
Priority Queues

Jordi Cortadella and Jordi Petit

Department of Computer Science

A priority queue

• A priority queue is a queue in which each element has
a priority.

• Elements with higher priority are served before elements
with lower priority.

• It can be implemented as a vector or a linked list. For a
queue with 𝑛 elements:
– Insertion is O(𝑛).
– Extraction is O 1 .

• A more efficient implementation can be proposed in
which insertion and extraction are O(log 𝑛): binary heap.

Priority Queues © Dept. CS, UPC 2

Binary Heap

Priority Queues © Dept. CS, UPC 3

13

21

24

65 26

31

33

16

19 68

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

13 21 16 24 31 19 68 65 26 33

• Complete binary tree (except at the bottom level).
• Height ℎ: between 2ℎ and 2ℎ+1 − 1 nodes.
• For 𝑁 nodes, the height is O(log𝑁).
• It can be represented in a vector.

ℎ = 0

ℎ = 1

ℎ = 2

ℎ = 3

Binary Heap

Priority Queues © Dept. CS, UPC 4

13

21

24

65 26

31

33

16

19 68

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

13 21 16 24 31 19 68 65 26 33

𝑖

2𝑖 2𝑖 + 1

Locations in
the vector:

Τ𝑖 2

𝑖
(even)

𝑖 + 1
(odd)

Heap-Order Property: the key of the parent of X is smaller than (or equal to) the key in X.

Binary Heap

Priority Queues © Dept. CS, UPC 5

13

21

24

65 26

31

33

16

19 68

Two main operations on a binary heap:
• Insert a new element
• Remove the min element

Both operations must preserve the properties of the binary heap:
• Completeness
• Heap-Order property

Binary Heap: insert 14

Priority Queues © Dept. CS, UPC 6

13

21

24

65 26

31

33 14

16

19 68 Insert in the last location

13

21

24

65 26

14

33 31

16

19 68

13

14

24

65 26

21

33 31

16

19 68

… and bubble up …

done !

Binary Heap: remove min

Priority Queues © Dept. CS, UPC 7

Extract the min element
and move the last one
to the root of the heap

13

14

24

65 26

21

33 31

16

19 68

… and bubble down …

31

14

24

65 26

21

33

16

19 68

13

14

31

24

65 26

21

33

16

19 68

Binary Heap: remove min

Priority Queues © Dept. CS, UPC 8

14

31

24

65 26

21

33

16

19 68

14

21

24

65 26

31

33

16

19 68

done !

Binary Heap: complexity

• Bubble up/down operations do at most ℎ
swaps, where ℎ is the height of the tree and

ℎ = log2𝑁

• Therefore:

– Getting the min element is O(1)

– Inserting a new element is O(log𝑁)

– Removing the min element is O(log𝑁)

Priority Queues © Dept. CS, UPC 9

Binary Heap: other operations

• Let us assume that we have a method to know the
location of every key in the heap.

• Increase/decrease key:

– Modify the value of one element in the middle of the heap.

– If decreased → bubble up.

– If increased → bubble down.

• Remove one element:

– Set value to −∞, bubble up and remove min element.

Priority Queues © Dept. CS, UPC 10

Building a heap from a set of elements

• Heaps are sometimes constructed from an initial
collection of 𝑁 elements. How much does it cost to
create the heap?

– Obvious method: do 𝑁 insert operations.

– Complexity: O(𝑁 log𝑁)

• Can it be done more efficiently?

Priority Queues © Dept. CS, UPC 11

Building a heap from a set of elements

Priority Queues © Dept. CS, UPC 12

15

8

3

10 2

1

9 6

4

7

5 12

11

14 13

15

8

3

10 2

1

9 6

4

7

5 12

11

14 13

15

8

3

10 2

1

9 6

4

5

7 12

11

14 13

15

8

3

10 2

1

9 6

4

5

7 12

11

14 13

15

8

2

10 3

1

9 6

4

5

7 12

11

14 13

15

8

2

10 3

1

9 6

4

5

7 12

11

14 13

15

1

2

10 3

6

9 8

4

5

7 12

11

14 13

1

2

3

10 15

6

9 8

4

5

7 12

11

14 13

bubble
down

Building a heap: implementation

def heapify(L: list[T]) -> None:
"""Converts a list into a heap (assuming L[0] is not used)"""
for i in range(len(L)//2, 0, -1):

bubble_down(L, i)

Priority Queues © Dept. CS, UPC 13

Sum of the heights of all nodes:
• 1 node with height ℎ
• 2 nodes with height ℎ − 1
• 4 nodes with height ℎ − 2
• 2𝑖 nodes with height ℎ − 𝑖

𝑆 =

𝑖=0

ℎ−1

2𝑖(ℎ − 𝑖)

𝑆 = ℎ + 2 ℎ − 1 + 4 ℎ − 2 + 8 ℎ − 3 + 16 ℎ − 4 +⋯+ 2ℎ−1(1)

2𝑆 = 2ℎ + 4 ℎ − 1 + 8 ℎ − 2 + 16 ℎ − 3 +⋯+ 2ℎ(1)

Subtract the two equations:

𝑆 = −ℎ + 2 + 4 + 8 +⋯+ 2ℎ−1 + 2ℎ = 2ℎ+1 − 1 − ℎ + 1 = O(𝑁)

A heap can be built from a collection of items in linear time.

v:

0 0 0 0 0 0 0 0

1111

2 2

3

EXERCISES

Priority Queues © Dept. CS, UPC 14

Exercise: insert/remove element

Given the binary heap implemented in the following vector, draw
the tree represented by the vector.

Execute the following sequence of operations

insert(8); remove_min(); insert(6); insert(18); remove_min();

and draw the tree after the execution of each operation.

Priority Queues © Dept. CS, UPC 15

6 7 9 10 11 12 13 15 19 14 21 17 16

Exercise: guess 𝑎 and 𝑏

Consider the binary heap of integer keys implemented by the
following vector:

After executing the operations insert(8) and remove_min()
the contents of the binary heap is:

Discuss about the possible values of 𝑎 and 𝑏. Assume there can
never be two identical keys in the heap.

Priority Queues © Dept. CS, UPC 16

3 7 𝒂 10 15 18 𝒃 25 13 20 17 22 19

7 10 8 𝒃 15 18 𝒂 25 13 20 17 22 19

Exercise: the 𝑘-th element

The 𝒌-th element of 𝒏 sorted vectors.

Let us consider 𝑛 vectors sorted in ascending order.

Design an algorithm with cost Θ(𝑘 log 𝑛 + 𝑛) that
finds the 𝑘-th global smallest element.

Priority Queues © Dept. CS, UPC 17

Exercise: bubble-up/down

Priority Queues © Dept. CS, UPC 18

def bubble_up(L: list[T], int i) -> None:
"""Bubbles up the element at location i"""

def bubble_down(L: list[T], int i) -> None:
"""Bubbles down the element at location i"""

Give an implementation for the methods bubble_up and
bubble_down of a heap:

