Containers:
Set and Dictionary

Jordi Cortadella and Jordi Petit
Department of Computer Science
Sets and Dictionaries

• A set: a collection of items. The typical operations are:
 – Add/remove one element
 – Does it contain an element?
 – Size?, Is it empty?
 – Visit all items

• A dictionary (map): a collection of key-value pairs. The typical operations are:
 – Put a new key-value pair
 – Remove a key-value pair with a specific key
 – Get the value associated to a key
 – Does it contain a key?
 – Visit all key-value pairs
Sets and Dictionaries

- A dictionary can be treated as a set of keys, each key having an associated value.

- We will focus on the implementation of sets.

Source: Natural Language Processing with Python, by Steven Bird, Ewan Klein and Edward Loper
Possible implementations of a set

<table>
<thead>
<tr>
<th>Unsorted list or vector</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Insertion</td>
<td>$O(n)$, if checking for duplicate keys, $O(1)$ otherwise.</td>
</tr>
<tr>
<td>Deletion</td>
<td>$O(n)$ since it has to find the item along the list.</td>
</tr>
<tr>
<td>Lookup</td>
<td>$O(n)$ since the list must be scanned.</td>
</tr>
<tr>
<td>Good for</td>
<td>Small sets.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sorted vector</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Insertion</td>
<td>$O(n)$ in the worst case (similar to insertion sort)</td>
</tr>
<tr>
<td>Deletion</td>
<td>$O(n)$ since it has to sift the elements after deletion.</td>
</tr>
<tr>
<td>Lookup</td>
<td>$O(\log n)$ with binary search.</td>
</tr>
<tr>
<td>Good for</td>
<td>Read-only collections (only lookups) or very few updates.</td>
</tr>
</tbody>
</table>

Can we have a data structure with efficient insertion/deletion/lookup operations?

Note: n is the number of items in the set.
Binary Search Trees

BST property: for every node in the tree with value V:
- All values in the left subtree are smaller than V.
- All values in the right subtree are larger than V.

This is a binary search tree

This is *not* a binary search tree
Sets and dictionaries

Set

Dictionary (Key=Name, Value=Age)

Requirement: keys must be comparable
template<typename T>
class Set {
 public:
 // Constructors, assignment and destructor
 Set();
 Set(const Set& S);
 Set& operator=(const Set& S);
 ~Set();

 // Finding elements
 const T& findMin() const;
 const T& findMax() const;
 bool contains(const T& x) const;
 int size() const;
 bool isEmpty() const;

 // Insert/remove methods
 void insert(const T& x);
 void remove(const T& x);
};
Binary Search Trees: find min/max

- **Find min:** Go to the leftmost element.
- **Find max:** Go to the rightmost element.
Binary Search Trees: contains

Contains:
- Move to left/right depending on the value.
- Stop when:
 - The value is found (contained)
 - No more elements exist (not contained)

Contains 4?
Contains 8?
Binary Search Trees: insert

Insert 5

Insert:
- Move to left/right depending on the value.
- Stop when the element is found (nothing to do) or a null is found.
- If not found, substitute null by the new element.

Insert 5 into the tree:
- Move from root 6 to left child 2.
- Move from 2 to left child 1.
- Move from 1 to right child 3.
- Move from 3 to right child 5.
- Since 5 is already in the tree, insert is done at 5.
remove: simple case (no children)

remove(3)
remove: simple case (one child)

remove(4)
remove: complex case (two children)

1. Find the element.

2. Find the min value of the right subtree.

3. Copy the min value onto the element to be removed.

remove(2)
remove: complex case (two children)

1. Find the element.

2. Find the min value of the right subtree.

3. Copy the min value onto the element to be removed.

4. Remove the min value in the right subtree (simple case).
remove: complex case (two children)

1. Find the element.

2. Find the min value of the right subtree.

3. Copy the min value onto the element to be removed.

4. Remove the min value in the right subtree (simple case).
Visiting the items in ascending order

Question:
How can we visit the items of a BST in ascending order?

Answer:
Using an in-order traversal
BST: runtime analysis

• Copying and deleting the full tree takes $O(n)$.

• We are mostly interested in the runtime of the insert/remove/contains methods.
 – The complexity is $O(d)$, where d is the depth of the node containing the required element.

• But, how large is d?
BST: runtime analysis

- **Internal path length (IPL):** The sum of the depths of all nodes in a tree. Let us calculate the average IPL considering all possible insertion sequences.

\[
\begin{align*}
 d &= 0 \\
 d &= 1 \\
 d &= 2 \\
 d &= 3
\end{align*}
\]

\[
\text{ILP} = 0 \times 1 + 1 \times 2 + 2 \times 3 + 3 \times 5 = 23
\]

\[
\text{Avg. IPL} = \frac{23}{11} \approx 2.09
\]
BST: runtime analysis

• Internal path length (IPL): The sum of the depths of all nodes in a tree. Let us calculate the average IPL considering all possible insertion sequences.

• $D(n)$ is the IPL of a tree with n nodes. $D(1) = 0$. The left subtree has i nodes and the right subtree has $n - i - 1$ nodes. Thus,

$$D(n) = D(i) + D(n - i - 1) + (n - 1)$$

• If all subtree sizes are equally likely, then the average value for $D(i)$ and $D(n - i - 1)$ is

$$\frac{1}{n} \sum_{j=0}^{n-1} D(j)$$
BST: runtime analysis

- Therefore,
 \[D(n) = \frac{2}{n} \left(\sum_{j=0}^{n-1} D(j) \right) + n - 1 \]

- The previous recurrence gives:
 \[D(n) = O(n \log n) \]

- The average height of nodes after \(n \) random insertions is \(O(\log n) \).

- However, the \(O(\log n) \) average height is not preserved when doing deletions.
Random BST

Source: Fig 4.29 of Weiss textbook
Random BST after n^2 insert/removes

Reason: the deletion algorithm is asymmetric (deletes elements from the right subtree)

Source: Fig 4.30 of Weiss textbook
Worst-case runtime: $O(n)$
Balanced trees

• The worst-case complexity for insert, remove and search operations in a BST is $O(n)$, where n is the number of elements.

• Various representations have been proposed to keep the height of the tree as $O(\log n)$:
 – AVL trees
 – Red-Black trees
 – Splay trees
 – B-trees
AVL trees

• Named after Adelson-Velsky and Landis (1962).

• Main idea: invest some additional time to balance the tree each time a new element is inserted or deleted.

• Properties:
 – The height of the tree is always $\Theta(\log n)$.
 – The time devoted to balancing is $O(\log n)$.
AVL tree: definition

- An AVL tree is a BST such that, for every node, the difference between the heights of the left and right subtrees is at most 1.
AVL trees

Smallest AVL tree with $h = 9$.
AVL trees

The important question: what is the size of an AVL tree with height h?

Smallest AVL tree with $h = 6$.
• Theorem: The height of an AVL tree with \(n \) nodes is \(\Theta(\log n) \).

• Proof in two steps:
 – The height is \(\Omega(\log n) \).
 – The height is \(O(\log n) \).
The height is $\Omega(\log n)$

- The size n of a tree with height h is:
 \[n \leq 1 + 2 + 4 + \cdots + 2^h = 2^{h+1} - 1 \]
 - full binary tree

- Therefore,
 \[\log_2(n + 1) - 1 \leq h \]

and $h = \Omega(\log n)$.
The height is $O(\log n)$

- Let $S(h)$ be the min number of nodes of an AVL tree with height h.
- One of the children (e.g., left) must have height $h - 1$. The other child must have height $h - 2$ (because the AVL has min size).
- Therefore,
 \[S(h) = S(h - 1) + S(h - 2) + 1. \]
- Thus,
 \[S(h) \geq 2 \cdot S(h - 2). \]
- Given that $S(0) = 1$ and $S(1) = 2$, it can be easily proven, by induction, that:
 \[S(h) \geq 2^{h/2} \]
- Since $n \geq S(h)$ and $S(h) \geq 2^{h/2}$, then $\log_2 n \geq h/2$:
 \[h = O(\log n). \]
Height of an AVL tree

• The recurrence

\[S(h) = S(h - 1) + S(h - 2) + 1 \]

resembles the one of the Fibonacci numbers. A tighter bound can be obtained.

• Theorem: the height of an AVL tree with \(n \) internal nodes satisfies:

\[h < 1.44 \log_2(n + 2) - 1.328 \]
Any newly inserted item may fall into any of the four subtrees (LL, LR, RL or RR).

A new insertion may violate the balancing property. Re-balancing might be required.
Single rotation: the left-left case

1. **Insertion**
 - The tree structure before insertion:
 - Node k_1 with height $h+1$.
 - Node k_2 with height $h+2$.
 - Insertion at node k_2.

2. **Rotation**
 - After insertion, the tree needs to be rotated to maintain balance:
 - Rotate node k_1 right to balance the tree.

The process ensures that the AVL tree property (height difference at most 1) is maintained after each operation.
Single rotation: the right-right case

\[k_1 \]

\[k_2 \]

\[X \]

\[Y \]

\[Z \]

\[h \]
Double rotation: the left-right case

Insertion

Single rotation does not work

Double rotation
Double rotation: the right-left case

![Diagram showing the process of double rotation in a tree structure.](image)
Example: insertions
Example: insertions

1. Insert 3:
 - Original tree:
 - 2
 - 5
 - 4
 - 9
 - 3
 - Insert 3:
 - RL rotation:
 - New tree:
 - 4
 - 2
 - 5
 - 1
 - 3
 - 9

2. Insert 6:
 - Original tree:
 - 4
 - 2
 - 5
 - 1
 - 3
 - 9
 - Insert 6:
 - RL rotation:
 - New tree:
 - 4
 - 2
 - 6
 - 1
 - 3
 - 5
 - 9
Example: insertions

1. Insertion of 7:
 - 4
 - 2
 - 1 3
 - 5 9
 - 7

2. Insertion of 16:
 - 4
 - 2
 - 1 3
 - 5 9
 - 7
 - 16

3. Insertion of 0:
 - 4
 - 2
 - 1 3
 - 5 9
 - 7
 - 16
 - 0
Example: deletion

Remove 5

Apply LL rotation on 3
Example: deletion

RR rotation
Implementation details

• The height must be stored at each node. Only the unbalancing factor $\{-1,0,1\}$ is strictly required.

• The insertion/deletion operations are implemented similarly as in BSTs (recursively).

• The re-balancing of the tree is done when the recursive calls return to the ancestors (check heights and rotate if necessary).
Complexity

• Single and double rotations only need the manipulation of few pointers and the height of the nodes (O(1)).

• Insertion: the height of the subtree after a rotation is the same as the height before the insertion. Therefore, at most only one rotation must be applied for each insertion.

• Deletion: more complicated. More than one rotation might be required.

• Worst case for deletion: $O(\log n)$ rotations (a chain effect from leaves to root).
EXERCISES
• Starting from an empty BST, depict the BST after inserting the values 32, 15, 47, 67, 78, 39, 63, 21, 12, 27.

• Depict the previous BST after removing the values 63, 21, 15 and 32.
Merging BSTs

• Describe an algorithm to generate a sorted list from a BST. What is its cost?

• Describe an algorithm to create a balanced BST from a sorted list. What is its cost?

• Describe an algorithm to create a balanced BST that contains the union of the elements of two BSTs. What is its cost?
Depict the three AVL trees after sequentially inserting the values 31, 32 and 33 in the following AVL tree:
• Build an AVL tree by inserting the following values: 15, 21, 23, 11, 13, 8, 32, 33, 27. Show the tree before and after applying each rotation.

• Depict the AVL tree after removing the elements 23 and 21 (in this order). When removing an element, move up the largest element of the left subtree.