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Binary Search Trees
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This is a binary search tree This is not a binary search tree

BST property: for every node in the tree with value V:
• All values in the left subtree are smaller than V.
• All values in the right subtree are larger than V.



BST: find min/max
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Find min: Go to the leftmost element.

Find max: Go to the rightmost element.
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BST: find an element
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Find an element:
• Move to left/right depending on the value.
• Stop when:

 The value is found (contained)
 No more elements exist (not contained)
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Contains 4? Contains 8?
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BST: insert an element
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Insert:
• Move to left/right depending on the value.
• Stop when the element is found (nothing to do) or a null is found.
• If not found, substitute null by the new element.

10

7

6

2

1 4

Insert 5



remove: simple case (no children)
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remove: simple case (one child)
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remove: complex case (two children)
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1. Find the element.

2. Find the min value of
the right subtree.

3. Copy the min value onto
the element to be removed.



remove: complex case (two children)
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remove(2)
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1. Find the element.

2. Find the min value of
the right subtree.

3. Copy the min value onto
the element to be removed.

4. Remove the min value in the
right subtree (simple case).



remove: complex case (two children)

BST © Dept. CS, UPC 10

remove(2)
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1. Find the element.

2. Find the min value of
the right subtree.

3. Copy the min value onto
the element to be removed.

4. Remove the min value in the
right subtree (simple case).



Visiting the items in ascending order
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Question:

How can we visit the items of a
BST in ascending order?

Answer:

Using an in-order traversal



BST: runtime analysis
• Copying and deleting the full tree takes O(𝑛𝑛).

• We are mostly interested in the runtime of the 
insert/remove/contains methods.
– The complexity is O(𝑑𝑑), where 𝑑𝑑 is the depth of the 

node containing the required element.

• But, how large is 𝑑𝑑?
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BST: runtime analysis
• Internal path length (IPL): The sum of the depths of all 

nodes in a tree. Let us calculate the average IPL considering 
all possible insertion sequences.
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𝑑𝑑 = 0

𝑑𝑑 = 1

𝑑𝑑 = 2

𝑑𝑑 = 3

ILP = 0 × 1 + 1 × 2 + 2 × 3 + 3 × 5 = 23

Avg. IPL =
23
11

≈ 2.09



BST: runtime analysis
• Internal path length (IPL): The sum of the depths of all 

nodes in a tree. Let us calculate the average IPL considering 
all possible insertion sequences.

• 𝐷𝐷(𝑛𝑛) is the IPL of a tree with 𝑛𝑛 nodes. 𝐷𝐷 1 = 0. The left 
subtree has 𝑖𝑖 nodes and the right subtree has 𝑛𝑛 − 𝑖𝑖 − 1
nodes. Thus,

𝐷𝐷 𝑛𝑛 = 𝐷𝐷 𝑖𝑖 + 𝐷𝐷 𝑛𝑛 − 𝑖𝑖 − 1 + (𝑛𝑛 − 1)

• If all subtree sizes are equally likely, then the average value 
for 𝐷𝐷(𝑖𝑖) and 𝐷𝐷(𝑛𝑛 − 𝑖𝑖 − 1) is

1
𝑛𝑛
�
𝑗𝑗=0

𝑛𝑛−1

𝐷𝐷(𝑗𝑗)
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BST: runtime analysis
• Therefore,

𝐷𝐷 𝑛𝑛 =
2
𝑛𝑛 �

𝑗𝑗=0

𝑛𝑛−1

𝐷𝐷(𝑗𝑗) + 𝑛𝑛 − 1

• The previous recurrence gives:   𝐷𝐷 𝑛𝑛 = O(𝑛𝑛 log 𝑛𝑛)

• The average height of nodes after 𝑛𝑛 random 
insertions is O(log 𝑛𝑛).

• However, the O(log 𝑛𝑛) average height is not 
preserved when doing deletions.

BST © Dept. CS, UPC 15



Random BST

BST © Dept. CS, UPC 16

Source: Fig 4.29 of Weiss textbook



Random BST after 𝑛𝑛2 insert/removes
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Source: Fig 4.30 of Weiss textbook

Reason: the deletion algorithm is asymmetric
(deletes elements from the right subtree)



Worst-case runtime: O(𝑛𝑛)
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Self-balancing BST
• The worst-case complexity for insert, remove 

and search operations in a BST is O(𝑛𝑛), where 
𝑛𝑛 is the number of elements.

• Various representations have been proposed 
to keep the height of the tree as O(log 𝑛𝑛):
– AVL trees
– Red-Black trees
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AVL trees

• Named after Adelson-Velsky and Landis (1962).

• Main idea: invest some additional time to 
balance the tree each time a new element is 
inserted or deleted.

• Properties:
– The height of the tree is always Θ(log 𝑛𝑛). 
– The time devoted to balancing is O(log 𝑛𝑛).
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AVL tree: definition
• An AVL tree is a BST such that, for every node, the 

difference between the heights of the left and 
right subtrees is at most 1.
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AVL tree in action
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https://en.wikipedia.org/wiki/AVL_tree

https://en.wikipedia.org/wiki/AVL_tree


Complexity
• Single and double rotations only need the 

manipulation of few pointers and the height of the 
nodes (O(1)).

• Insertion: the height of the subtree after a rotation is 
the same as the height before the insertion. Therefore, 
at most only one rotation must be applied for each 
insertion.

• Deletion: more complicated. More than one rotation 
might be required.

• Worst case for deletion: O log 𝑛𝑛 rotations
(a chain effect from leaves to root).
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EXERCISES
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BST

• Starting from an empty BST, depict the BST 
after inserting the values  32, 15, 47, 67, 78, 
39, 63, 21, 12, 27.

• Depict the previous BST after removing the 
values 63, 21, 15 and 32.
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Methods of a BST
Use the class BinTree from the previous chapter and 
implement the following methods for a BST:

def find_min(t: BinTree[T]) -> BinTree[T]:
"""Returns the tree (node) containing the min element"""

def find_max(t: BinTree[T]) -> BinTree[T]:
"""Returns the tree (node) containing the max element"""

def find(t: BinTree[T], data: T) -> BinTree[T]:
"""Returns the tree (node) where data is located,

or None if not found"""

def insert(t: BinTree[T], data: T) -> BinTree[T]:
"""Inserts data on the BST. It returns the new

BinTree after insertion (t if it was not empty)"""

def remove(t: BinTree[T], data: T) -> BinTree[T]:
"""Removes data from the BST. It returns the new

BinTree (None if it becomes empty)"""
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Merging BSTs

• Describe an algorithm to generate a sorted list 
from a BST. What is its cost?

• Describe an algorithm to create a balanced 
BST from a sorted list. What is its cost?

• Describe an algorithm to create a balanced 
BST that contains the union of the elements of 
two BSTs. What is its cost? 
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