
Containers:
Binary Search Trees

Jordi Cortadella and Jordi Petit
Department of Computer Science

Binary Search Trees

BST © Dept. CS, UPC 2

6

2

1 4

8

3

6

2

1 4

8

3 7
This is a binary search tree This is not a binary search tree

BST property: for every node in the tree with value V:
• All values in the left subtree are smaller than V.
• All values in the right subtree are larger than V.

BST: find min/max

BST © Dept. CS, UPC 3

9

3

11

Find min: Go to the leftmost element.

Find max: Go to the rightmost element.

10

7

6

4

2

1

BST: find an element

BST © Dept. CS, UPC 4

9

3

11

Find an element:
• Move to left/right depending on the value.
• Stop when:

 The value is found (contained)
 No more elements exist (not contained)

10

7

6

4

2

1

Contains 4? Contains 8?

5

BST: insert an element

BST © Dept. CS, UPC 5

9

3

11

Insert:
• Move to left/right depending on the value.
• Stop when the element is found (nothing to do) or a null is found.
• If not found, substitute null by the new element.

10

7

6

2

1 4

Insert 5

remove: simple case (no children)

BST © Dept. CS, UPC 6

6

2

1 4

8

3

remove(3)

6

2

1 4

8

3

remove: simple case (one child)

BST © Dept. CS, UPC 7

6

2

1 4

8

3

remove(4)

6

2

1 4

8

3

remove: complex case (two children)

BST © Dept. CS, UPC 8

remove(2)

7

2

1 5

8

3

4

6

1. Find the element.

2. Find the min value of
the right subtree.

3. Copy the min value onto
the element to be removed.

remove: complex case (two children)

BST © Dept. CS, UPC 9

remove(2)

7

3

1 5

8

3

4

6

1. Find the element.

2. Find the min value of
the right subtree.

3. Copy the min value onto
the element to be removed.

4. Remove the min value in the
right subtree (simple case).

remove: complex case (two children)

BST © Dept. CS, UPC 10

remove(2)

7

3

1 5

8

4 6

1. Find the element.

2. Find the min value of
the right subtree.

3. Copy the min value onto
the element to be removed.

4. Remove the min value in the
right subtree (simple case).

Visiting the items in ascending order

BST © Dept. CS, UPC 11

7

2

1 5

8

3

4

6

Question:

How can we visit the items of a
BST in ascending order?

Answer:

Using an in-order traversal

BST: runtime analysis
• Copying and deleting the full tree takes O(𝑛𝑛).

• We are mostly interested in the runtime of the
insert/remove/contains methods.
– The complexity is O(𝑑𝑑), where 𝑑𝑑 is the depth of the

node containing the required element.

• But, how large is 𝑑𝑑?

BST © Dept. CS, UPC 12

BST: runtime analysis
• Internal path length (IPL): The sum of the depths of all

nodes in a tree. Let us calculate the average IPL considering
all possible insertion sequences.

BST © Dept. CS, UPC 13

𝑑𝑑 = 0

𝑑𝑑 = 1

𝑑𝑑 = 2

𝑑𝑑 = 3

ILP = 0 × 1 + 1 × 2 + 2 × 3 + 3 × 5 = 23

Avg. IPL =
23
11

≈ 2.09

BST: runtime analysis
• Internal path length (IPL): The sum of the depths of all

nodes in a tree. Let us calculate the average IPL considering
all possible insertion sequences.

• 𝐷𝐷(𝑛𝑛) is the IPL of a tree with 𝑛𝑛 nodes. 𝐷𝐷 1 = 0. The left
subtree has 𝑖𝑖 nodes and the right subtree has 𝑛𝑛 − 𝑖𝑖 − 1
nodes. Thus,

𝐷𝐷 𝑛𝑛 = 𝐷𝐷 𝑖𝑖 + 𝐷𝐷 𝑛𝑛 − 𝑖𝑖 − 1 + (𝑛𝑛 − 1)

• If all subtree sizes are equally likely, then the average value
for 𝐷𝐷(𝑖𝑖) and 𝐷𝐷(𝑛𝑛 − 𝑖𝑖 − 1) is

1
𝑛𝑛
�
𝑗𝑗=0

𝑛𝑛−1

𝐷𝐷(𝑗𝑗)

BST © Dept. CS, UPC 14

BST: runtime analysis
• Therefore,

𝐷𝐷 𝑛𝑛 =
2
𝑛𝑛 �

𝑗𝑗=0

𝑛𝑛−1

𝐷𝐷(𝑗𝑗) + 𝑛𝑛 − 1

• The previous recurrence gives: 𝐷𝐷 𝑛𝑛 = O(𝑛𝑛 log 𝑛𝑛)

• The average height of nodes after 𝑛𝑛 random
insertions is O(log 𝑛𝑛).

• However, the O(log 𝑛𝑛) average height is not
preserved when doing deletions.

BST © Dept. CS, UPC 15

Random BST

BST © Dept. CS, UPC 16

Source: Fig 4.29 of Weiss textbook

Random BST after 𝑛𝑛2 insert/removes

BST © Dept. CS, UPC 17

Source: Fig 4.30 of Weiss textbook

Reason: the deletion algorithm is asymmetric
(deletes elements from the right subtree)

Worst-case runtime: O(𝑛𝑛)

BST © Dept. CS, UPC 18

1

2

3

4

5

6

7

8

1

8

2

7

3

6

4

5

8

7

6

5

4

3

2

1

Self-balancing BST
• The worst-case complexity for insert, remove

and search operations in a BST is O(𝑛𝑛), where
𝑛𝑛 is the number of elements.

• Various representations have been proposed
to keep the height of the tree as O(log 𝑛𝑛):
– AVL trees
– Red-Black trees

BST © Dept. CS, UPC 19

AVL trees

• Named after Adelson-Velsky and Landis (1962).

• Main idea: invest some additional time to
balance the tree each time a new element is
inserted or deleted.

• Properties:
– The height of the tree is always Θ(log 𝑛𝑛).
– The time devoted to balancing is O(log 𝑛𝑛).

BST © Dept. CS, UPC 20

AVL tree: definition
• An AVL tree is a BST such that, for every node, the

difference between the heights of the left and
right subtrees is at most 1.

BST © Dept. CS, UPC 21

5

2 7

6

3

41

6

2 7

53

41

AVL not AVL

[0]

[0] [0][1]

[1][2]

[3]

[0] [0]

[1]

[0]

[0]

[2]

[3]

unbalanced

AVL tree in action

BST © Dept. CS, UPC 22

https://en.wikipedia.org/wiki/AVL_tree

https://en.wikipedia.org/wiki/AVL_tree

Complexity
• Single and double rotations only need the

manipulation of few pointers and the height of the
nodes (O(1)).

• Insertion: the height of the subtree after a rotation is
the same as the height before the insertion. Therefore,
at most only one rotation must be applied for each
insertion.

• Deletion: more complicated. More than one rotation
might be required.

• Worst case for deletion: O log 𝑛𝑛 rotations
(a chain effect from leaves to root).

BST © Dept. CS, UPC 23

EXERCISES

BST © Dept. CS, UPC 24

BST

• Starting from an empty BST, depict the BST
after inserting the values 32, 15, 47, 67, 78,
39, 63, 21, 12, 27.

• Depict the previous BST after removing the
values 63, 21, 15 and 32.

BST © Dept. CS, UPC 25

Methods of a BST
Use the class BinTree from the previous chapter and
implement the following methods for a BST:

def find_min(t: BinTree[T]) -> BinTree[T]:
"""Returns the tree (node) containing the min element"""

def find_max(t: BinTree[T]) -> BinTree[T]:
"""Returns the tree (node) containing the max element"""

def find(t: BinTree[T], data: T) -> BinTree[T]:
"""Returns the tree (node) where data is located,

or None if not found"""

def insert(t: BinTree[T], data: T) -> BinTree[T]:
"""Inserts data on the BST. It returns the new

BinTree after insertion (t if it was not empty)"""

def remove(t: BinTree[T], data: T) -> BinTree[T]:
"""Removes data from the BST. It returns the new

BinTree (None if it becomes empty)"""

BST © Dept. CS, UPC 26

Merging BSTs

• Describe an algorithm to generate a sorted list
from a BST. What is its cost?

• Describe an algorithm to create a balanced
BST from a sorted list. What is its cost?

• Describe an algorithm to create a balanced
BST that contains the union of the elements of
two BSTs. What is its cost?

BST © Dept. CS, UPC 27

	Containers:�Binary Search Trees
	Binary Search Trees
	BST: find min/max
	BST: find an element
	BST: insert an element
	remove: simple case (no children)
	remove: simple case (one child)
	remove: complex case (two children)
	remove: complex case (two children)
	remove: complex case (two children)
	Visiting the items in ascending order
	BST: runtime analysis
	BST: runtime analysis
	BST: runtime analysis
	BST: runtime analysis
	Random BST
	Random BST after 𝑛 2 insert/removes
	Worst-case runtime: O(𝑛)
	Self-balancing BST
	AVL trees
	AVL tree: definition
	AVL tree in action
	Complexity
	Exercises
	BST
	Methods of a BST
	Merging BSTs

