
Cryptography

Jordi Cortadella and Jordi Petit
Department of Computer Science



Where do we need cryptography?
• Communication (e.g., sending private emails).

• Digital signatures, i.e., guarantee that digital documents are authentic.

• Network services over unsecure networks (e.g., secure shell (ssh) for 
remote login, file transfers, remote command execution, etc.).

• HyperText Transfer Protocol Secure (HTTPS): secure communication on 
Internet.

• Cryptocurrencies (e.g., bitcoin)
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Cryptography
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• How can we avoid an eavesdropper (Eve) to overhear 
a message sent from Alice to Bob? 

• Solution: encrypt the message!



Cryptosystem

• The encryption function 𝑒𝑒(𝑥𝑥) must be invertible. 
The inverse is 𝑑𝑑(⋅).

• Two schemes:
– The traditional: Secret-key protocols (symmetric).
– The modern: Public-key protocols (asymmetric).
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• Alice and Bob have to meet privately and chose a 
secret key.

• They can use the secret key to mutually exchange 
messages.

• There are many secret-key protocols. We will explain 
two of them:
– XOR encoding.
– Advanced Encryption Standard (AES).

Secret-key protocols
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Secret-key protocol: XOR encoding
• A secret key 𝑟𝑟 is chosen (a binary string).

• The encoding and decoding functions are identical:
𝑒𝑒𝑟𝑟 𝑥𝑥 = 𝑑𝑑𝑟𝑟 𝑥𝑥 = 𝑥𝑥 ⊕ 𝑟𝑟.

• Example: 𝑟𝑟 = 11011100.

• It is convenient that the bits of 𝑟𝑟 are randomly generated.

• Still, this is not a very robust scheme since Eve can figure 
out important information by listening several messages.
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𝑥𝑥 = 00111010 x: 00111010
r: 11011100
m: 11100110

m: 11100110
r: 11011100
x: 00111010

𝑚𝑚 𝑥𝑥 = 00111010



Secret-key protocol: XOR encoding
• If the key is too short, it needs to be applied many times (once for each block). 

Messages often show similarities and repeated patterns (same header, same 
tail, long sequences of zeros, …).

• If we send two messages, 𝑒𝑒𝑟𝑟(𝑥𝑥) and 𝑒𝑒𝑟𝑟(𝑧𝑧), then 𝑒𝑒𝑟𝑟 𝑥𝑥 ⊕ 𝑒𝑒𝑟𝑟(𝑧𝑧) may reveal 
important information. It is convenient to change the key at every message 
(one-time pad).
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𝑒𝑒𝑟𝑟(𝑥𝑥) = 1100 0101 0101 0101 0101 1110 1111
𝑒𝑒𝑟𝑟(𝑧𝑧) = 1100 1100 0101 0101 0101 0101 0010

𝑥𝑥 = 1001 0000 0000 0000 0000 1011 1010
𝑧𝑧 = 1001 1001 0000 0000 0000 0000 0111𝑟𝑟 = 0101

𝑒𝑒𝑟𝑟 𝑥𝑥 ⊕ 𝑒𝑒𝑟𝑟(𝑧𝑧) = 0000 1001 0000 0000 0000 1011 1101

Same header.
Same sender?

Long identical sequence.
Maybe zeros?The key !!!



Secret-key protocol: AES
• AES: Advanced Encryption Standard.

• Established as a standard by the U.S. National 
Institute of Standards and Technology (NIST) 
in 2001.

• Very robust and used worldwide.

• A family of ciphers with different key and 
block sizes (key sizes: 128, 196 and 256 bits).
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AES scheme
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AES steps
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Secret-key protocols: problems
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a different key 𝑘𝑘𝑎𝑎𝑎𝑎 𝑘𝑘𝑎𝑎𝑏𝑏
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The key cannot be transmitted
through the communication channel !



Public-key protocols
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Public-key protocols

Cryptography © Dept. CS, UPC 13

Public

Private



Public-key protocols
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Public-key protocols
• Each participant generates a public key (𝑃𝑃) and a 

(private) secret key (𝑆𝑆). Public keys are revealed to 
everybody.

• The public/secret keys are a matched pair, i.e.,

𝑀𝑀 = 𝑆𝑆 𝑃𝑃 𝑀𝑀 = 𝑃𝑃 𝑆𝑆 𝑀𝑀

• If Alice has the pair 𝑃𝑃𝐴𝐴, 𝑆𝑆𝐴𝐴 , anybody can compute 
𝑃𝑃𝐴𝐴(𝑋𝑋), but only Alice can compute 𝑆𝑆𝐴𝐴(𝑋𝑋).

• If Bob wants to send a secret message 𝑀𝑀 to Alice, Bob 
will compute 𝑋𝑋 = 𝑃𝑃𝐴𝐴(𝑀𝑀) and send it to Alice. Only 
Alice will be able to decipher the message: 𝑀𝑀 = 𝑆𝑆𝐴𝐴(𝑋𝑋).

Cryptography © Dept. CS, UPC 15



Public

Public-key protocols
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Private Public Private

𝛼𝛼𝑋𝑋

𝑆𝑆𝐴𝐴 𝑃𝑃𝐴𝐴 𝑆𝑆𝐵𝐵𝑃𝑃𝐵𝐵

𝑌𝑌

𝑋𝑋 = 𝑆𝑆𝐵𝐵(𝛼𝛼)

𝛽𝛽
𝛼𝛼 = 𝑃𝑃𝐵𝐵(𝑋𝑋)

𝛽𝛽 = 𝑃𝑃𝐴𝐴(𝑌𝑌)𝑌𝑌 = 𝑆𝑆𝐴𝐴(𝛽𝛽)

But, how to create a cryptosystem like this?
Using number theory.



RSA cryptosystem
• Public-key cryptosystem

(Rivest-Shamir-Adleman, 1977).

• Based upon number theory: modular 
arithmetic and prime numbers.

• Security: based on the fact that factoring a 
large number (product of two large primes)
is hard.
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Bézout’s identity

• Lemma: If 𝑑𝑑 divides both 𝑎𝑎 and 𝑏𝑏, and 𝑑𝑑 = 𝑎𝑎𝑥𝑥 + 𝑏𝑏𝑏𝑏
for some integers 𝑥𝑥 and 𝑏𝑏, then necessarily
𝑑𝑑 = gcd(𝑎𝑎, 𝑏𝑏).

• Proof:
– Clearly, 𝑑𝑑 ≤ gcd(𝑎𝑎, 𝑏𝑏), since 𝑑𝑑 is a divisor of 𝑎𝑎 and 𝑏𝑏.
– Since gcd(𝑎𝑎, 𝑏𝑏) is a divisor of 𝑎𝑎 and 𝑏𝑏, it must also be a 

divisor of 𝑎𝑎𝑥𝑥 + 𝑏𝑏𝑏𝑏 = 𝑑𝑑. This implies that gcd 𝑎𝑎, 𝑏𝑏 ≤ 𝑑𝑑.
– Therefore, 𝑑𝑑 = gcd(𝑎𝑎, 𝑏𝑏).
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Extended Euclid’s algorithm
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function extendedGcd(𝑎𝑎,𝑏𝑏)
// Input: two positive integers 𝑎𝑎 and 𝑏𝑏, with 𝑎𝑎 ≥ 𝑏𝑏 ≥ 0
// Output: Integers 𝑥𝑥,𝑏𝑏,𝑑𝑑 such that 𝑑𝑑 = gcd(𝑎𝑎, 𝑏𝑏) and 𝑎𝑎𝑥𝑥 + 𝑏𝑏𝑏𝑏 = 𝑑𝑑
if 𝑏𝑏 = 0: return 1,0, 𝑎𝑎
(𝑥𝑥′,𝑏𝑏′,𝑑𝑑) = extendedGcd(𝑏𝑏, 𝑎𝑎 mod 𝑏𝑏)
return (𝑏𝑏′, 𝑥𝑥′ − ⁄𝑎𝑎 𝑏𝑏 𝑏𝑏′,𝑑𝑑)

Proof by induction using the identity
𝑎𝑎 mod 𝑏𝑏 = 𝑎𝑎 − ⁄𝑎𝑎 𝑏𝑏 𝑏𝑏

extgcd(25,11)

extgcd(11,3)

extgcd(3,2)

extgcd(2,1)

extgcd(1,0) (1,0,1)

(0,1,1)

(1,-1,1)

(-1,4,1)

(4,-9,1) 4 ⋅ 25 − 9 ⋅ 11 = 1

−1 ⋅ 11 + 4 ⋅ 3 = 1

1 ⋅ 3 − 1 ⋅ 2 = 1

0 ⋅ 2 + 1 ⋅ 1 = 1

1 ⋅ 1 + 0 ⋅ 0 = 1



Modular arithmetic: properties
• 𝑥𝑥 mod 𝑁𝑁 is the remainder when 𝑥𝑥 is divided by 𝑁𝑁.

𝑥𝑥 ≡ 𝑏𝑏 mod 𝑁𝑁 ⇔ 𝑁𝑁 divides 𝑥𝑥 − 𝑏𝑏 .

• Addition and multiplication. Let us assume 
𝑎𝑎1 ≡ 𝑏𝑏1 (mod 𝑁𝑁) and  𝑎𝑎2 ≡ 𝑏𝑏2 (mod 𝑁𝑁), then

𝑎𝑎1 + 𝑎𝑎2 ≡ 𝑏𝑏1 + 𝑏𝑏2 mod 𝑁𝑁
𝑎𝑎1 ⋅ 𝑎𝑎2 ≡ 𝑏𝑏1 ⋅ 𝑏𝑏2 (mod 𝑁𝑁)

• Exponentiation. Let us assume 𝑎𝑎 ≡ 𝑏𝑏 (mod 𝑁𝑁), then

𝑎𝑎𝑘𝑘 ≡ 𝑏𝑏𝑘𝑘 (mod 𝑁𝑁)
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Modular arithmetic: properties
• Given 𝑎𝑎 and 𝑁𝑁, we say that 𝑥𝑥 is the multiplicative 

inverse of 𝑎𝑎 (mod 𝑁𝑁) if

𝑎𝑎𝑥𝑥 ≡ 1 mod 𝑁𝑁 .

Example. The multiplicative inverse of 4 (mod 7) is 2:

4 ⋅ 2 ≡ 1 (mod 7)

• When gcd 𝑎𝑎,𝑁𝑁 = 1, the multiplicative inverse of 𝑎𝑎
always exists and can be calculated by the extended 
Euclid’s algorithm:

𝑎𝑎𝑥𝑥 + 𝑁𝑁𝑏𝑏 = 1 ⇒ 𝑥𝑥 is 𝑎𝑎′s inverse (mod N)
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Fundamental property
Let 𝑝𝑝 and 𝑞𝑞 be any two primes and 𝑁𝑁 = 𝑝𝑝𝑞𝑞.
𝜙𝜙 𝑁𝑁 = (𝑝𝑝 − 1)(𝑞𝑞 − 1) is the totient of 𝑁𝑁, i.e., the 
number of positive integers smaller than 𝑁𝑁 which are 
co-prime to 𝑁𝑁.

For any 𝑒𝑒 co-prime to 𝜙𝜙(𝑁𝑁):

1. The mapping 𝑥𝑥 ↦ 𝑥𝑥𝑑𝑑 mod 𝑁𝑁 is a bijection on
{0,1, … ,𝑁𝑁 − 1}.

2. The inverse mapping can be obtained as follows. Let 𝑑𝑑
be the inverse of 𝑒𝑒 modulo 𝜙𝜙(𝑁𝑁).
Then for all 𝑥𝑥 ∈ {0, … ,𝑁𝑁 − 1},

𝑥𝑥𝑑𝑑 𝑐𝑐 ≡ 𝑥𝑥 mod 𝑁𝑁.
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The RSA cryptosystem 
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𝑥𝑥 𝑥𝑥𝑑𝑑 𝑥𝑥𝑑𝑑 𝑐𝑐

mod 𝑁𝑁

Bob chooses public and secret keys:
• Bob picks two large random primes, 𝑝𝑝 and 𝑞𝑞.
• The public key is (𝑁𝑁, 𝑒𝑒), where 𝑁𝑁 = 𝑝𝑝𝑞𝑞 and 𝑒𝑒 is

a small number co-prime to 𝑝𝑝 − 1 𝑞𝑞 − 1 .
• The secret key is 𝑑𝑑, the inverse of 𝑒𝑒 modulo

(𝑝𝑝 − 1)(𝑞𝑞 − 1), computed using the extended
Euclid’s algorithm.

Alice sends a message 𝑥𝑥 to Bob:
• Alice takes Bob’s public key (𝑁𝑁, 𝑒𝑒) and sends
𝑏𝑏 = (𝑥𝑥𝑑𝑑 mod 𝑁𝑁).

• Bob decodes the message by computing
𝑏𝑏𝑐𝑐 mod 𝑁𝑁.

encrypt decrypt



The RSA cryptosystem: example
• Let 𝑝𝑝 = 5 and 𝑞𝑞 = 17, thus 𝑁𝑁 = 85 and 𝜙𝜙 𝑁𝑁 = 64.

• Let 𝑒𝑒 = 3. It satisfies:    gcd 𝑒𝑒,𝜙𝜙(𝑁𝑁) = gcd 3,64 = 1.

• We calculate 𝑑𝑑 = 3−1 mod 64 = 43 using extended Euclid’s algorithm:

43 ⋅ 3 − 2 ⋅ 64 = 1

Note: the algorithm gives 1 ⋅ 64 − 21 ⋅ 3 = 1, but −21 = 43 (mod 64)

• Let us consider the message 𝑥𝑥 = 12.
– The sender must encrypt 𝑥𝑥 as 𝑏𝑏 = 123 mod 85 = 28.
– The receiver must decrypt 𝑏𝑏 by computing 𝑥𝑥 = 2843 mod 85 = 12. 

• Remember: 𝑥𝑥𝑘𝑘 can be efficiently computed with log2 𝑘𝑘 multiplications.
Note: Multiplication and division of “long” numbers is required
(similar to multiplication of polynomials).
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Why is RSA secure?
• Typical sizes for 𝑝𝑝 and 𝑞𝑞 are 1024-bit numbers with values 

larger than 21023.5 ≈ 1.8 × 10308.

• Eve knows the public key (𝑁𝑁, 𝑒𝑒) and the message 𝑏𝑏.
How can she guess 𝑥𝑥? There are two options:

1. Try all possible values of 𝑥𝑥 and check whether 𝑏𝑏 = 𝑥𝑥𝑑𝑑 mod 𝑁𝑁.
But 𝑥𝑥 is a large 𝑛𝑛-bit number and checking all values would 
take exponential time (impractical).

2. Try to guess 𝑑𝑑 and calculate 𝑥𝑥𝑐𝑐 mod 𝑁𝑁.  This would require to 
calculate the inverse of 𝑒𝑒 modulo 𝑝𝑝 − 1 𝑞𝑞 − 1 . But 𝑝𝑝 and 𝑞𝑞
are not known unless the factors of 𝑁𝑁 are calculated. 
Factoring is still a hard problem.
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Hybrid cryptosystems
• Public-key cryptosystems (e.g., RSA) are convenient (no need 

to share keys) but computationally expensive. Secret-key 
(symmetric) cryptosystems (e.g. AES) are more efficient. Both 
can be combined.

• Bob wants to send an encrypted message to Alice:
– Bob generates a new symmetric key 𝑘𝑘 and encrypts the data with this 

key (using AES).
– Bob encrypts 𝑘𝑘 using Alice’s public key (using RSA).
– Bob sends both encryptions to Alice.

• Alice wants to decrypt Bob’s message:
– Alice uses her private key to decrypt the encrypted symmetric key 𝑘𝑘.
– Alice uses the symmetric key 𝑘𝑘 to decrypt the data (using AES).
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Cryptographic hash function (CHF)
A CHF maps data of arbitrary size to a
fixed-size bit string.
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𝒉𝒉(𝒙𝒙)

𝒙𝒙

𝒚𝒚



Cryptographic hash function (CHF)
• Properties:

– Easy to compute.
– Pre-image resistance: if 𝑏𝑏 = ℎ(𝑥𝑥), it is difficult to find 
𝑥𝑥 from 𝑏𝑏.

– Collision resistance: It is difficult to find two inputs,
𝑥𝑥1 and 𝑥𝑥2, such that ℎ 𝑥𝑥1 = ℎ(𝑥𝑥2). 

• Popular CHFs:
– Message Digest: MD2, MD4, MD5 and MD6. It is a 

128-bit hash function.
– Secure Hash Function: SHA-0, SHA-1, SHA-2, SHA-3. 

They produce hash values with 160 bits (SHA-1) or 256 
bits (SHA-2).

– And some others …
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Example: SHA-1
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160 bits

One step of SHA-1

The result is “accumulated”
to the result of previous steps.



Example: SHA-1
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Hash value



Digital signatures
• A scheme to guarantee that a message is authentic.

• Consider the following case:
– Alice sends a document (possibly unencrypted) to Bob and 

wants Bob to electronically sign the document.
– Bob “signs” the document and sends it back to Alice.

• Questions:
– How does Alice know that the document has not been 

altered?  integrity.
– How does Alice know that Bob has signed the document 

(and not somebody else)?  authentication.

Cryptography © Dept. CS, UPC 31



Digital signatures
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(𝑃𝑃𝐵𝐵 , 𝑆𝑆𝐵𝐵)

𝑆𝑆𝐵𝐵 hh𝑆𝑆𝐵𝐵𝑃𝑃𝐵𝐵

h

SHA-2 (hash)

h (signature)

=
Yes: the document has not been altered (same h)

and has been signed by Bob (encrypted with 𝑆𝑆𝐵𝐵)

No: the document has been altered (different h)
or has not been signed by Bob (encrypted with 𝑆𝑆𝑋𝑋)

SHA-2

h’



The pending challenge
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Internet + Privacy  Cryptography
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EXERCISES
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Simple cryptographic hash
We want to use the XOR operator ⊕ for cryptographic hashing as 
follows. We split every message 𝑀𝑀 into blocks 𝐵𝐵𝑖𝑖 of 5 bits, e.g.,
𝑀𝑀 = 11101 � 00011 ⋅ 10100 ⋅ 110. In case the length is not a 
multiple of 5, additional zeroes are added at the end of the message.

For a message 𝑀𝑀 with 𝑘𝑘 blocks, we define the cryptographic hash ℎ
as follows:

ℎ 𝑀𝑀 = 𝐵𝐵1 ⊕ 𝐵𝐵2 ⊕⋯⊕𝐵𝐵𝑘𝑘 .
where ⊕ means the bitwise application of XOR. For example, 
01110 ⊕ 11010 = 10100.

• What would be the output ℎ(𝑀𝑀) for the previous message 𝑀𝑀?

• If we change one bit of a message, does the output change a lot?

• Assume that we know ℎ(𝑀𝑀) and the length of 𝑀𝑀. Is it easy to find 
another 𝑀𝑀𝑀 with the same length such that ℎ 𝑀𝑀 = ℎ(𝑀𝑀′)? Justify 
your answer.

Cryptography © Dept. CS, UPC 36



Simple RSA

Assume you have 𝑝𝑝 = 5 and 𝑞𝑞 = 7.
– Which is the smallest value for 𝑒𝑒? 
– What is the corresponding value for 𝑑𝑑?
– Encrypt the message 𝑀𝑀 = 3.
– Find all possible pairs (𝑒𝑒,𝑑𝑑) valid for this 

cryptosystem.

Cryptography © Dept. CS, UPC 37



Implement an RSA cryptosystem
• Given two primes, 𝑝𝑝 and 𝑞𝑞, design an RSA cryptosystem

(in Python or C++) as follows:
– Let 𝑁𝑁 = 𝑝𝑝 ⋅ 𝑞𝑞. Find the smallest 𝑒𝑒 ≥ 3, such that (𝑁𝑁, 𝑒𝑒) can be used as 

public key. Use the extended gcd algorithm.
– Find 𝑑𝑑 that can be used for secret key.
– Implement the function encode(𝑥𝑥, 𝑒𝑒,𝑁𝑁) that computes 𝑥𝑥𝑑𝑑mod 𝑁𝑁. This 

function must be efficient. Note: assume that 𝑁𝑁2 can be represented 
as an int.

– Implement a function to double check, for 0 ≤ 𝑥𝑥 < 𝑁𝑁,
that encode encode 𝑥𝑥, 𝑒𝑒,𝑁𝑁 ,𝑑𝑑,𝑁𝑁 = 𝑥𝑥.

• Example: 𝑝𝑝 = 79, 𝑞𝑞 = 491.

Public key: (38789, 11), Secret key: 31271.

𝑒𝑒(2) = 2048, 𝑒𝑒(19) = 23855, 𝑒𝑒(32757) = 4,
𝑒𝑒(38788) = 38788, 𝑒𝑒(10) = 18550.
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