Containers: Priority Queues

Jordi Cortadella and Jordi Petit
Department of Computer Science
A priority queue

• A priority queue is a queue in which each element has a priority.

• Elements with higher priority are served before elements with lower priority.

• It can be implemented as a vector or a linked list. For a queue with n elements:
 – Insertion is $O(n)$.
 – Extraction is $O(1)$.

• A more efficient implementation can be proposed in which insertion and extraction are $O(\log n)$: binary heap.
Binary Heap

- Complete binary tree (except at the bottom level).
- Height \(h \): between \(2^h \) and \(2^{h+1} - 1 \) nodes.
- For \(N \) nodes, the height is \(O(\log N) \).
- It can be represented in a vector.
Binary Heap

Heap-Order Property: the key of the parent of X is smaller than (or equal to) the key in X.

Locations in the vector:

- i
- $2i$
- $2i + 1$
- $\lfloor i/2 \rfloor$
- i (even)
- $i + 1$ (odd)
Two main operations on a binary heap:

- Insert a new element
- Remove the min element

Both operations must preserve the properties of the binary heap:

- Completeness
- Heap-Order property
Binary Heap: insert 14

Insert in the last location

... and bubble up ...

done!
Binary Heap: remove min

Extract the min element and move the last one to the root of the heap

... and bubble down ...
Binary Heap: remove min

done!
Binary Heap: complexity

• Bubble up/down operations do at most h swaps, where h is the height of the tree and

\[h = \lfloor \log_2 N \rfloor \]

• Therefore:
 – Getting the min element is $O(1)$
 – Inserting a new element is $O(\log N)$
 – Removing the min element is $O(\log N)$
Binary Heap: other operations

- Let us assume that we have a method to know the location of every key in the heap.

- Increase/decrease key:
 - Modify the value of one element in the middle of the heap.
 - If decreased \rightarrow bubble up.
 - If increased \rightarrow bubble down.

- Remove one element:
 - Set value to $-\infty$, bubble up and remove min element.
Heaps are sometimes constructed from an initial collection of N elements. How much does it cost to create the heap?

- Obvious method: do N insert operations.
- Complexity: $O(N \log N)$

Can it be done more efficiently?
Building a heap from a set of elements

Containers: Priority Queues
Building a heap: implementation

```cpp
// Constructor from a collection of items
BinaryHeap(const vector<Elem>& items) {
    v.push_back(Elem()); // v is the vector holding the elements
    for (auto& e: items) v.push_back(e);
    for (int i = size()/2; i > 0; --i) bubble_down(i);
}
```

Sum of the heights of all nodes:
- 1 node with height h
- 2 nodes with height $h - 1$
- 4 nodes with height $h - 2$
- 2^i nodes with height $h - i$

$$S = h + 2(h - 1) + 4(h - 2) + 8(h - 3) + 16(h - 4) + \ldots + 2^{h-1}(1)$$

$$2S = 2h + 4(h - 1) + 8(h - 2) + 16(h - 3) + \ldots + 2^h(1)$$

Subtract the two equations:

$$S = -h + 2 + 4 + 8 + \ldots + 2^{h-1} + 2^h = (2^{h+1} - 1) - (h + 1) = O(N)$$

A heap can be built from a collection of items in linear time.
Heap sort

```cpp
template <typename T>
void HeapSort(vector<T>& v) {
  BinaryHeap<T> heap(v);
  for (T& e: v) e = heap.remove_min();
}
```

- Complexity: $O(n \log n)$
 - Building the heap: $O(n)$
 - Each removal is $O(\log n)$, executed n times.
EXERCISES
Exercise: insert/remove element

Given the binary heap implemented in the following vector, draw the tree represented by the vector.

```
6 7 9 10 11 12 13 15 19 14 21 17 16
```

Execute the following sequence of operations

```
insert(8); remove_min(); insert(6); insert(18); remove_min();
```

and draw the tree after the execution of each operation.
Exercise: guess a and b

Consider the binary heap of integer keys implemented by the following vector:

```
0 3 7 $a$ 10 15 18 $b$ 25 13 20 17 22 19
```

After executing the operations `insert(8)` and `remove_min()` the contents of the binary heap is:

```
0 7 10 8 $b$ 15 18 $a$ 25 13 20 17 22 19
```

Discuss about the possible values of a and b. Assume there can never be two identical keys in the heap.
Exercise: the k-th element

The k-th element of n sorted vectors.

Let us consider n vectors sorted in ascending order.

Design an algorithm with cost $\Theta(k \log n + n)$ that finds the k-th global smallest element.
Consider the following declaration for a Binary Heap:

```cpp
template <typename T>  // T must be a comparable type
class BinaryHeap {
private:
    vector<Elem> v;    // Table for the heap (location 0 not used)

    // Bubbles up the element at location i
    void bubble_up(int i);

    // Bubbles down the element at location i
    void bubble_down(int i);
};
```

Give an implementation for the methods `bubble_up` and `bubble_down`.