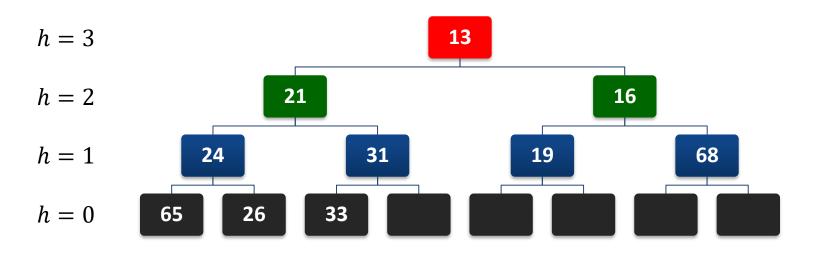
Priority Queues

Jordi Cortadella and Jordi Petit Department of Computer Science

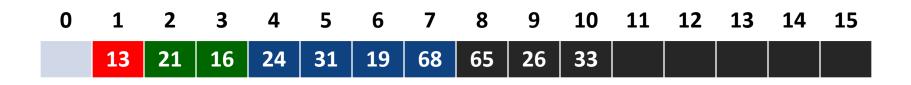
A priority queue

- A priority queue is a queue in which each element has a priority.
- Elements with higher priority are served before elements with lower priority.
- It can be implemented as a vector or a linked list. For a queue with *n* elements:
 - Insertion is O(n).
 - Extraction is O(1).
- A more efficient implementation can be proposed in which insertion and extraction are O(log n): *binary heap*.

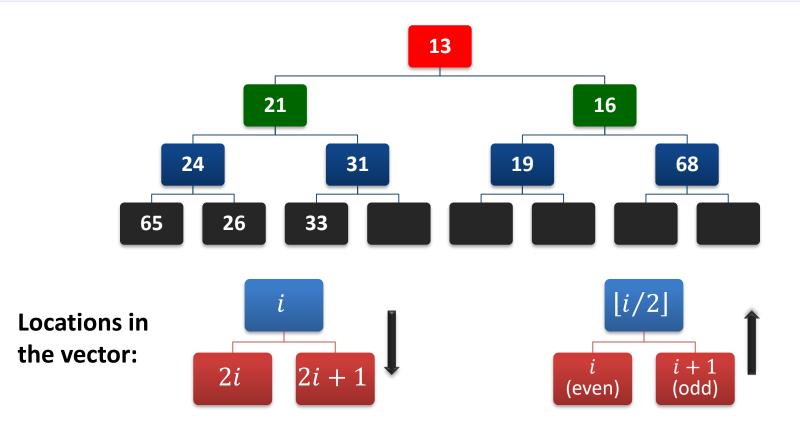
Binary Heap



- Complete binary tree (except at the bottom level).
- Height h: between 2^h and $2^{h+1} 1$ nodes.
- For *N* nodes, the height is $O(\log N)$.
- It can be represented in a vector.

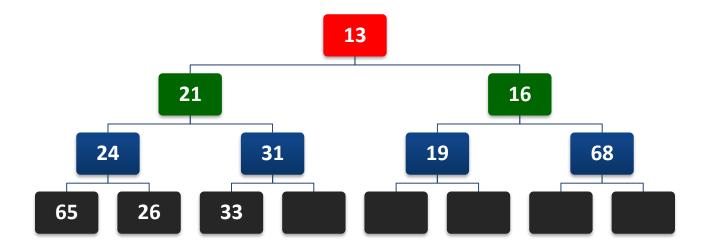


Binary Heap



Heap-Order Property: the key of the parent of X is smaller than (or equal to) the key in X.

Binary Heap



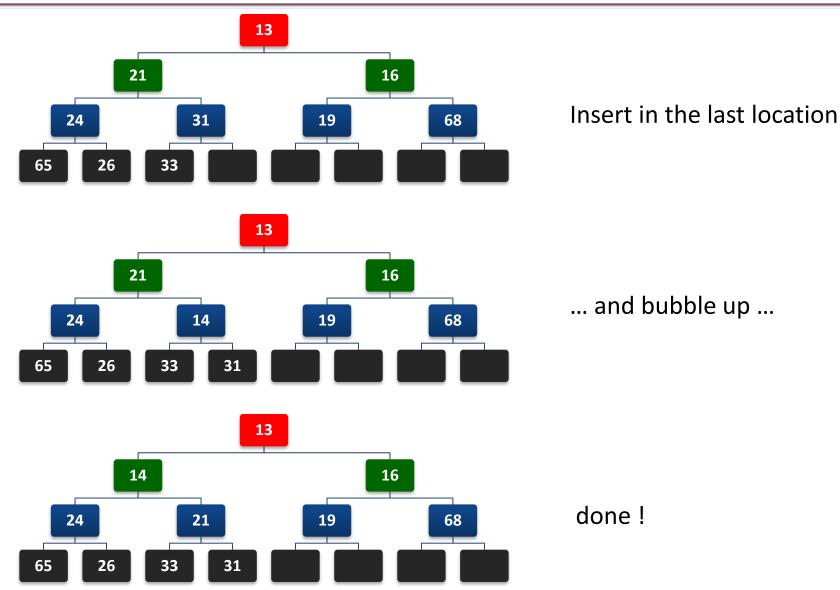
Two main operations on a binary heap:

- Insert a new element
- Remove the min element

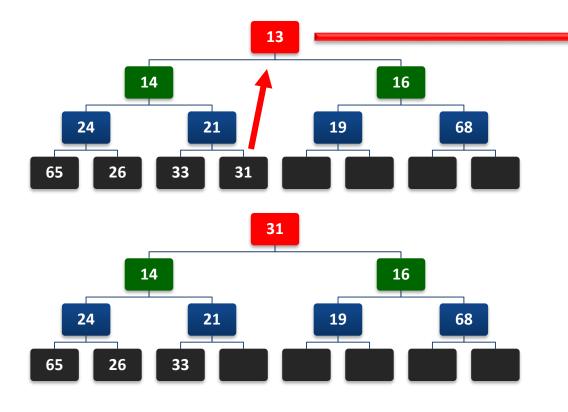
Both operations must preserve the properties of the binary heap:

- Completeness
- Heap-Order property

Binary Heap: insert 14

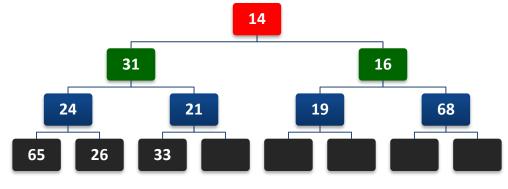


Binary Heap: remove min

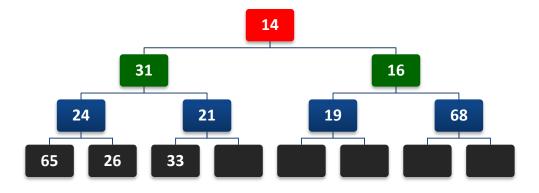


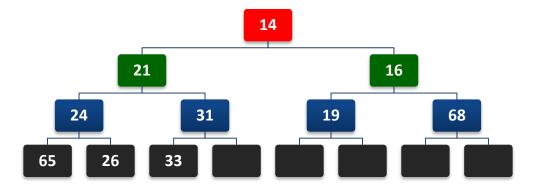
Extract the min element and move the last one to the root of the heap

... and bubble down ...



Binary Heap: remove min





Binary Heap: complexity

 Bubble up/down operations do at most h swaps, where h is the height of the tree and

$$h = \lfloor \log_2 N \rfloor$$

- Therefore:
 - Getting the min element is O(1)
 - Inserting a new element is $O(\log N)$
 - Removing the min element is $O(\log N)$

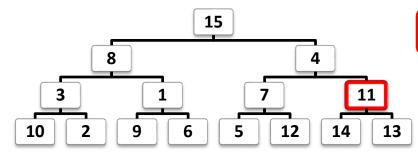
Binary Heap: other operations

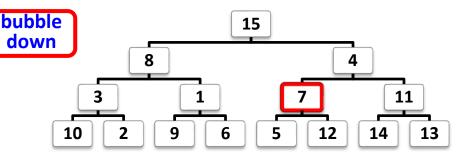
- Let us assume that we have a method to know the location of every key in the heap.
- Increase/decrease key:
 - Modify the value of one element in the middle of the heap.
 - If decreased \rightarrow bubble up.
 - If increased \rightarrow bubble down.
- Remove one element:
 - Set value to $-\infty$, bubble up and remove min element.

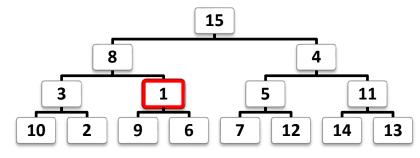
Building a heap from a set of elements

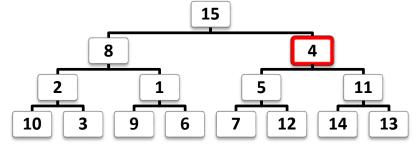
- Heaps are sometimes constructed from an initial collection of N elements. How much does it cost to create the heap?
 - Obvious method: do N insert operations.
 - Complexity: $O(N \log N)$
- Can it be done more efficiently?

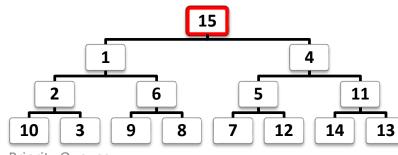
Building a heap from a set of elements

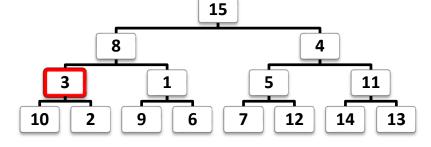


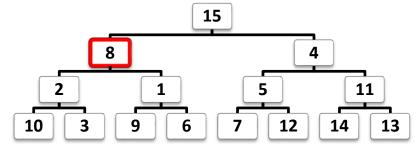


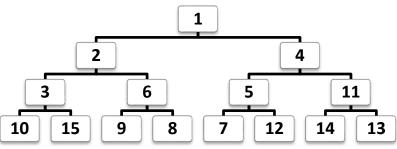










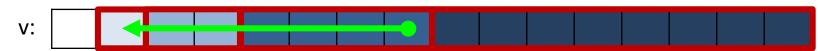


Priority Queues

© Dept. CS, UPC

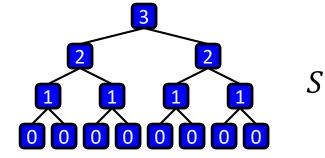
Building a heap: implementation

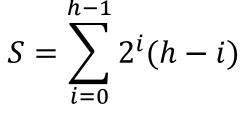
def heapify(L: list[T]) -> None:
"""Converts a list into a heap (assuming L[0] is not used)"""
for i in range(len(L)//2, 0, -1):
 bubble_down(L, i)



Sum of the heights of all nodes:

- 1 node with height *h*
- 2 nodes with height h-1
- 4 nodes with height h-2
- 2^i nodes with height h i





 $S = h + 2(h - 1) + 4(h - 2) + 8(h - 3) + 16(h - 4) + \dots + 2^{h-1}(1)$ $2S = 2h + 4(h - 1) + 8(h - 2) + 16(h - 3) + \dots + 2^{h}(1)$ Subtract the two equations: $S = -h + 2 + 4 + 8 + \dots + 2^{h-1} + 2^{h} = (2^{h+1} - 1) - (h + 1) = 0(N)$

A heap can be built from a collection of items in linear time.

EXERCISES

Exercise: insert/remove element

Given the binary heap implemented in the following vector, draw the tree represented by the vector.

6	7	9	10	11	12	13	15	19	14	21	17	16

Execute the following sequence of operations

insert(8); remove_min(); insert(6); insert(18); remove_min();

and draw the tree after the execution of each operation.

Exercise: guess *a* and *b*

Consider the binary heap of integer keys implemented by the following vector:

After executing the operations **insert(8)** and **remove_min()** the contents of the binary heap is:

Discuss about the possible values of a and b. Assume there can never be two identical keys in the heap.

The *k*-th element of *n* sorted vectors.

Let us consider n vectors sorted in ascending order.

Design an algorithm with cost $\Theta(k \log n + n)$ that finds the k-th global smallest element.

Exercise: bubble-up/down

Give an implementation for the methods **bubble_up** and **bubble_down** of a heap:

def bubble_up(L: list[T], int i) -> None:
"""Bubbles up the element at location i"""

def bubble_down(L: list[T], int i) -> None:
"""Bubbles down the element at location i"""