Examples

- Selection sort
- Insertion sort
- The Maximum Subsequence Sum Problem
- Convex Hull

Selection Sort

- Selection sort uses this invariant:

```
def selection_sort(v: list[Any]) -> None:
    """Sorts v in ascending order""
    for i in range(len(v)-1):
        k = i
        for j in range(i+1, len(v)):
            if v[j] < v[k]:
                k = j;
        v[k], v[i] = v[i], v[k]
```

Observation: notice that \(T(n) \in \Omega(n^2)\), also. Therefore, \(T(n) \in \Theta(n^2)\).
Insertion Sort

- Let us use inductive reasoning:
 - If we know how to sort arrays of size \(n-1\),
 - do we know how to sort arrays of size \(n\)?

```
0   -7  1  -3  4  3  8  -6  8  6  2
-7  -6  -3  0  1  3  4  6  8  8  9  2
-7  -6  -3  0  1  2  3  4  6  8  8  9
```

```
def insertion_sort(v: list[Union[int, float]]) -> None:
    """Sorts v in ascending order""
    for i in range(1, len(v)):
        x = v[i]
        j = i
        while j > 0 and v[j - 1] > x:
            v[j] = v[j - 1]
            j -= 1
        v[j] = x
```

Algorithm Analysis © Dept. CS, UPC

The Maximum Subsequence Sum Problem

- Given (possibly negative) integers \(A_1, A_2, \ldots, A_n\), find the maximum value of \(\sum_{k=i}^{j} A_k\).
 (the max subsequence sum is 0 if all integers are negative).

- Example:
 - Input: -2, 11, -4, 13, -5, -2
 - Answer: 20 (subsequence 11, -4, 13)


```
def max_sub_sum(a: list[int]) -> int:
    """Returns the sum of the maximum subsequence of a""
    n = len(a)
    max_sum = 0
    # try all possible subsequences
    for i in range(n):
        this_sum = 0
        for j in range(i, n):
            this_sum += a[j]
            max_sum = max(max_sum, this_sum)
    return max_sum
```

\[
T(n) = \sum_{i=0}^{n-1} \sum_{j=i}^{n-1} \sum_{k=i}^{j} 1
\]
The Maximum Subsequence Sum Problem

Algorithm Analysis © Dept. CS, UPC

\[T(n) = \sum_{i=0}^{n-1} \sum_{j=i}^{n-1} (j - i + 1) \]

\[= \sum_{i=0}^{n-1} \frac{(n - i + 1)(n - i)}{2} = \ldots \]

\[= \frac{n^3 + 3n^2 + 2n}{6} = \Theta(n^3) \]

Max Subsequence Sum: Divide\&Conquer

First half Second half

| 4 | -3 | 5 | -2 | -1 | 2 | 6 | -2 |

The max sum can be in one of three places:

- 1st half
- 2nd half
- Spanning both halves and crossing the middle

In the 3rd case, two max subsequences must be found starting from the center of the vector (one to the left and the other to the right)
Max Subsequence Sum: Divide & Conquer

We will see how to solve this equation formally in the next lesson (Master Theorem). Informally:

\[
T(n) = 2T(n/2) + \Theta(n)
\]

But, can we still do it faster?

\[
T(n) = 2T(n/2) + n = 2(2T(n/4) + n/2) + n
= 4T(n/4) + n + n = 8T(n/8) + n + n + n = \ldots
= 2^k T(n/2^k) + n + n + \ldots + n
\]

when \(n = 2^k \), we have that \(k = \log_2 n \), hence

\[
T(n) = 2^k T(1) + kn = n + n \log_2 n = \Theta(n \log n)
\]

But, can we still do it faster?

• Observations:
 – If \(a[i] \) is negative, it cannot be the start of the optimal subsequence.
 – Any negative subsequence cannot be the prefix of the optimal subsequence.

• Let us consider the inner loop of the \(O(n^2) \) algorithm and assume that all prefixes of \(a[i..j-1] \) are positive and \(a[i..j] \) is negative:

 – If \(p \) is an index between \(i+1 \) and \(j \), then any subsequence from \(a[p] \) is not larger than any subsequence from \(a[i] \) and including \(a[p-1] \).
 – If \(a[j] \) makes the current subsequence negative, we can advance \(i \) to \(j+1 \).

```cpp
int maxSubSum(const vector<int>& a) {
    int maxSum = 0, thisSum = 0;
    for (int i = 0; i < a.size(); ++i) {
        int thisSum += a[i];
        if (thisSum > maxSum) maxSum = thisSum;
        else if (thisSum < 0) thisSum = 0;
    }
    return maxSum;
}
```

int maxSubSum(const vector<int>& a) {
 int maxSum = 0, thisSum = 0;
 for (int i = 0; i < a.size(); ++i) {
 int thisSum += a[i];
 if (thisSum > maxSum) maxSum = thisSum;
 else if (thisSum < 0) thisSum = 0;
 }
 return maxSum;
}

```python
def max_sub_sum(a: list[int]) -> int:
    """Returns the sum of the maximum subsequence of a""
    max_sum, this_sum = 0, 0
    for x in a:
        this_sum += x
        max_sum = max(max_sum, this_sum)
        this_sum = max(this_sum, 0)
    return max_sum
```

The Maximum Subsequence Sum Problem

\[
T(n) = O(n)
\]

```plaintext
a:
thisSum: 4 -3 5 -4 -3 -1 5 -2 6 -3 2
maxSum: 4 4 6 6 6 6 6 6 9 9 9
```

\[
T(n) = \Theta(n)
\]

```plaintext
a:
this_sum: 4 1 6 2 0 0 5 3 9 6 8
max_sum: 4 4 6 6 6 6 6 6 9 9 9
```
Representation of polygons

- A polygon can be represented by a sequence of vertices.
- Two consecutive vertices represent an edge of the polygon.
- The last edge is represented by the first and last vertices of the sequence.

Vertices:
(1,3) (4,1) (7,3) (5,4) (6,7) (2,6)

Edges:
(1,3) - (4,1) - (7,3) - (5,4) - (6,7) - (2,6) - (1,3)

// A polygon (an ordered set of vertices)
using Polygon = vector<Point>;

Create a polygon from a set of points

Given a set of \(n \) points in the plane, connect them in a simple closed path.

Simple polygon

- **Input:** \(p_1, p_2, \ldots, p_n \) (points in the plane).
- **Output:** \(P \) (a polygon whose vertices are \(p_1, p_2, \ldots, p_n \) in some order).

- Select a point \(z \) with the largest \(x \) coordinate (and smallest \(y \) in case of a tie in the \(x \) coordinate). Assume \(z = p_1 \).
- For each \(p_i \in \{ p_2, \ldots, p_n \} \), calculate the angle \(\alpha_i \) between the lines \(z - p_i \) and the \(x \) axis.
- Sort the points \(\{ p_2, \ldots, p_n \} \) according to their angles. In case of a tie, use distance to \(z \).
Simple polygon

Implementation details:

• There is no need to calculate angles (requires arctan). It is enough to calculate slopes ($\Delta y / \Delta x$).

• There is not need to calculate distances. It is enough to calculate the square of distances (no sqrt required).

Complexity: $O(n \log n)$. The runtime is dominated by the sorting algorithm.

Clockwise and counter-clockwise

How to calculate whether three consecutive vertices are in a **clockwise** or **counter-clockwise** turn.

```python
# Returns true if p3 is at the left of p1p2
def leftof(p1, p2, p3):
    return (p2.x - p1.x) * (p3.y - p1.y) > (p2.y - p1.y) * (p3.x - p1.x)
```

Convex hull: gift wrapping algorithm

https://en.wikipedia.org/wiki/Gift_wrapper_algorithm
Convex hull: Gift Wrapping Algorithm

- **Input:** \(p_1, p_2, \ldots, p_n \) (points in the plane).
- **Output:** \(P \) (the convex hull of \(p_1, p_2, \ldots, p_n \)).

Initial points:
\(p_0 \) with the smallest \(x \) coordinate.

Iteration: Assume that a partial path with \(k \) points has been built (\(p_k \) is the last point). Pick some arbitrary \(p_k + 1 \neq p_k \). Visit the remaining points. If some point \(q \) is at the left of \(p_k p_{k+1} \) redefine \(p_{k+1} = q \).

Stop when \(P \) is complete (back to point \(p_0 \)).

Complexity: At each iteration, we calculate \(n \) angles. \(T(n) = O(hn) \), where \(h \) is the number of points in the convex hull. In the worst case, \(T(n) = O(n^2) \).

Convex hull: Graham Scan

- **Input:** \(p_1, p_2, \ldots, p_n \) (points in the plane).
- **Output:** \(q_1, q_2, \ldots, q_m \) (the convex hull).

Initially:
Create a simple polygon \(P \) (complexity \(O(n \log n) \)). Assume the order of the points is \(p_1, p_2, \ldots, p_n \).

- **Observation:** each point \(p_k \) can be included in \(Q \) and deleted at most once.

The main loop of Graham scan has linear cost.

Complexity: dominated by the creation of the simple polygon \(\Rightarrow O(n \log n) \).
Summations

Prove the following equalities:

\[
\sum_{i=1}^{n} i = \frac{n(n+1)}{2}
\]

\[
\sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}
\]

\[
\sum_{i=0}^{n} 2^i = 2^{n+1} - 1
\]

EXERCISES

For loops: analyze the cost of each code

Calculate the value of variable `s` and the end the code

Code 1

```python
s = 0
for i in range(n):
    s += 1
```

Code 2

```python
s = 0
for i in range(0, n, 2):
    s += 1
```

Code 3

```python
s = 0
for i in range(n):
    for j in range(n):
        s += 1
```

Code 4

```python
s = 0
for i in range(n):
    for j in range(n):
        s += 1
```

Code 5

```python
s = 0
for i in range(n):
    for j in range(i):
        s += 1
```

Code 6

```python
s = 0
for i in range(n):
    for j in range(i, n):
        s += 1
```

Code 7

```python
s = 0
for i in range(n):
    for j in range(n):
        for k in range(n):
            s += 1
```

Code 9

```python
s = 0
i = 1
while i <= n:
    s += 1
    i *= 2
```

Code 10

```python
s = 0
for i in range(n):
    for j in range(n):
        while j <= n:
            s += 1
            j *= 2
```

Code 11

```python
s = 0
for i in range(n):
    for j in range(i*i):
        for k in range(n):
            s += 1
```

Code 12

```python
s = 0
for i in range(n):
    for j in range(i*i):
        if j%i == 0:
            for k in range(n):
                s += 1
```

The following statements refer to the *insertion sort* algorithm and the X’s hide an occurrence of O, Ω or Θ. For each statement, find which options for X ∈ {O, Ω, Θ} make the statement true or false. Justify your answers.

1. The worst case is \(X(n^2) \)
2. The worst case is \(X(n) \)
3. The best case is \(X(n^2) \)
4. The best case is \(X(n) \)
5. For every probability distribution, the average case is \(X(n^2) \)
6. For every probability distribution, the average case is \(X(n) \)
7. For some probability distribution, the average case is \(X(n \log n) \)

You can use the following equality, where \(p \leq x \) refers to all primes \(p \leq x \):

\[
\sum_{p \leq x} \frac{1}{p} = \log \log x + O(1)
\]

The following algorithms try to determine whether \(n \geq 0 \) is prime. Find which ones are correct and analyze their cost as a function of \(n \).

```python
def is_prime1(n: int) -> bool:
    if n <= 1:
        return False
    for i in range(2, int(math.sqrt(n))+1):
        if (n%i == 0):
            return False
    return True

def is_prime2(n: int) -> bool:
    if n <= 1:
        return False
    for i in range(2, int(math.sqrt(n))):  
        if n%i == 0:
            return False
    return True

def is_prime3(n: int) -> bool:
    if n <= 1:
        return False
    for i in range(3, int(math.sqrt(n))+1, 2):
        if (n%i == 0):
            return False
    return True

def is_prime4(n: int) -> bool:
    if n <= 1:
        return False
    for i in range(2, int(math.sqrt(n))+1):
        if n%i == 0:
            return False
    return True

def is_prime5(n: int) -> bool:
    if n <= 1:
        return False
    if n%2 == 0:
        return False
    p = n
    for j in range(3, int(math.sqrt(n))+1, 2):
        if (n%j == 0):
            return False
    return True
```

The following program is a version of the Sieve of Eratosthenes. Analyze its complexity.

```python
def primes(n: int) -> list[bool]:
    p = [True]*(n+1)
    p[0] = p[1] = False
    for i in range(2, int(math.sqrt(n))+1):
        if p[i]:
            for j in range(i*i, n+1, i):
                p[j] = False
    return p
```

You work for a cell phone company which has just invented a new cell phone protector and wants to advertise that it can be dropped from the \(f^{th} \) floor without breaking.

• You work for a cell phone company which has just invented a new cell phone protector and wants to advertise that it can be dropped from the \(f^{th} \) floor without breaking.

• If you are given 1 or 2 phones and an \(n \) story building, propose an algorithm that minimizes the worst-case number of trial drops to know the highest floor it won't break.

• Assumption: a broken cell phone cannot be used for further trials.

• How about if you have \(p \) cell phones?

(Source: Wood & Yasskin, Texas A&M University)