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Linear containers
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Stack
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• Elements are removed in reversed order of 
insertion (Last-In-First-Out)

• A stack can be simply implemented with an 
array, vector or list (adding/removing elements 
to/from the last location)

• Typical applications:
• Check balanced parenthesis
• Backtracking
• Activation records (function calls)
• Store actions to "undo" them later



Evaluation of postfix expressions
• This is an infix expression. What’s his value? 42 or 144?

8 ∗ 3 + 10 + 2 ∗ 4

• It depends on the operator precedence. For scientific 
calculators, ∗ has precedence over +.

• Postfix (reverse Polish notation) has no ambiguity:

8  3 ∗ 10  +  2  4 ∗ +

• Postfix expressions can be evaluated using a stack:
– each time an operand is read, it is pushed on the stack
– each time an operator is read, the two top values are popped and 

operated. The result is push onto the stack
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Evaluation of postfix expressions: example

6 5 2 3 + 8 ∗ + 3 + ∗
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From infix to postfix

Algorithm:
– When an operand is read, write it to the output.

– If we read a right parenthesis, pop the stack writing symbols until we 
encounter the left parenthesis.

– For any other symbol, i.e., + ∗ (, pop entries and write them until we 
find an entry with lower priority. After popping, push the symbol onto 
the stack. Exception: ( can only be removed when finding a ).

– When the end of the input is reached, all symbols in the stack are 
popped and written onto the output.
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a + b ∗ c + ( d ∗ e + f ) ∗ g 

a b c ∗ + d e ∗ f + g ∗ +



From infix to postfix
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a + b ∗ c + ( d ∗ e + f ) ∗ g 
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From infix to postfix
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From infix to postfix
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From infix to postfix
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From infix to postfix
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a b c ∗ + d e ∗ f + g ∗ +

Suggested exercise:
• Add substraction (same priority as addition)

and division (same priority as multiplication). 

Complexity: O(𝑛𝑛)

a + b ∗ c + ( d ∗ e + f ) ∗ g Priority
∗
+
(



Queues
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Queues are usually implemented using references to objects
(also called pointers in C/C++). These references allow moving
left/right and iterating over the queue.

We will explain a toy implementation of a double-ended queue
(deque), with the basic functionality to add/remove elements
and iterate over them.



Deque
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• Implemented as a circular queue with a reference to the head

• Elements can be appended/removed to/from the head or tail

• Operations:
• len(q), q.append(x), q.appendleft(x),
q.pop(), q.popleft()

• Access to the i-th element (q[0], q[1],q[-1], q[-2],…)
• Iterators: for x in q:



Deque node

from dataclasses import dataclass, field
from typing import TypeVar, Generic, Iterable

T = TypeVar('T')  # Generic type for the deque

@dataclass
class Node(Generic[T]):

"""Internal node of the deque"""
data: T  # information stored in the node
next: 'Node[T]' = field(init=False)  # next in the queue
prev: 'Node[T]' = field(init=False)  # previous in the queue
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Deque attributes

class Deque(Generic[T]):
"""Class to represent a double-ended queue"""

# Attributes of the class
_head: Node[T] # reference to the head of the queue
_n: int # number of elements in the queue
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Deque: __init__ and __len__

class Deque(Generic[T]):

⋮

def __init__(self, it: Iterable[T] = list()) -> None:
"""Constructor: initialize from iterable"""
self._n = 0
for x in it:

self.append(x)

def __len__(self) -> int:
"""Length of the queue"""
return self._n
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Deque: append

class Deque(Generic[T]):

⋮

def append(self, x: T) -> None:
"""Add element x to the tail of the queue"""
n = Node(x)
if self._n == 0:

self._head = n.next = n.prev = n
else:

n.next = self._head
n.prev = self._head.prev
n.prev.next = self._head.prev = n

self._n += 1
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Deque: pop

class Deque(Generic[T]):

⋮

def pop(self) -> T:
"""Returns and removes the last element of the queue"""
if len(self) == 0:

raise IndexError
self._n -= 1
n = self._head.prev
if self._n > 0:

p = n.prev
p.next = self._head
self._head.prev = p

return n.data
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Deque: appendleft

class Deque(Generic[T]):

⋮

def appendleft(self, x: T) -> None:
"""Add element x to the head of the queue"""
self.append(x)
self._head = self._head.prev
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Deque: popleft

class Deque(Generic[T]):

⋮

def popleft(self) -> T:
""""Returns and removes the head of the queue"""
self._head = self._head.next
return self.pop()
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Deque: __getitem__

class Deque(Generic[T]):

⋮
def __getitem__(self, i: int) -> T:

"""Returns the i-th element (i can be negative)"""
if i < 0:  # Convert the index into positive

i = len(self) + i
if i < 0 or i >= len(self):  # Check if out of bounds

raise IndexError

p = self._head
for _ in range(i):

p = p.next
return p.data
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Can we make it more efficient? How about q[-1] in a queue with 106 elements?



Deque iterator: how to use it?
q: Deque[int] = Deque([12, 15, 6, -4])

# Visiting the elements of q with an iterator
q_iter: DequeIter[int] = iter(q)
try:

while True:
print('', next(q_iter), end='')

except StopIteration:
print()

# Equivalent code with the same functionality
for x in q:

print('', x, end='')
print()

# Important: q may have more than one iterator
# Iterators are independent from each other
q_iter1 = iter(q)
q_iter2 = iter(q)
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Deque iterator: how to use it?

q: Deque[int] = Deque([12, 15, 6, -4])

q_iter: DequeIter[int] = iter(q)

try:
while True:

print('', next(q_iter), end='')
except StopIteration:

print()
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Deque: iterator
class Deque(Generic[T]):

⋮
def __iter__(self) -> 'DequeIter[T]':

"""Returns an iterator"""
return DequeIter(self)

class DequeIter(Generic[T]):
"""Iterator of a deque"""
_deque: Deque[T]  # The deque
_current: Node[T] | None # The current node

def __init__(self, q: Deque[T]) -> None:
"""Initializes the iterator"""
self._deque = q
self._current = q._head if len(q) > 0 else None
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Deque: iterator

class DequeIter(Generic[T]):

⋮

def __next__(self) -> T:
"""Returns the next element"""
if self._current is None:

raise StopIteration
data = self._current.data
self._current = self._current.next
if self._current == self._deque._head:

self._current = None
return data
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Using a deque
q: Deque[int] = Deque(range(1,9))  # Initialize with iterable
q.appendleft(0)
print("Number of elements:", len(q))

# Using q[i] (__getitem__). Quadratic cost!
for i in range(len(q)):

print("  Element", i, " =", q[i])

# Using the iterators (linear cost: much more efficient!)
for i, x in enumerate(q):

print("  Element", i, " =", x)

print("Removing the last element:", q.pop())
print("Removing the first element:", q.popleft())

print("Remaining elements in the queue:", end='')
for x in q:

print(' ', x, sep='', end='')
print()
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Memory management
• Programming languages have different 

strategies for memory management

• Typically, there are two structures used for 
memory management:
– Stack, for static memory allocation, associated to 

functions/methods
– Heap, for dynamic memory allocation 
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Memory management in Python

def square(x):
return x*x

def find_square(v, x):
for idx, val in enumerate(v):

if x == square(val):
return idx

return None

a = [3, 5, 9]
z = 25
print(find_square(a, z))
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Heap management
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Garbage collection
• Objects may have multiple references. Each object has a 

reference count.

• Python runs a garbage collector periodically. All objects 
with zero references are freed.
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Efficient memory management
import sys
import time

t0 = time.time()
n = 100000000
s: list[int] = []

# append n elements
for i in range(n):

s.append(i)
if i % 1000 == 0:

print(i, sys.getsizeof(s), time.time() - t0)

# remove n elements
for i in range(n):

s.pop()
if i % 1000 == 0:

print(n+i, sys.getsizeof(s), time.time() - t0)
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Efficient memory management
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Avoid managing memory at every resizing operation

Use extra memory to amortize the effort in allocating/deallocating memory
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EXERCISES
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Stack: Interleaved push/pop operations

Suppose that an intermixed sequence of push and pop operations 
are performed. The pushes push the integers 0 through 9 in order; 
the pops print out the return value. Which of the following 
sequences could not occur?

a) 4 3 2 1 0 9 8 7 6 5
b) 4 6 8 7 5 3 2 9 0 1 
c) 2 5 6 7 4 8 9 3 1 0
d) 4 3 2 1 0 5 6 7 8 9

Source: Robert Sedgewick, Computer Science 126, Princeton University.
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Middle element of a stack
Design the class MidStack implementing a stack with the 
following operations:

– Push/pop: the usual operations on a stack.
– FindMiddle: returns the value of the element in the middle.
– DeleteMiddle: deletes the element in the middle.

All the operations must be executed in O(1) time.

Suggestion: use some of the existing Python containers to 
implement it.

Note: if the stack has 𝑛𝑛 elements at locations 0. .𝑛𝑛 − 1, where 0
is the location at the bottom, the middle element is the one at 
location ⁄(𝑛𝑛 − 1) 2 .
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Queues implemented as circular buffers
• Design the class queue implemented with a circular buffer 

(using a Python list):
– The add/remove operations should run in constant time.
– The class should have a constructor with a parameter 𝑛𝑛 that 

indicates the maximum number of elements in the queue.

• Consider the design of a variable-size queue using a circular 
buffer. Discuss how the implementation should be modified.
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Reverse

Design the method reverse() that reverses the 
contents of a deque:

– No auxiliary data structures should be used.
– No copies of the elements should be performed.
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Rotate and Josephus
• Design the method q.rotate(n) that rotates a deque n

positions to the right (if positive) or –n positions to the 
left (if negative). Make the method efficient (e.g., assume 
that n can be large)

• Solve the Josephus problem, for 𝑛𝑛 people and executing 
every 𝑘𝑘-th person, using a deque:

https://en.wikipedia.org/wiki/Josephus_problem
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Merge and quick sort

• Design the method   q.merge(other: Deque) that 
merges the deque with another deque, assuming that both are 
sorted. Assume that a pair of elements can be compared with 
the operator <. After merging, all the elements must have 
been transferred to q (other becomes empty).

• Design the method  q.sort() that sorts the deque 
according to the < operator. Consider merge sort and quick 
sort as possible algorithms.
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