
Trees

Jordi Cortadella and Jordi Petit
Department of Computer Science

Trees
Data are often organized hierarchically

Trees © Dept. CS, UPC 2

source: https://en.wikipedia.org/wiki/Tree_structure

Filesystems

Trees © Dept. CS, UPC 3

Company structure

Trees © Dept. CS, UPC 4

Mind maps

Trees © Dept. CS, UPC 5

Genealogical trees

Trees © Dept. CS, UPC 6

Trees © Dept. CS, UPC 7

Probability trees

Trees © Dept. CS, UPC 8

Parse trees

Trees © Dept. CS, UPC 9

Image representation (quad-trees)

Trees © Dept. CS, UPC 10

Decision trees

Trees © Dept. CS, UPC 11

source: http://www.simafore.com/blog/bid/94454/A-simple-explanation-of-how-entropy-fuels-a-decision-tree-model

Tree: definition
• Graph theory: a tree is an undirected graph in which any

two vertices are connected by exactly one path.

• Recursive definition (CS). A non-empty tree T consists of:
– a root node 𝑟𝑟
– a list of non-empty trees 𝑇𝑇1,𝑇𝑇2, … ,𝑇𝑇𝑛𝑛 that hierarchically

depend on 𝑟𝑟. The list can be possibly empty (𝑛𝑛 ≥ 0).

Trees © Dept. CS, UPC 12

𝑇𝑇1
𝑇𝑇2

𝑇𝑇𝑛𝑛

•••

𝑟𝑟

Tree: nomenclature

• A is the root node.
• Nodes with no children are leaves (e.g., B and P).
• Nodes with the same parent are siblings (e.g., K, L and M).
• The depth of a node is the length of the path from the root to the

node. Examples: depth(A)=0, depth(L)=2, depth(Q)=3.

Trees © Dept. CS, UPC 13

B C E F G

H I J K L M N

P Q

A

D

Tree: representation

Trees © Dept. CS, UPC 14

1

2 3 4

5 6 7

8 9

There is a plethora of data structures
that can be used to represent a tree,
e.g., a hierarchical list.

[root, child1, child2, …, childn]

another tree

tree = [1, 2,
[3, 5, [6, 8, 9]],
[4, 7]

]

Tree: Abstract Data Type
from dataclasses import dataclass
from typing import TypeVar, Generic

T = TypeVar('T')

@dataclass
class Tree(Generic[T]):

"""Class to represent a generic tree"""
data: T
children: list[Tree[T]]

def size(t: Tree) -> int:
return 1 + sum(c.size() for c in t.children)

def num_levels(t: Tree) -> int:
implement it!

Trees © Dept. CS, UPC 15

1

2 3 4

5 6 7

8 9

Write a tree

Trees © Dept. CS, UPC 16

home

doc

letter.doc pres.ppt

README courses

AC2 AP2

P01.pdf P02.pdf

COM PIE1

index.txt

home
doc
letter.doc
pres.ppt

README
courses
AC2
AP2

P01.pdf
P02.pdf

COM
PIE1

index.txt

def write(t: Tree[T], depth: int = 0) -> None:
"""Writes a tree indented according to the depth"""

Write a tree

def write(t: Tree[T], depth: int = 0) -> None:
"""Writes a tree indented according to the depth"""

print the root
print(' '*2*depth, t.data, sep='')

print the children with depth + 1
for c in t.children:

write(c, depth + 1)

Trees © Dept. CS, UPC 17

This function executes a preorder traversal of the tree:
each node is processed before the children.

Write a tree (postorder traversal)

Trees © Dept. CS, UPC 18

home

doc

letter.doc pres.ppt

README courses

AC2 AP2

P01.pdf P02.pdf

COM PIE1

index.txt

letter.doc
pres.ppt

doc
README
AC2

P01.pdf
P02.pdf

AP2
COM
PIE1

courses
index.txt

home

Postorder traversal: each node is processed after the children.

Write a tree (postordre traversal)

def write_postorder(t: Tree[T], depth: int = 0) -> None:
"""Writes a tree (in postorder) indented according

to the depth"""

print the children with depth + 1
for c in t.children:

write_postorder(c, depth + 1)

print the root
print(' '*2*depth, t.data, sep='')

Trees © Dept. CS, UPC 19

This function executes a postorder traversal of the tree:
each node is processed after the children.

Binary tree: definition
A binary tree is a finite set of nodes that either
• is empty, or
• is comprised of three disjoint sets of nodes: a root node

and two binary trees called its left and right subtrees

Trees © Dept. CS, UPC 20

r

𝑇𝑇𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙
𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑙𝑙

Binary tree: representation
Data structures to represent binary trees are typically based on the
definition of a node.

Trees © Dept. CS, UPC 21

from dataclasses import dataclass, field
from typing import TypeVar, Generic, Optional, Iterator

T = TypeVar('T')

@dataclass
class Node(Generic[T]):

"""Node of a bin tree"""
data: T
left: 'BinTree[T]' = field(default = None)
right: 'BinTree[T]' = field(default = None)

BinTree = Optional[Node[T]]
NodeIter = Iterator[Node[T]]

r

𝑇𝑇𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙
𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑙𝑙

Binary tree: representation

Trees © Dept. CS, UPC 22

1

2 3

4 5 6
4 5 6

32

1 Node

Example: expression trees

Expression tree for: a + b∗c + (d∗e + f) ∗ g
Postfix representation: a b c ∗ + d e ∗ f + g ∗ +
How can the postfix representation be obtained?

Trees © Dept. CS, UPC 23

+
+

+
*

*a

b c

d e

f

g

*

Example: expression trees

Trees © Dept. CS, UPC 24

Exprtree: TypeAlias = BinTree[str]

def build_expr(expr: str) -> Exprtree:
"""Builds an expression tree from a correct

expression represented in postfix notation"""

def infix_expr(t: Exprtree) -> str:
"""Generates a string with the expression in

infix notation"""

def eval_expr(t: Exprtree, v: dict[str, int]) -> int:
"""Evaluates an expression taking v as the value of the

variables (e.g., v['a'] contains the value of a)"""

Expressions are represented by strings in postfix notation in which
'a'…'z' represent operands and '+' and '∗' represent operators.

Example: expression trees

Trees © Dept. CS, UPC 25

def main():
t = build_expr('a b c * + d e * f + g * +')
print(infix_expr(t))
print(eval_expr(t, {'a':3, 'b':1, 'c':0, 'd':5,

'e':2, 'f':1, 'g':6}))

Output:

((a+(b*c))+(((d*e)+f)*g))
69

How to build an expression tree
a b c ∗ + d e ∗ f + g ∗ +

Trees © Dept. CS, UPC 26

+

+ +

*

*

a b c d e f g

*

How to build an expression tree
a b c ∗ + d e ∗ f + g ∗ +

Trees © Dept. CS, UPC 27

a

Stack

How to build an expression tree
a b c ∗ + d e ∗ f + g ∗ +

Trees © Dept. CS, UPC 28

a b

Stack

How to build an expression tree
a b c ∗ + d e ∗ f + g ∗ +

Trees © Dept. CS, UPC 29

a b c

Stack

How to build an expression tree
a b c ∗ + d e ∗ f + g ∗ +

Trees © Dept. CS, UPC 30

*

a b ca b c

Stack

How to build an expression tree
a b c ∗ + d e ∗ f + g ∗ +

Trees © Dept. CS, UPC 31

+

*

a b c

Stack

How to build an expression tree
a b c ∗ + d e ∗ f + g ∗ +

Trees © Dept. CS, UPC 32

+

*

a b c d

Stack

How to build an expression tree
a b c ∗ + d e ∗ f + g ∗ +

Trees © Dept. CS, UPC 33

+

*

a b c d e

Stack

How to build an expression tree
a b c ∗ + d e ∗ f + g ∗ +

Trees © Dept. CS, UPC 34

+

*

a b c d e

*

Stack

How to build an expression tree
a b c ∗ + d e ∗ f + g ∗ +

Trees © Dept. CS, UPC 35

+

*

a b c d e f

*

Stack

How to build an expression tree
a b c ∗ + d e ∗ f + g ∗ +

Trees © Dept. CS, UPC 36

+ +

*

a b c d e f

*

Stack

How to build an expression tree
a b c ∗ + d e ∗ f + g ∗ +

Trees © Dept. CS, UPC 37

+ +

*

a b c d e f g

*

Stack

How to build an expression tree
a b c ∗ + d e ∗ f + g ∗ +

Trees © Dept. CS, UPC 38

+ +

*

*

a b c d e f g

*

Stack

How to build an expression tree
a b c ∗ + d e ∗ f + g ∗ +

Trees © Dept. CS, UPC 39

+

+ +

*

*

a b c d e f g

*

Stack

Example: expression trees
def build_expr(expr: str) -> Exprtree:

"""Builds an expression tree from a correct
expression represented in postfix notation"""

Create a list of all characters (without spaces)
expr_char = [x for x in expr if not x.isspace()]
stack: list[Node[str]] = []
for c in expr_char:

if c.isalpha():
We have an operand. Create a leaf node
stack.append(Node(c))

else:
We have an operator (+ or *)
right = stack.pop()
left = stack.pop()
stack.append(Node(c, left, right))

The stack has only one element: the root of the expression
return stack.pop()

Trees © Dept. CS, UPC 40

Example: expression trees

def infix_expr(t: Exprtree) -> str:
"""Generates a string with the expression in

infix notation"""

if not t.left: # it is a leaf node (operand)
return t.data

We have an operator. Add enclosing parenthesis (for safety)
return '(' + infix_expr(t.left) + t.data +

infix_expr(t.right) + ')'

Trees © Dept. CS, UPC 41

Inorder traversal: node is visited between the left and right children.

Exercise: redesign infix_expr to minimize the number of parenthesis.

Example: expression trees

def eval_expr(t: Exprtree, v: dict[str, int]) -> int:
"""Evaluates an expression taking v as the value of the

variables (e.g., v['a'] contains the value of a)"""

if not t.left: # it is a leaf node: return the value
return v[t.data]

We have an operator: evaluate subtrees and operate
left = eval_expr(t.left, v)
right = eval_expr(t.right, v)
return left + right if t.data == '+' else left * right

Trees © Dept. CS, UPC 42

Tree traversals

Trees © Dept. CS, UPC 43

B C

E F

G H I J K

A

D
t: BinTree[str] = … # some tree constructor

Lpreorder = [n.data for n in preorder(t)]
Lpostorder = [n.data for n in postorder(t)]
Linorder = [n.data for n in inorder(t)]
Llevels = [n.data for n in level_order(t)]

Let us consider generators to visit the
nodes of the tree in some specific order.

Lpreorder: ['A', 'B', 'D', 'G', 'H', 'E', 'I', 'C', 'F', 'J', 'K']

Lpostorder: ['G', 'H', 'D', 'I', 'E', 'B', 'J', 'K', 'F', 'C', 'A']

Linorder: ['G', 'D', 'H', 'B', 'E', 'I', 'A', 'J', 'F', 'K', 'C']

Llevels: ['A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K']

Tree traversals

Trees © Dept. CS, UPC 44

Remember:
BinTree = Optional[Node[T]]
NodeIter = Iterator[Node[T]]

def preorder(t: BinTree) -> NodeIter:
"""Iterator to visit the nodes in preorder"""
if t:

yield t.data
yield from preorder(t.left)
yield from preorder(t.right)

def postorder(t: BinTree) -> NodeIter:
"""Iterator to visit the nodes in postorder"""
if t:

yield from postorder(t.left)
yield from postorder(t.right)
yield t.data

Tree traversals

Trees © Dept. CS, UPC 45

def inorder(t: BinTree) -> NodeIter:
"""Iterator to visit the nodes in inorder"""
if t:

yield from inorder(t.left)
yield t.data
yield from inorder(t.right)

def level_order(t: BinTree) -> NodeIter:
"""Iterator to visit the nodes by levels"""
if not t:

return
q: deque[Node] = deque([t])
while q:

n = q.popleft()
yield n
if n.left:

q.append(n.left)
if n.right:

q.append(n.right)

Tree visitors

Trees © Dept. CS, UPC 46

B C

E F

G H I J K

A

D

def visit_preorder(t: BinTree[T], f: Callable[[T], T]) -> None:
"""Visits all the nodes of the tree in preorder and applies

f() to the data. The result is reassigned to the data"""

A visitor is a function that is applied to all
nodes of a tree.

Similar to the map function applied to
iterables (e.g., lists)

Type: Callable[[T1,…Tn], Tr].
A function with parameters [T1,…,Tn] and result Tr.

Tree visitors

Trees © Dept. CS, UPC 47

def visit_preorder(t: BinTree[T], f: Callable[[T], T]) -> None:
"""Applies f to all data in preorder"""
if t:

t.data = f(t.data)
visit_preorder(t.left, f)
visit_preorder(t.right, f)

Example
def square(x: int) -> int:

return x*x

t: Bintree[int] = … # some tree constructor
visit_preorder(t, square) # squares all data in the tree

equivalent with lambda: visit_preorder(t, lambda x: x*x)

EXERCISES

Trees © Dept. CS, UPC 48

Expression tree

• Modify infixExpr for a nicer printing:
– Minimize number of parenthesis.
– Add spaces around + (but not around ∗).

• Extend the functions to support other
operands, including the unary – (e.g., –a/b).

Trees © Dept. CS, UPC 49

Binary tree types

• Full Binary Tree: each node has
0 or 2 children.

• Complete Binary Tree: all levels
are filled entirely with nodes,
except the lowest level. In the
lowest level, all nodes reside on
the left side.

• Perfect Binary Tree: all the
internal nodes have exactly two
children and all leaves are at the
same level.

• Balanced Binary Tree: the tree
height is O(log𝑛𝑛), where 𝑛𝑛 is
the number of nodes. The
height of the left and right
subtrees of each node should
vary by at most one.

• Degenerated Binary Tree: every
internal node has a single child.

Trees © Dept. CS, UPC 50

Design the function "def check_type(t: BinTree) -> bool:" for each type tree.

(balanced) (unbalanced)

Intersection of binary trees

Trees © Dept. CS, UPC 51

Design the function

def intersection(t1: BinTree[T], t2: BinTree[T],
f: Callable[[T, T], T]) -> BinTree[T]:

2

2

1

3

98 2

1 4

3

1

2

3

04

6

2

2

9

08

t1:

t2:

that returns the common structure of both trees
and combines the values of the common nodes
with the function f.

intersection(t1, t2, lambda x, y: x*y)

Traversals: Full Binary Trees
• A Full Binary Tree is a binary tree where each

node has 0 or 2 children.

• Draw the full binary trees corresponding to the
following tree traversals:
– Preorder: 2 7 3 6 1 4 5; Postorder: 3 6 7 4 5 1 2
– Preorder: 3 1 7 4 9 5 2 6 8; Postorder: 1 9 5 4 6 8 2 7 3

• Given the pre- and post-order traversals of a
binary tree (not necessarily full), can we uniquely
determine the tree?
– If yes, prove it.
– If not, show a counterexample.

Trees © Dept. CS, UPC 52

Traversals: Binary Trees
• Draw the binary trees corresponding the

following traversals:
– Preorder: 3 6 1 8 5 2 4 7 9; Inorder: 1 6 3 5 2 8 7 4 9
– Level-order: 4 8 3 1 2 7 5 6 9; Inorder: 1 8 5 2 4 6 7 9 3
– Postorder: 4 3 2 5 9 6 8 7 1; Inorder: 4 3 9 2 5 1 7 8 6

• Describe an algorithm that builds a binary tree
from the preorder and inorder traversals.

Trees © Dept. CS, UPC 53

Drawing binary trees
We want to draw the skeleton of a binary tree as it is shown in the figure. For that,
we need to assign (𝑥𝑥, 𝑦𝑦) coordinates to each tree node. The layout must fit in a pre-
defined bounding box of size 𝑊𝑊 × 𝐻𝐻, with the origin located in the top-left corner.
Design the function:

T = TypeVar('T')
Coordinate = tuple[float, float]
Coordinates = dict[Bintree, Coordinate]

def draw(t: Bintree, w: float, h: float) -> Coordinates:

that returns a dictionary with the coordinates of all tree nodes in such a way that
the lines that connect the nodes do not cross.

Trees © Dept. CS, UPC 54

(0,0)

(𝑊𝑊,𝐻𝐻)

	Trees
	Trees
	Filesystems
	Company structure
	Mind maps
	Genealogical trees
	Slide Number 7
	Probability trees
	Parse trees
	Image representation (quad-trees)
	Decision trees
	Tree: definition
	Tree: nomenclature
	Tree: representation
	Tree: Abstract Data Type
	Write a tree
	Write a tree
	Write a tree (postorder traversal)
	Write a tree (postordre traversal)
	Binary tree: definition
	Binary tree: representation
	Binary tree: representation
	Example: expression trees
	Example: expression trees
	Example: expression trees
	How to build an expression tree
	How to build an expression tree
	How to build an expression tree
	How to build an expression tree
	How to build an expression tree
	How to build an expression tree
	How to build an expression tree
	How to build an expression tree
	How to build an expression tree
	How to build an expression tree
	How to build an expression tree
	How to build an expression tree
	How to build an expression tree
	How to build an expression tree
	Example: expression trees
	Example: expression trees
	Example: expression trees
	Tree traversals
	Tree traversals
	Tree traversals
	Tree visitors
	Tree visitors
	Exercises
	Expression tree
	Binary tree types
	Intersection of binary trees
	Traversals: Full Binary Trees
	Traversals: Binary Trees
	Drawing binary trees

