree(Q) = size(Q)-1.
// degree(R) = degree(P)+degree(Q).

R = vector with size(P)+size(Q)-1 zeros;

for each \(P_i \)
 for each \(Q_j \)
 \[R_{i+j} = R_{i+j} + P_i \cdot Q_j \]

return R

Complexity analysis:
• Multiplication of polynomials of degree \(n \): \(O(n^2) \)
• Addition of polynomials of degree \(n \): \(O(n) \)
Product of polynomials: Divide & Conquer

Assume that we have two polynomials with \(n \) coefficients (degree \(n - 1 \))

\[
\begin{array}{ccc}
\ hline
n-1 & n/2 & 0 \\
\ hline
P & P_L & P_R \\
Q & Q_L & Q_R \\
\ hline
\end{array}
\]

\[P(x) \cdot Q(x) = P_L(x) \cdot Q_L(x) \cdot x^n +
(P_R(x) \cdot Q_L(x) + P_L(x) \cdot Q_R(x)) \cdot x^{n/2} +
P_R(x) \cdot Q_R(x)
\]

\[T(n) = 4 \cdot T(n/2) + O(n) = O(n^2) \quad \leftarrow \text{Shown later}
\]

Product of polynomials with Gauss’s trick

\[
\begin{align*}
R_1 &= P_L Q_L \\
R_2 &= P_R Q_R \\
R_3 &= (P_L + P_R)(Q_L + Q_R)
\end{align*}
\]

\[PQ = P_L Q_L x^n + (P_R Q_L + P_L Q_R) x^{n/2} + P_R Q_R
\]

\[T(n) = 3T(n/2) + O(n)
\]

Product of complex numbers

• The product of two complex numbers requires four multiplications:

\[(a + bi)(c + di) = ac - bd + (bc + ad)i\]

• Carl Friedrich Gauss (1777-1855) noticed that it can be done with just three: \(ac, bd\) and \((a + b)(c + d)\)

\[bc + ad = (a + b)(c + d) - ac - bd\]

• A similar observation applies for polynomial multiplication.
Pattern of recursive calls

- **Branching factor:** 3

- \[\frac{n}{2} \quad \frac{n}{2} \quad \frac{n}{2} \quad \frac{n}{4} \quad \frac{n}{4} \quad \frac{n}{4} \quad \frac{n}{4} \quad \frac{n}{4} \quad \frac{n}{4} \]

- \(\log_2 n \) levels

Useful reminders

- **Sum of geometric series with ratio** \(r \):
 \[S = a + ar + ar^2 + ar^3 + \cdots + ar^{n-1} \]
 \[S = a \left(\frac{1 - r^n}{1 - r} \right) = \frac{a}{1 - r} + \frac{r}{r - 1} ar^{n-1} \]

- **Logarithms:**
 \[\log_b n = \log_b a \cdot \log_a n \]
 \[a^{\log_b n} = a^{(\log_a n)(\log_b a)} = n^{\log_b a} \]

Complexity analysis

- The time spent at level \(k \) is
 \[3^k \cdot O \left(\frac{n}{2^k} \right) = \left(\frac{3}{2} \right)^k \cdot O(n) \]
- For \(k = 0 \), runtime is \(O(n) \).
- For \(k = \log_2 n \), runtime is \(O(3^{\log_2 n}) \), which is equal to \(O(n^{\log_2 3}) \).
- The runtime per level increases geometrically by a factor of 3/2 per level. The sum of any increasing geometric series is, within a constant factor, simply the last term of the series.
- Therefore, the complexity is \(O(n^{1.59}) \).

A popular recursion tree

- **Branching factor:** 2

\[\frac{n}{2} \quad \frac{n}{2} \quad \frac{n}{4} \quad \frac{n}{4} \quad \frac{n}{4} \quad \frac{n}{4} \]

- \(\log_2 n \) levels

Example: efficient sorting algorithms.
\[T(n) = 2 \cdot T \left(\frac{n}{2} \right) + O(n) \]

Algorithms may differ on the amount of work done at each level: \(O(n^c) \).
Examples

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Branch</th>
<th>c</th>
<th>Runtime equation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power ((x^y))</td>
<td>1</td>
<td>0</td>
<td>(T(y) = T(y/2) + O(1))</td>
</tr>
<tr>
<td>Binary search</td>
<td>1</td>
<td>0</td>
<td>(T(n) = T(n/2) + O(1))</td>
</tr>
<tr>
<td>Merge sort</td>
<td>2</td>
<td>1</td>
<td>(T(n) = 2 \cdot T(n/2) + O(n))</td>
</tr>
<tr>
<td>Polynomial product</td>
<td>4</td>
<td>1</td>
<td>(T(n) = 4 \cdot T(n/2) + O(n))</td>
</tr>
<tr>
<td>Polynomial product (Gauss)</td>
<td>3</td>
<td>1</td>
<td>(T(n) = 3 \cdot T(n/2) + O(n))</td>
</tr>
</tbody>
</table>

Master theorem

- Typical pattern for Divide&Conquer algorithms:
 - Split the problem into \(a\) subproblems of size \(n/b\)
 - Solve each subproblem recursively
 - Combine the answers in \(O(n^c)\) time

- Running time: \(T(n) = a \cdot T(n/b) + O(n^c)\)

- Master theorem:
 \[
 T(n) = \begin{cases}
 O(n^c) & \text{if } c > \log_b a \\
 O(n^c \log n) & \text{if } c = \log_b a \\
 O(n^{\log_b a}) & \text{if } c < \log_b a
 \end{cases} \quad (a < b^c)
 \]

Master theorem: recursion tree

- For simplicity, assume \(n\) is a power of \(b\).
- The base case is reached after \(\log_b n\) levels.
- The \(k\)th level of the tree has \(a^k\) subproblems of size \(n/b^k\).
- The total work done at level \(k\) is:
 \[
 a^k \times 0 \left(\frac{n}{b^k}\right)^c = O(n^c) \times \left(\frac{a}{b^c}\right)^k
 \]

- As \(k\) goes from 0 (the root) to \(\log_b n\) (the leaves), these numbers form a geometric series with ratio \(a/b^c\). We need to find the sum of such a series.

 \[
 T(n) = O(n^c) \cdot \left(1 + \frac{a}{b^c} + \frac{a^2}{b^{2c}} + \frac{a^3}{b^{3c}} + \cdots + \frac{a^{\log_b n}}{b^{(\log_b n)c}}\right)
 \]
Master theorem: proof

- Case $a/b^c < 1$. Decreasing series. The sum is dominated by the first term ($k = 0$): $O(n^c)$.

- Case $a/b^c > 1$. Increasing series. The sum is dominated by the last term ($k = \log_b n$):

$$n^c \left(\frac{a}{b^c} \right)^{\log_b n} = n^c \left(\frac{a^{\log_b n}}{(b^{\log_b n})^c} \right) = a^{\log_b n} = n^{\log_b a}$$

- Case $a/b^c = 1$. We have $O(\log n)$ terms all equal to $O(n^c)$.

Master theorem: examples

Running time: $$T(n) = a \cdot T(n/b) + O(n^c)$$

$$T(n) = \begin{cases}
O(n^c) & \text{if } a < b^c \\
O(n^c \log n) & \text{if } a = b^c \\
O(n^{\log_b a}) & \text{if } a > b^c
\end{cases}$$

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>a</th>
<th>c</th>
<th>Runtime equation</th>
<th>Complexity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power (x^y)</td>
<td>1</td>
<td>0</td>
<td>$T(y) = T(y/2) + O(1)$</td>
<td>$O(\log y)$</td>
</tr>
<tr>
<td>Binary search</td>
<td>1</td>
<td>0</td>
<td>$T(n) = T(n/2) + O(1)$</td>
<td>$O(\log n)$</td>
</tr>
<tr>
<td>Merge sort</td>
<td>2</td>
<td>1</td>
<td>$T(n) = 2 \cdot T(n/2) + O(n)$</td>
<td>$O(n \log n)$</td>
</tr>
<tr>
<td>Polynomial product</td>
<td>4</td>
<td>1</td>
<td>$T(n) = 4 \cdot T(n/2) + O(n)$</td>
<td>$O(n^2)$</td>
</tr>
<tr>
<td>Polynomial product (Gauss)</td>
<td>3</td>
<td>1</td>
<td>$T(n) = 3 \cdot T(n/2) + O(n)$</td>
<td>$O(n^{\log_2 3})$</td>
</tr>
</tbody>
</table>

$b = 2$ for all the examples