Containers:
Binary Search Trees

B

Jordi Cortadella and Jordi Petit
Department of Computer Science

Binary Search Trees

BST property: for every node in the tree with value V:
e All values in the left subtree are smaller than V.
* All values in the right subtree are larger than V.

This is a binary search tree This is not a binary search tree

BST: find min/max

Find min: Go to the leftmost element.

Find max: Go to the rightmost element.

BST © Dept. CS, UPC

BST: find an element

BST

Contains 4? Contains 8?

Find an element:
* Move to left/right depending on the value.
e Stop when:
» The value is found (contained)
» No more elements exist (not contained)

© Dept. CS, UPC

BST: insert an element

Insert 5

Insert:
* Move to left/right depending on the value.
e Stop when the element is found (nothing to do) or a null is found.
* If not found, substitute null by the new element.

BST © Dept. CS, UPC

remove: simple case (no children)

remove(3)

remove: simple case (one child)

remove(4)

remove: complex case (two children)

remove(2)

. Find the element.

. Find the min value of

the right subtree.

. Copy the min value onto

the element to be removed.

remove: complex case (two children)

remove(2)

. Find the element.

. Find the min value of

the right subtree.

. Copy the min value onto

the element to be removed.

. Remove the min value in the

right subtree (simple case).

remove: complex case (two children)

remove(2)

. Find the element.

. Find the min value of

the right subtree.

. Copy the min value onto

the element to be removed.

. Remove the min value in the

right subtree (simple case).

Visiting the items in ascending order

Question:

How can we visit the items of a
BST in ascending order?
Answer:

Using an in-order traversal

BST: runtime analysis

* Copying and deleting the full tree takes O(n).

* We are mostly interested in the runtime of the
insert/remove/contains methods.

— The complexity is O(d), where d is the depth of the
node containing the required element.

* But, how large is d?

BST: runtime analysis

* |Internal path length (IPL): The sum of the depths of all
nodes in a tree. Let us calculate the average IPL considering
all possible insertion sequences.

d=1 [LP=0X14+1Xx24+2%X34+3x5=23

A IPL—23 2.09
vg. =1~ 2%

BST: runtime analysis

* |Internal path length (IPL): The sum of the depths of all
nodes in a tree. Let us calculate the average IPL considering
all possible insertion sequences.

* D(n)isthe IPL of a tree with n nodes. D(1) = 0. The left
subtree has i nodes and the right subtreehasn —i —1
nodes. Thus,

Dn)=DA)+Dn—i—1)+(n—-1)

e |f all subtree sizes are equally likely, then the average value
forD(i)andD(n—1i—1)is

3,00
j=0

BST: runtime analysis

Therefore,

4 _
D(n)=% ZD([’) +n—-1
/=0 _

The previous recurrence gives: D(n) = O(nlogn)

The average height of nodes after n random
insertions is O(logn).

However, the O(logn) average height is not
preserved when doing deletions.

Random BST

Random BST after n? insert/removes

BST

a \
"r i 'm* '
I

'? i
‘ Reason: the deletion algorithm is asymmetric
(deletes elements from the right subtree)

Source: Fig 4.30 of Weiss textbook

© Dept. CS, UPC 17

Worst-case runtime: O(n)

Self-balancing BST

 The worst-case complexity for insert, remove
and search operations in a BST is O(n), where
n is the number of elements.

e Various representations have been proposed
to keep the height of the tree as O(logn):

— AVL trees
— Red-Black trees

AVL trees

 Named after Adelson-Velsky and Landis (1962).

e Main idea: invest some additional time to
balance the tree each time a new element is
inserted or deleted.

* Properties:
— The height of the tree is always ©(log n).
— The time devoted to balancing is O(log n).

AVL tree: definition

BST

 An AVL tree is a BST such that, for every node, the
difference between the heights of the left and
right subtrees is at most 1.

© Dept. CS, UPC

21

AVL tree in action

BST

https://en.wikipedia.org/wiki/AVL tree

© Dept. CS, UPC

22

https://en.wikipedia.org/wiki/AVL_tree

Complexity

Single and double rotations only need the

manipulation of few pointers and the height of the
nodes (0(1)).

Insertion: the height of the subtree after a rotation is
the same as the height before the insertion. Therefore,
at most only one rotation must be applied for each
insertion.

Deletion: more complicated. More than one rotation
might be required.

Worst case for deletion: O(logn) rotations
(a chain effect from leaves to root).

EXERCISES

BST

e Starting from an empty BST, depict the BST
after inserting the values 32, 15, 47, 67, 78,
39, 63, 21, 12, 27.

* Depict the previous BST after removing the
values 63, 21, 15 and 32.

Methods of a BST

BST

Use the class BinTree from the previous chapter and
implement the following methods for a BST:

def find _min(t: BinTree[T]) -> BinTree[T]:
"""Returns the tree (node) containing the min element

def find_max(t: BinTree[T]) -> BinTree[T]:
"""Returns the tree (node) containing the max element

def find(t: BinTree[T], data: T) -> BinTree[T]:
"""Returns the tree (node) where data is located,
or None if not found"""

def insert(t: BinTree[T], data: T) -> BinTree[T]:
"""Inserts data on the BST. It returns the new
BinTree after insertion (t if it was not empty)

def remove(t: BinTree[T], data: T) -> BinTree[T]:
"""Removes data from the BST. It returns the new
BinTree (None if it becomes empty)"""

© Dept. CS, UPC 26

Merging BSTs

* Describe an algorithm to generate a sorted list
from a BST. What is its cost?

* Describe an algorithm to create a balanced
BST from a sorted list. What is its cost?

* Describe an algorithm to create a balanced
BST that contains the union of the elements of
two BSTs. What is its cost?

	Containers:�Binary Search Trees
	Binary Search Trees
	BST: find min/max
	BST: find an element
	BST: insert an element
	remove: simple case (no children)
	remove: simple case (one child)
	remove: complex case (two children)
	remove: complex case (two children)
	remove: complex case (two children)
	Visiting the items in ascending order
	BST: runtime analysis
	BST: runtime analysis
	BST: runtime analysis
	BST: runtime analysis
	Random BST
	Random BST after 𝑛 2 insert/removes
	Worst-case runtime: O(𝑛)
	Self-balancing BST
	AVL trees
	AVL tree: definition
	AVL tree in action
	Complexity
	Exercises
	BST
	Methods of a BST
	Merging BSTs

