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Trees
Data are often organized hierarchically
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source: https://en.wikipedia.org/wiki/Tree_structure



Filesystems
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Company structure
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Mind maps
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Genealogical trees
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Probability trees
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Parse trees
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Image representation (quad-trees)
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Decision trees
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source: http://www.simafore.com/blog/bid/94454/A-simple-explanation-of-how-entropy-fuels-a-decision-tree-model 



Tree: definition
• Graph theory:  a tree is an undirected graph in which any 

two vertices are connected by exactly one path.

• Recursive definition (CS). A non-empty tree T consists of:
– a root node 𝑟𝑟
– a list of non-empty trees 𝑇𝑇1,𝑇𝑇2, … ,𝑇𝑇𝑛𝑛 that hierarchically 

depend on 𝑟𝑟. The list can be possibly empty (𝑛𝑛 ≥ 0).
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Tree: nomenclature

• A is the root node.
• Nodes with no children are leaves (e.g., B and P).
• Nodes with the same parent are siblings (e.g., K, L and M).
• The depth of a node is the length of the path from the root to the 

node. Examples: depth(A)=0, depth(L)=2, depth(Q)=3.
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Tree: representation
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There is a plethora of data structures
that can be used to represent a tree,
e.g., a hierarchical list.

[root, child1, child2, …, childn]

another tree

tree = [1, 2,
[3, 5, [6, 8, 9]],
[4, 7]

]



Tree: Abstract Data Type
from dataclasses import dataclass
from typing import TypeVar, Generic

T = TypeVar('T')

@dataclass
class Tree(Generic[T]):

"""Class to represent a generic tree"""
data: T
children: list[Tree[T]]

def size(t: Tree) -> int:
return 1 + sum(c.size() for c in t.children)

def num_levels(t: Tree) -> int:
# implement it!
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Write a tree
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def write(t: Tree[T], depth: int = 0) -> None:
"""Writes a tree indented according to the depth"""



Write a tree

def write(t: Tree[T], depth: int = 0) -> None:
"""Writes a tree indented according to the depth"""

# print the root
print(' '*2*depth, t.data, sep='')

# print the children with depth + 1
for c in t.children:

write(c, depth + 1)
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This function executes a preorder traversal of the tree:
each node is processed before the children.



Write a tree (postorder traversal)
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Postorder traversal: each node is processed after the children.



Write a tree (postordre traversal)

def write_postorder(t: Tree[T], depth: int = 0) -> None:
"""Writes a tree (in postorder) indented according

to the depth"""

# print the children with depth + 1
for c in t.children:

write_postorder(c, depth + 1)

# print the root
print(' '*2*depth, t.data, sep='')
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This function executes a postorder traversal of the tree:
each node is processed after the children.



Binary tree: definition
A binary tree is a finite set of nodes that either
• is empty, or
• is comprised of three disjoint sets of nodes: a root node 

and two binary trees called its left and right subtrees
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Binary tree: representation
Data structures to represent binary trees are typically based on the 
definition of a node.
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from dataclasses import dataclass, field
from typing import TypeVar, Generic, Optional, Iterator

T = TypeVar('T')

@dataclass
class Node(Generic[T]):

"""Node of a bin tree"""
data: T
left: 'BinTree[T]' = field(default = None)
right: 'BinTree[T]' = field(default = None)

BinTree = Optional[Node[T]]
NodeIter = Iterator[Node[T]]

r

𝑇𝑇𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙
𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑙𝑙



Binary tree: representation
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Example: expression trees

Expression tree for:   a + b∗c + (d∗e + f) ∗ g
Postfix representation:   a b c ∗ + d e ∗ f + g ∗ +
How can the postfix representation be obtained?
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Example: expression trees
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Exprtree: TypeAlias = BinTree[str]

def build_expr(expr: str) -> Exprtree:
"""Builds an expression tree from a correct

expression represented in postfix notation"""

def infix_expr(t: Exprtree) -> str:
"""Generates a string with the expression in

infix notation"""

def eval_expr(t: Exprtree, v: dict[str, int]) -> int:
"""Evaluates an expression taking v as the value of the

variables (e.g., v['a'] contains the value of a)"""

Expressions are represented by strings in postfix notation in which
'a'…'z' represent operands and '+' and '∗' represent operators.



Example: expression trees
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def main():
t = build_expr('a b c * + d e * f + g * +')
print(infix_expr(t))
print(eval_expr(t, {'a':3, 'b':1, 'c':0, 'd':5,

'e':2, 'f':1, 'g':6}))

Output:

((a+(b*c))+(((d*e)+f)*g))
69



How to build an expression tree
a b c ∗ + d e ∗ f + g ∗ +
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How to build an expression tree
a b c ∗ + d e ∗ f + g ∗ +
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How to build an expression tree
a b c ∗ + d e ∗ f + g ∗ +
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How to build an expression tree
a b c ∗ + d e ∗ f + g ∗ +
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Stack



How to build an expression tree
a b c ∗ + d e ∗ f + g ∗ +
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How to build an expression tree
a b c ∗ + d e ∗ f + g ∗ +
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How to build an expression tree
a b c ∗ + d e ∗ f + g ∗ +
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How to build an expression tree
a b c ∗ + d e ∗ f + g ∗ +
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How to build an expression tree
a b c ∗ + d e ∗ f + g ∗ +
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How to build an expression tree
a b c ∗ + d e ∗ f + g ∗ +
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How to build an expression tree
a b c ∗ + d e ∗ f + g ∗ +

Trees © Dept. CS, UPC 36

+ +

*

a b c d e f

*

Stack



How to build an expression tree
a b c ∗ + d e ∗ f + g ∗ +
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How to build an expression tree
a b c ∗ + d e ∗ f + g ∗ +
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How to build an expression tree
a b c ∗ + d e ∗ f + g ∗ +
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Example: expression trees
def build_expr(expr: str) -> Exprtree:

"""Builds an expression tree from a correct
expression represented in postfix notation"""

# Create a list of all characters (without spaces)
expr_char = [x for x in expr if not x.isspace()]
stack: list[Node[str]] = []
for c in expr_char:

if c.isalpha():
# We have an operand. Create a leaf node
stack.append(Node(c))

else:
# We have an operator (+ or *)
right = stack.pop()
left = stack.pop()
stack.append(Node(c, left, right))

# The stack has only one element: the root of the expression
return stack.pop()
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Example: expression trees

def infix_expr(t: Exprtree) -> str:
"""Generates a string with the expression in

infix notation"""

if not t.left:  # it is a leaf node (operand)
return t.data

# We have an operator. Add enclosing parenthesis (for safety)
return '(' + infix_expr(t.left) + t.data +

infix_expr(t.right) + ')'
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Inorder traversal: node is visited between the left and right children.

Exercise: redesign infix_expr to minimize the number of parenthesis.



Example: expression trees

def eval_expr(t: Exprtree, v: dict[str, int]) -> int:
"""Evaluates an expression taking v as the value of the

variables (e.g., v['a'] contains the value of a)"""

if not t.left:  # it is a leaf node: return the value
return v[t.data]

# We have an operator: evaluate subtrees and operate
left = eval_expr(t.left, v)
right = eval_expr(t.right, v)
return left + right if t.data == '+' else left * right
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Tree traversals
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t: BinTree[str] = … # some tree constructor

Lpreorder = [n.data for n in preorder(t)]
Lpostorder = [n.data for n in postorder(t)]
Linorder = [n.data for n in inorder(t)]
Llevels = [n.data for n in level_order(t)]

Let us consider generators to visit the
nodes of the tree in some specific order.

Lpreorder:  ['A', 'B', 'D', 'G', 'H', 'E', 'I', 'C', 'F', 'J', 'K']

Lpostorder: ['G', 'H', 'D', 'I', 'E', 'B', 'J', 'K', 'F', 'C', 'A']

Linorder:   ['G', 'D', 'H', 'B', 'E', 'I', 'A', 'J', 'F', 'K', 'C']

Llevels:    ['A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K']



Tree traversals
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# Remember:
#     BinTree = Optional[Node[T]]
#     NodeIter = Iterator[Node[T]]

def preorder(t: BinTree) -> NodeIter:
"""Iterator to visit the nodes in preorder"""
if t:

yield t.data
yield from preorder(t.left)
yield from preorder(t.right)

def postorder(t: BinTree) -> NodeIter:
"""Iterator to visit the nodes in postorder"""
if t:

yield from postorder(t.left)
yield from postorder(t.right)
yield t.data



Tree traversals
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def inorder(t: BinTree) -> NodeIter:
"""Iterator to visit the nodes in inorder"""
if t:

yield from inorder(t.left)
yield t.data
yield from inorder(t.right)

def level_order(t: BinTree) -> NodeIter:
"""Iterator to visit the nodes by levels"""
if not t:

return
q: deque[Node] = deque([t])
while q:

n = q.popleft()
yield n
if n.left:

q.append(n.left)
if n.right:

q.append(n.right)



Tree visitors
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def visit_preorder(t: BinTree[T], f: Callable[[T], T]) -> None:
"""Visits all the nodes of the tree in preorder and applies

f() to the data. The result is reassigned to the data"""

A visitor is a function that is applied to all
nodes of a tree.

Similar to the map function applied to
iterables (e.g., lists)

Type: Callable[[T1,…Tn], Tr].
A function with parameters [T1,…,Tn] and result Tr.



Tree visitors
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def visit_preorder(t: BinTree[T], f: Callable[[T], T]) -> None:
"""Applies f to all data in preorder"""
if t:

t.data = f(t.data)
visit_preorder(t.left, f)
visit_preorder(t.right, f)

# Example
def square(x: int) -> int:

return x*x

t: Bintree[int] = …  # some tree constructor
visit_preorder(t, square) # squares all data in the tree

# equivalent with lambda: visit_preorder(t, lambda x: x*x)



EXERCISES
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Expression tree

• Modify infixExpr for a nicer printing:
– Minimize number of parenthesis.
– Add spaces around + (but not around ∗).

• Extend the functions to support other 
operands, including the unary – (e.g., –a/b).
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Binary tree types

• Full Binary Tree: each node has 
0 or 2 children.

• Complete Binary Tree: all levels 
are filled entirely with nodes, 
except the lowest level. In the 
lowest level, all nodes reside on 
the left side.

• Perfect Binary Tree: all the 
internal nodes have exactly two 
children and all leaves are at the 
same level.

• Balanced Binary Tree: the tree 
height is O(log𝑛𝑛), where 𝑛𝑛 is 
the number of nodes. The
height of the left and right
subtrees of each node should
vary by at most one.

• Degenerated Binary Tree: every 
internal node has a single child.
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Design the function "def check_type(t: BinTree) -> bool:" for each type tree.

(balanced) (unbalanced)



Intersection of binary trees
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Design the function

def intersection(t1: BinTree[T], t2: BinTree[T],       
f: Callable[[T, T], T]) -> BinTree[T]:
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t1:

t2:

that returns the common structure of both trees
and combines the values of the common nodes
with the function f.

intersection(t1, t2, lambda x, y: x*y)



Traversals: Full Binary Trees
• A Full Binary Tree is a binary tree where each 

node has 0 or 2 children.

• Draw the full binary trees corresponding to the 
following tree traversals:
– Preorder: 2 7 3 6 1 4 5; Postorder: 3 6 7 4 5 1 2
– Preorder: 3 1 7 4 9 5 2 6 8; Postorder: 1 9 5 4 6 8 2 7 3

• Given the pre- and post-order traversals of a 
binary tree (not necessarily full), can we uniquely 
determine the tree?
– If yes, prove it.
– If not, show a counterexample.
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Traversals: Binary Trees
• Draw the binary trees corresponding the 

following traversals:
– Preorder: 3 6 1 8 5 2 4 7 9; Inorder: 1 6 3 5 2 8 7 4 9
– Level-order: 4 8 3 1 2 7 5 6 9; Inorder: 1 8 5 2 4 6 7 9 3
– Postorder: 4 3 2 5 9 6 8 7 1; Inorder: 4 3 9 2 5 1 7 8 6

• Describe an algorithm that builds a binary tree 
from the preorder and inorder traversals.
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Drawing binary trees
We want to draw the skeleton of a binary tree as it is shown in the figure. For that, 
we need to assign (𝑥𝑥, 𝑦𝑦) coordinates to each tree node. The layout must fit in a pre-
defined bounding box  of size 𝑊𝑊 × 𝐻𝐻, with the origin located in the top-left corner.
Design the function:

T = TypeVar('T')
Coordinate = tuple[float, float]
Coordinates = dict[Bintree, Coordinate]

def draw(t: Bintree, w: float, h: float) -> Coordinates:

that returns a dictionary with the coordinates of all tree nodes in such a way that 
the lines that connect the nodes do not cross.
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