Trees

Jordi Cortadella and Jordi Petit
Department of Computer Science

Trees

Data are often organized hierarchically

source: https://en.wikipedia.org/wiki/Tree_structure

Filesystems

Company structure

Mind maps

Genealogical trees

Tree of Life

http:/humw.greennature.cal

Green Filamentous Bacteria

Probability trees

Parse trees

Image representation (quad-trees)

Decision trees

source: http://www.simafore.com/blog/bid/94454/A-simple-explanation-of-how-entropy-fuels-a-decision-tree-model

Tree: definition

- Graph theory: a tree is an undirected graph in which any two vertices are connected by exactly one path.
- Recursive definition (CS). A non-empty tree T consists of:
- a root node r
- a list of non-empty trees $T_{1}, T_{2}, \ldots, T_{n}$ that hierarchically depend on r. The list can be possibly empty ($n \geq 0$).

Tree: nomenclature

- A is the root node.
- Nodes with no children are leaves (e.g., B and P).
- Nodes with the same parent are siblings (e.g., K, L and M).
- The depth of a node is the length of the path from the root to the node. Examples: depth $(\mathrm{A})=0, \operatorname{depth}(\mathrm{~L})=2, \operatorname{depth}(\mathrm{Q})=3$.

Tree: representation

There is a plethora of data structures that can be used to represent a tree, e.g., a hierarchical list.
[root, child ${ }_{1}$, child ${ }_{2}$, ..., child ${ }_{n}$] another tree

$$
\begin{gathered}
\operatorname{tree}=\begin{array}{c}
{[1,2,} \\
{[3,5,[6,8,9]],} \\
{[4,7]}
\end{array}
\end{gathered}
$$

Tree: Abstract Data Type

```
from dataclasses import dataclass
from typing import TypeVar, Generic
T = TypeVar('T')
@dataclass
class Tree(Generic[T]):
    """Class to represent a generic tree"""
    data: T
    children: list[Tree[T]]
def size(t: Tree) -> int:
    return 1 + sum(c.size() for c in t.children)
def num_levels(t: Tree) -> int:
    # implement it!
```


Write a tree

home
 doc

letter.doc pres.ppt
README courses

AC2
AP2
P01.pdf P02.pdf
COM
PIE1
index.txt
def write(t: Tree[T], depth: int = 0) -> None: """Writes a tree indented according to the depth"""

Write a tree

def write(t: Tree[T], depth: int = 0) -> None:
"""Writes a tree indented according to the depth"""
\# print the root
print(' '*2*depth, t.data, sep='')
\# print the children with depth +1
for c in t.children: write(c, depth + 1)

This function executes a preorder traversal of the tree: each node is processed before the children.

Write a tree (postorder traversal)

letter.doc
pres.ppt
doc
README
AC2
P01.pdf
P02.pdf
AP2
COM
PIE1
courses
index.txt
home

Postorder traversal: each node is processed after the children.

Write a tree (postordre traversal)

def write_postorder(t: Tree[T], depth: int = 0) -> None: """Writes a tree (in postorder) indented according to the depth"""
\# print the children with depth + 1
for c in t.children: write_postorder(c, depth + 1)
\# print the root
print(' '*2*depth, t.data, sep='')

This function executes a postorder traversal of the tree: each node is processed after the children.

Binary tree: definition

A binary tree is a finite set of nodes that either

- is empty, or
- is comprised of three disjoint sets of nodes: a root node and two binary trees called its left and right subtrees

Binary tree: representation

Data structures to represent binary trees are typically based on the definition of a node.
from dataclasses import dataclass, field from typing import TypeVar, Generic, Optional, Iterator
T = TypeVar('T')
@dataclass
class Node(Generic[T]):
"""Node of a bin tree"""
data: T
left: 'BinTree[T]' = field(default = None)
right: 'BinTree[T]' = field(default = None)
BinTree = Optional[Node[T]]
NodeIter = Iterator[Node[T]]

Binary tree: representation

Example: expression trees

Expression tree for: $\mathbf{a}+\mathbf{b} \boldsymbol{c}+\mathbf{(d * e}+\mathbf{f}) * \mathbf{g}$ Postfix representation: $\mathbf{a b} \mathbf{c} *+\mathbf{d e} \boldsymbol{*}+\mathbf{g} *+$ How can the postfix representation be obtained?

Example: expression trees

Expressions are represented by strings in postfix notation in which 'a'...'z' represent operands and '+' and '*' represent operators.

```
Exprtree: TypeAlias = BinTree[str]
def build_expr(expr: str) -> Exprtree:
    """Builds an expression tree from a correct
        expression represented in postfix notation"""
def infix_expr(t: Exprtree) -> str:
    """Generates a string with the expression in
        infix notation"""
def eval_expr(t: Exprtree, v: dict[str, int]) -> int:
    """Evaluates an expression taking v as the value of the
        variables (e.g., v['a'] contains the value of a)"""
```


Example: expression trees

```
def main():
    t = build_expr('a b c * + d e * f + g * +')
    print(infix_expr(t))
    print(eval_expr(t, {'a':3, 'b':1, 'c':0, 'd':5,
    'e':2, 'f':1, 'g':6}))
```


Output:

$\left((a+(b * c))+\left(\left(\left(d^{*} e\right)+f\right) * g\right)\right)$
69

How to build an expression tree

$$
\text { abc } *+d e * f+g *+
$$

How to build an expression tree

$$
a b c *+d e * f+g *+
$$

How to build an expression tree

$$
\mathrm{a} b \mathbf{c} *+\mathbf{d} e * \mathbf{f}+\mathbf{g} *+
$$

How to build an expression tree

$$
\text { a b c } \boldsymbol{*}+\mathbf{d} \mathbf{e} * \mathbf{f}+\mathbf{g} *+
$$

How to build an expression tree

$$
\text { a b c } *+\mathbf{d} \mathbf{e} * \mathbf{f}+\mathbf{g} *+
$$

How to build an expression tree

$$
\text { a b c } *+\mathbf{d} \mathbf{e} * \mathbf{f}+\mathbf{g} *+
$$

How to build an expression tree

$$
\text { a b c } *+d \mathbf{e} * \mathbf{f}+\mathbf{g} *+
$$

How to build an expression tree

$$
\text { a b c } *+\mathrm{d} e \boldsymbol{*} \mathbf{f}+\mathbf{g} \boldsymbol{*}+
$$

How to build an expression tree

$$
\text { a b c } *+\mathrm{d} \text { e } * \mathbf{f}+\mathbf{g} *+
$$

How to build an expression tree

$$
\text { a b c } *+\mathrm{d} e * \mathrm{f} \boldsymbol{+} \mathbf{g} *+
$$

How to build an expression tree

$$
\text { a b c } *+\mathrm{d} e * \mathrm{f}+\mathbf{g} *+
$$

How to build an expression tree

$$
\text { a bc } *+\mathrm{d} e * \mathrm{f}+\mathrm{g} *+
$$

How to build an expression tree

$$
\mathrm{abc} *+\mathrm{d} e * \mathrm{f}+\mathrm{g} *+
$$

How to build an expression tree

Example: expression trees

```
def build_expr(expr: str) -> Exprtree:
"""Builds an expression tree from a correct
    expression represented in postfix notation"""
# Create a list of all characters (without spaces)
expr_char = [x for x in expr if not x.isspace()]
stack: list[Node[str]] = []
for c in expr_char:
    if c.isalpha():
        # We have an operand. Create a leaf node
        stack.append(Node(c))
    else:
        # We have an operator (+ or *)
        right = stack.pop()
        left = stack.pop()
    stack.append(Node(c, left, right))
    # The stack has only one element: the root of the expression
    return stack.pop()
```


Example: expression trees

```
def infix_expr(t: Exprtree) -> str:
"""Generates a string with the expression in
        infix notation"""
if not t.left: # it is a leaf node (operand)
    return t.data
```

 \# We have an operator. Add enclosing parenthesis (for safety)
 return '(' + infix_expr(t.left) + t.data +
 infix_expr(t.right) + ')'
 Inorder traversal: node is visited between the left and right children.

Exercise: redesign infix_expr to minimize the number of parenthesis.

Example: expression trees

def eval_expr(t: Exprtree, v: dict[str, int]) -> int: """Evaluates an expression taking v as the value of the variables (e.g., v['a'] contains the value of a)"""
if not t.left: \# it is a leaf node: return the value return v [t.data]
\# We have an operator: evaluate subtrees and operate left = eval_expr(t.left, v) right = eval_expr(t.right, v)
return left + right if t.data == '+' else left * right

Tree traversals

Lpreorder: ['A', 'B', 'D', 'G', 'H', 'E', 'I', 'C', 'F', 'J', 'K'] Lpostorder: ['G', 'H', 'D', 'I', 'E', 'B', 'J', 'K', 'F', 'C', 'A'] Linorder: ['G', 'D', 'H', 'B', 'E', 'I', 'A', 'J', 'F', 'K', 'C'] Llevels: ['A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K']

Tree traversals

\# Remember:
\# BinTree = Optional[Node[T]]
\# NodeIter = Iterator[Node[T]]
def preorder(t: BinTree) -> NodeIter:
"""Iterator to visit the nodes in preorder"""
if t :

```
yield t.data
yield from preorder(t.left)
yield from preorder(t.right)
```

def postorder(t: BinTree) -> NodeIter:
"""Iterator to visit the nodes in postorder"""
if t :
yield from postorder(t.left)
yield from postorder(t.right)
yield t.data

Tree traversals

```
def inorder(t: BinTree) -> NodeIter:
    """Iterator to visit the nodes in inorder"""
    if t:
        yield from inorder(t.left)
        yield t.data
        yield from inorder(t.right)
def level_order(t: BinTree) -> NodeIter:
    """Iterator to visit the nodes by levels"""
    if not t:
        return
    q: deque[Node] = deque([t])
    while q:
        n = q.popleft()
        yield n
        if n.left:
        q.append(n.left)
        if n.right:
            q.append(n.right)
```


Tree visitors

A visitor is a function that is applied to all nodes of a tree.

Similar to the map function applied to iterables (e.g., lists)
def visit_preorder(t: BinTree[T], f: Callable[[T], T]) -> None: """Visits all the nodes of the tree in preorder and applies $f()$ to the data. The result is reassigned to the data"""

Type: Callable[[T1,...Tn], Tr].
A function with parameters [$\mathrm{T} 1, \ldots, \mathrm{Tn}$] and result Tr .

Tree visitors

```
def visit_preorder(t: BinTree[T], f: Callable[[T], T]) -> None:
    """Applies f to all data in preorder"""
    if t:
t.data = f(t.data)
visit_preorder(t.left, f)
visit_preorder(t.right, f)
```

\# Example
def square(x: int) -> int:
return x^{*} x
t: Bintree[int] = ... \# some tree constructor visit_preorder(t, square) \# squares all data in the tree
\# equivalent with lambda: visit_preorder(t, lambda x : x*x)

EXERCISES

Expression tree

- Modify infixExpr for a nicer printing:
- Minimize number of parenthesis.
- Add spaces around + (but not around *).
- Extend the functions to support other operands, including the unary - (e.g., $-\mathrm{a} / \mathrm{b}$).

Binary tree types

Design the function "def check_type(t: BinTree) -> bool:" for each type tree.

- Full Binary Tree: each node has 0 or 2 children.
- Complete Binary Tree: all levels are filled entirely with nodes, except the lowest level. In the lowest level, all nodes reside on the left side.
- Perfect Binary Tree: all the internal nodes have exactly two children and all leaves are at the same level.

Intersection of binary trees

Design the function

```
def intersection(t1: BinTree[T], t2: BinTree[T],
f: Callable[[T, T], T]) -> BinTree[T]:
```


Traversals: Full Binary Trees

- A Full Binary Tree is a binary tree where each node has 0 or 2 children.
- Draw the full binary trees corresponding to the following tree traversals:
- Preorder: 273614 5; Postorder: 3674512
- Preorder: 31749526 8; Postorder: 195468273
- Given the pre- and post-order traversals of a binary tree (not necessarily full), can we uniquely determine the tree?
- If yes, prove it.
- If not, show a counterexample.

Traversals: Binary Trees

- Draw the binary trees corresponding the following traversals:
- Preorder: 36185247 9; Inorder: 163528749
- Level-order: 48312756 9; Inorder: 185246793
- Postorder: 43259687 1; Inorder: 439251786
- Describe an algorithm that builds a binary tree from the preorder and inorder traversals.

Drawing binary trees

We want to draw the skeleton of a binary tree as it is shown in the figure. For that, we need to assign (x, y) coordinates to each tree node. The layout must fit in a predefined bounding box of size $W \times H$, with the origin located in the top-left corner. Design the function:

T = TypeVar('T')
Coordinate = tuple[float, float]
Coordinates = dict[Bintree, Coordinate]
def draw(t: Bintree, w: float, h: float) -> Coordinates:
that returns a dictionary with the coordinates of all tree nodes in such a way that the lines that connect the nodes do not cross.

