
Linear Containers

Jordi Cortadella and Jordi Petit
Department of Computer Science

Linear containers

Containers: Stacks © Dept. CS, UPC 2

add

remove

addremove

add

remove

add

remove

Stack (LIFO)

Queue (FIFO)

Double-ended Queue

head tail

head tail

head tail

Stack

Containers: Stacks © Dept. CS, UPC 3

push pop

top

• Elements are removed in reversed order of
insertion (Last-In-First-Out)

• A stack can be simply implemented with an
array, vector or list (adding/removing elements
to/from the last location)

• Typical applications:
• Check balanced parenthesis
• Backtracking
• Activation records (function calls)
• Store actions to "undo" them later

Evaluation of postfix expressions
• This is an infix expression. What’s his value? 42 or 144?

8 ∗ 3 + 10 + 2 ∗ 4

• It depends on the operator precedence. For scientific
calculators, ∗ has precedence over +.

• Postfix (reverse Polish notation) has no ambiguity:

8 3 ∗ 10 + 2 4 ∗ +

• Postfix expressions can be evaluated using a stack:
– each time an operand is read, it is pushed on the stack
– each time an operator is read, the two top values are popped and

operated. The result is push onto the stack

Containers: Stacks © Dept. CS, UPC 4

Evaluation of postfix expressions: example

6 5 2 3 + 8 ∗ + 3 + ∗

Containers: Stacks © Dept. CS, UPC 5

6
5

3
2

push(6)
push(5)
push(2)
push(3)

6
5
5

+

6
5
5
8

push(8)

6
5

40

*

6
45

+

6
45
3

push(3)

6
48

+

288

*

From infix to postfix

Algorithm:
– When an operand is read, write it to the output.

– If we read a right parenthesis, pop the stack writing symbols until we
encounter the left parenthesis.

– For any other symbol, i.e., + ∗ (, pop entries and write them until we
find an entry with lower priority. After popping, push the symbol onto
the stack. Exception: (can only be removed when finding a).

– When the end of the input is reached, all symbols in the stack are
popped and written onto the output.

Containers: Stacks © Dept. CS, UPC 6

a + b ∗ c + (d ∗ e + f) ∗ g

a b c ∗ + d e ∗ f + g ∗ +

From infix to postfix

Containers: Stacks © Dept. CS, UPC 7

a + b ∗ c + (d ∗ e + f) ∗ g

a

a+

a b+

Output

Priority
∗
+
(

From infix to postfix

Containers: Stacks © Dept. CS, UPC 8

+

∗
+ a b

∗
+ a b c

a b c ∗ +

a b c ∗ ++
(

a + b ∗ c + (d ∗ e + f) ∗ g Priority
∗
+
(

From infix to postfix

Containers: Stacks © Dept. CS, UPC 9

+
(

a b c ∗ + d

+
(
∗

a b c ∗ + d

+
(
∗

a b c ∗ + d e

a b c ∗ + d e ∗+
(
+

a + b ∗ c + (d ∗ e + f) ∗ g Priority
∗
+
(

From infix to postfix

Containers: Stacks © Dept. CS, UPC 10

+
(
+

a b c ∗ + d e ∗ f

+ a b c ∗ + d e ∗ f +

∗
+ a b c ∗ + d e ∗ f +

∗
+ a b c ∗ + d e ∗ f + g

a + b ∗ c + (d ∗ e + f) ∗ g Priority
∗
+
(

From infix to postfix

Containers: Stacks © Dept. CS, UPC 11

a b c ∗ + d e ∗ f + g ∗ +

Suggested exercise:
• Add substraction (same priority as addition)

and division (same priority as multiplication).

Complexity: O(𝑛𝑛)

a + b ∗ c + (d ∗ e + f) ∗ g Priority
∗
+
(

Queues

Containers: Stacks © Dept. CS, UPC 12

addremove

add

remove

add

remove

Queue (FIFO)

Double-ended Queue

head tail

head tail

Queues are usually implemented using references to objects
(also called pointers in C/C++). These references allow moving
left/right and iterating over the queue.

We will explain a toy implementation of a double-ended queue
(deque), with the basic functionality to add/remove elements
and iterate over them.

Deque

Containers: Stacks © Dept. CS, UPC 13

8
next
prev

5 9 1 3 4

head

• Implemented as a circular queue with a reference to the head

• Elements can be appended/removed to/from the head or tail

• Operations:
• len(q), q.append(x), q.appendleft(x),
q.pop(), q.popleft()

• Access to the i-th element (q[0], q[1],q[-1], q[-2],…)
• Iterators: for x in q:

Deque node

from dataclasses import dataclass, field
from typing import TypeVar, Generic, Iterable

T = TypeVar('T') # Generic type for the deque

@dataclass
class Node(Generic[T]):

"""Internal node of the deque"""
data: T # information stored in the node
next: 'Node[T]' = field(init=False) # next in the queue
prev: 'Node[T]' = field(init=False) # previous in the queue

Containers: Stacks © Dept. CS, UPC 14

8
next
prev

5 9 1 3 4

head

Deque attributes

class Deque(Generic[T]):
"""Class to represent a double-ended queue"""

Attributes of the class
_head: Node[T] # reference to the head of the queue
_n: int # number of elements in the queue

Containers: Stacks © Dept. CS, UPC 15

8
next
prev

5 9 1 3 4

head

Deque: __init__ and __len__

class Deque(Generic[T]):

⋮

def __init__(self, it: Iterable[T] = list()) -> None:
"""Constructor: initialize from iterable"""
self._n = 0
for x in it:

self.append(x)

def __len__(self) -> int:
"""Length of the queue"""
return self._n

Containers: Stacks © Dept. CS, UPC 16

8
next
prev

5 9 1 3 4

head

Deque: append

class Deque(Generic[T]):

⋮

def append(self, x: T) -> None:
"""Add element x to the tail of the queue"""
n = Node(x)
if self._n == 0:

self._head = n.next = n.prev = n
else:

n.next = self._head
n.prev = self._head.prev
n.prev.next = self._head.prev = n

self._n += 1

Containers: Stacks © Dept. CS, UPC 17

8
next
prev

5 9 1 3 4

head

6

n

Deque: pop

class Deque(Generic[T]):

⋮

def pop(self) -> T:
"""Returns and removes the last element of the queue"""
if len(self) == 0:

raise IndexError
self._n -= 1
n = self._head.prev
if self._n > 0:

p = n.prev
p.next = self._head
self._head.prev = p

return n.data
Containers: Stacks © Dept. CS, UPC 18

8
next
prev

5 9 1 3 4

head np

Deque: appendleft

class Deque(Generic[T]):

⋮

def appendleft(self, x: T) -> None:
"""Add element x to the head of the queue"""
self.append(x)
self._head = self._head.prev

Containers: Stacks © Dept. CS, UPC 19

8
next
prev

5 9 1 3 4

head

6

Deque: popleft

class Deque(Generic[T]):

⋮

def popleft(self) -> T:
""""Returns and removes the head of the queue"""
self._head = self._head.next
return self.pop()

Containers: Stacks © Dept. CS, UPC 20

5 9 1 3 48
next
prev

head

Deque: __getitem__

class Deque(Generic[T]):

⋮
def __getitem__(self, i: int) -> T:

"""Returns the i-th element (i can be negative)"""
if i < 0: # Convert the index into positive

i = len(self) + i
if i < 0 or i >= len(self): # Check if out of bounds

raise IndexError

p = self._head
for _ in range(i):

p = p.next
return p.data

Containers: Stacks © Dept. CS, UPC 21

8
next
prev

5 9 1 3 4

head

Can we make it more efficient? How about q[-1] in a queue with 106 elements?

Deque iterator: how to use it?
q: Deque[int] = Deque([12, 15, 6, -4])

Visiting the elements of q with an iterator
q_iter: DequeIter[int] = iter(q)
try:

while True:
print('', next(q_iter), end='')

except StopIteration:
print()

Equivalent code with the same functionality
for x in q:

print('', x, end='')
print()

Important: q may have more than one iterator
Iterators are independent from each other
q_iter1 = iter(q)
q_iter2 = iter(q)

Containers: Stacks © Dept. CS, UPC 22

Deque iterator: how to use it?

q: Deque[int] = Deque([12, 15, 6, -4])

q_iter: DequeIter[int] = iter(q)

try:
while True:

print('', next(q_iter), end='')
except StopIteration:

print()

Containers: Stacks © Dept. CS, UPC 23

q.__iter__()

q_iter.__next__()

Deque: iterator
class Deque(Generic[T]):

⋮
def __iter__(self) -> 'DequeIter[T]':

"""Returns an iterator"""
return DequeIter(self)

class DequeIter(Generic[T]):
"""Iterator of a deque"""
_deque: Deque[T] # The deque
_current: Node[T] | None # The current node

def __init__(self, q: Deque[T]) -> None:
"""Initializes the iterator"""
self._deque = q
self._current = q._head if len(q) > 0 else None

Containers: Stacks © Dept. CS, UPC 24

_head _n=4

Deque

Deque: iterator

class DequeIter(Generic[T]):

⋮

def __next__(self) -> T:
"""Returns the next element"""
if self._current is None:

raise StopIteration
data = self._current.data
self._current = self._current.next
if self._current == self._deque._head:

self._current = None
return data

Containers: Stacks © Dept. CS, UPC 25

_head _n=4

self._current

self._deque

Using a deque
q: Deque[int] = Deque(range(1,9)) # Initialize with iterable
q.appendleft(0)
print("Number of elements:", len(q))

Using q[i] (__getitem__). Quadratic cost!
for i in range(len(q)):

print(" Element", i, " =", q[i])

Using the iterators (linear cost: much more efficient!)
for i, x in enumerate(q):

print(" Element", i, " =", x)

print("Removing the last element:", q.pop())
print("Removing the first element:", q.popleft())

print("Remaining elements in the queue:", end='')
for x in q:

print(' ', x, sep='', end='')
print()

Containers: Stacks © Dept. CS, UPC 26

Memory management
• Programming languages have different

strategies for memory management

• Typically, there are two structures used for
memory management:
– Stack, for static memory allocation, associated to

functions/methods
– Heap, for dynamic memory allocation

Containers: Stacks © Dept. CS, UPC 27

Memory management in Python

def square(x):
return x*x

def find_square(v, x):
for idx, val in enumerate(v):

if x == square(val):
return idx

return None

a = [3, 5, 9]
z = 25
print(find_square(a, z))

Containers: Stacks © Dept. CS, UPC 28

main
a
z

find_square
v
x
val
idx

square
x

stack heap

25

3 5 9

1

Heap management

Memory management © Dept. CS, UPC 29

C’s
storage

A’s
storage

B’s
storage

Data structures often have some extra allocated memory to avoid frequent reallocations

C’s
storage

A’s
storage

B’s
storage

After reallocating A’s storage
(e.g., after A.append(…))

A A A A

A.append() A.append() A.append() A.append()

Needs
reallocation!

Garbage collection
• Objects may have multiple references. Each object has a

reference count.

• Python runs a garbage collector periodically. All objects
with zero references are freed.

Containers: Stacks © Dept. CS, UPC 30

A
ref=1 B

ref=3

C
ref=0

can be freed!

Efficient memory management
import sys
import time

t0 = time.time()
n = 100000000
s: list[int] = []

append n elements
for i in range(n):

s.append(i)
if i % 1000 == 0:

print(i, sys.getsizeof(s), time.time() - t0)

remove n elements
for i in range(n):

s.pop()
if i % 1000 == 0:

print(n+i, sys.getsizeof(s), time.time() - t0)

Containers: Stacks © Dept. CS, UPC 31

Efficient memory management

Containers: Stacks © Dept. CS, UPC 32

Avoid managing memory at every resizing operation

Use extra memory to amortize the effort in allocating/deallocating memory

9 × 108

8 × 108

7 × 108

6 × 108

5 × 108

4 × 108

3 × 108

2 × 108

1 × 108

0
0 20000 40000 60000 80000 100000 120000 140000 160000 180000 200000

bytes

10 secs

20 secs

s.append(i) s.pop()

space

K ops

EXERCISES

Containers: Stacks © Dept. CS, UPC 33

Stack: Interleaved push/pop operations

Suppose that an intermixed sequence of push and pop operations
are performed. The pushes push the integers 0 through 9 in order;
the pops print out the return value. Which of the following
sequences could not occur?

a) 4 3 2 1 0 9 8 7 6 5
b) 4 6 8 7 5 3 2 9 0 1
c) 2 5 6 7 4 8 9 3 1 0
d) 4 3 2 1 0 5 6 7 8 9

Source: Robert Sedgewick, Computer Science 126, Princeton University.

Containers: Stacks © Dept. CS, UPC 34

Middle element of a stack
Design the class MidStack implementing a stack with the
following operations:

– Push/pop: the usual operations on a stack.
– FindMiddle: returns the value of the element in the middle.
– DeleteMiddle: deletes the element in the middle.

All the operations must be executed in O(1) time.

Suggestion: use some of the existing Python containers to
implement it.

Note: if the stack has 𝑛𝑛 elements at locations 0. .𝑛𝑛 − 1, where 0
is the location at the bottom, the middle element is the one at
location ⁄(𝑛𝑛 − 1) 2 .

Containers: Stacks © Dept. CS, UPC 35

Queues implemented as circular buffers
• Design the class queue implemented with a circular buffer

(using a Python list):
– The add/remove operations should run in constant time.
– The class should have a constructor with a parameter 𝑛𝑛 that

indicates the maximum number of elements in the queue.

• Consider the design of a variable-size queue using a circular
buffer. Discuss how the implementation should be modified.

Containers © Dept. CS, UPC 36

0
1

34
2

7
6

5

0 1 2 3 4 5 6 7

Reverse

Design the method reverse() that reverses the
contents of a deque:

– No auxiliary data structures should be used.
– No copies of the elements should be performed.

Containers © Dept. CS, UPC 37

Rotate and Josephus
• Design the method q.rotate(n) that rotates a deque n

positions to the right (if positive) or –n positions to the
left (if negative). Make the method efficient (e.g., assume
that n can be large)

• Solve the Josephus problem, for 𝑛𝑛 people and executing
every 𝑘𝑘-th person, using a deque:

https://en.wikipedia.org/wiki/Josephus_problem

Containers © Dept. CS, UPC 38

1 2 3 4 5 6 7

3 4 5 6 7 1 2 5 6 7 1 2 3 4

q.rotate(-2) q.rotate(3)

https://en.wikipedia.org/wiki/Josephus_problem

Merge and quick sort

• Design the method q.merge(other: Deque) that
merges the deque with another deque, assuming that both are
sorted. Assume that a pair of elements can be compared with
the operator <. After merging, all the elements must have
been transferred to q (other becomes empty).

• Design the method q.sort() that sorts the deque
according to the < operator. Consider merge sort and quick
sort as possible algorithms.

Containers © Dept. CS, UPC 39

	Linear Containers
	Linear containers
	Stack
	Evaluation of postfix expressions
	Evaluation of postfix expressions: example
	From infix to postfix
	From infix to postfix
	From infix to postfix
	From infix to postfix
	From infix to postfix
	From infix to postfix
	Queues
	Deque
	Deque node
	Deque attributes
	Deque: __init__ and __len__
	Deque: append
	Deque: pop
	Deque: appendleft
	Deque: popleft
	Deque: __getitem__
	Deque iterator: how to use it?
	Deque iterator: how to use it?
	Deque: iterator
	Deque: iterator
	Using a deque
	Memory management
	Memory management in Python
	Heap management
	Garbage collection
	Efficient memory management
	Efficient memory management
	Exercises
	Stack: Interleaved push/pop operations
	Middle element of a stack
	Queues implemented as circular buffers
	Reverse
	Rotate and Josephus
	Merge and quick sort

