
Iterating over data
with Python

Jordi Cortadella and Jordi Petit
Department of Computer Science

Outline

• Iterables and iterators
• Generators
• Comprehensions
• Enumerate and Zip
• Map, Filter and Reduce
• 𝜆𝜆-functions

Iterating over data © Dept. CS, UPC 2

ITERABLES AND ITERATORS

Iterating over data © Dept. CS, UPC 3

Iterables
• Iterables are containers of data in

which we can iterate to obtain
elements one by one

• Lists, tuples, sets, dictionaries,
strings, etc. are iterables

• Iterators are objects used to iterate
over iterables

• Two important functions:
– iter(): creates an iterator from an

iterable
– next(): returns the next item

Iterating over data © Dept. CS, UPC 4

Iterable

Iterator

Returns
next

element

StopIteration
(exception)

iter()

next()

next()

when the
iterator is
exhausted

when another
element is
available

Iterables: example
>>> lst = [1, 2, 3] # lst is an iterable
>>> it = iter(lst) # it is an iterator
>>> next(it)
1
>>> next(it)
2
>>> next(it)
3
>>> next(it)
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
StopIteration
>>>

Iterating over data © Dept. CS, UPC 5

next() raises a StopIteration
exception when no more items
are available

next(it, default)
it = iter(some_iterable) # Creates an iterable

next(it, default) does not raise any exception.
Instead, it returns the default value.
v = next(it, None)
while v is not None:

do_something(v)
v = next(it, None)

Equivalent code
for v in it:

do_something(v)

Iterating over data © Dept. CS, UPC 6

GENERATORS

Iterating over data © Dept. CS, UPC 7

Designing data pipelines

• Big data systems often have to process long streams
of data with pipelines chaining different operations.

• How to store the data between operations?

Iterating over data © Dept. CS, UPC 8

Operation 1
(return data) Operation 2

Large data
storage

Designing data pipelines

Iterating over data © Dept. CS, UPC 9

Operation 2

Large data
storage

Operation 1
(return data)

• Big data systems often have to process long streams
of data with pipelines chaining different operations.

• How to store the data between operations?

Generators
• A mechanism to avoid storage of large

amounts of data.

• Generators are lazy iterators that do not store
the whole data structures in memory.

Iterating over data © Dept. CS, UPC 10

Operation 1
(yield data) Operation 2

Generators: example

>>> def natural_numbers():
... n = 0
... while True:
... yield n
... n += 1
...

Iterating over data © Dept. CS, UPC 11

>>> gen = natural_numbers()
>>> next(gen)
0
>>> next(gen)
1
>>> next(gen)
2
>>> next(gen)
3
...

>>> for i in natural_numbers():
... if is_prime(i):
... print(i)
...
2
3
5
7
11
...
672131
672137
672143
^CTraceback (...)
...
KeyboardInterrupt
>>>

Hamming numbers
• Hamming numbers are those numbers whose only prime

divisors are 2, 3, and 5.

• Examples:
– 20 is a Hamming number (22 ⋅ 30 ⋅ 51)
– 21 is not a Hamming number (3 ⋅ 7)

• Exercise: design a program that prints the 𝑛𝑛 smallest
Hamming numbers.

• Strategy: for every Hamming number 2𝑖𝑖 ⋅ 3𝑗𝑗 ⋅ 5𝑘𝑘, we can
generate three new numbers by increasing each one of the
exponents.

• How to generate them in ascending order?

Iterating over data © Dept. CS, UPC 12

Hamming numbers
• Generating the next Hamming numbers:

• How to generate them in ascending order?
– Use a priority queue to store the pending numbers

• How to avoid repetitions?
– Remember the last delivered number

Iterating over data © Dept. CS, UPC 13

2𝑖𝑖+1 ⋅ 3𝑗𝑗 ⋅ 5𝑘𝑘 2𝑖𝑖 ⋅ 3𝑗𝑗+1 ⋅ 5𝑘𝑘 2𝑖𝑖 ⋅ 3𝑗𝑗 ⋅ 5𝑘𝑘+1

2𝑖𝑖 ⋅ 3𝑗𝑗 ⋅ 5𝑘𝑘

Hamming numbers: simulation

Iterating over data © Dept. CS, UPC 14

Value Priority Queue

1

1 2 3 5

2 3 4 5 6 10

3 4 5 6 6 9 10 15

4 5 6 6 8 9 10 12 15 20

5 6 6 8 9 10 10 12 15 15 20 25

6 6 8 9 10 10 12 12 15 18 20 25 30

6 8 9 10 10 12 12 15 18 20 25 30

8 9 10 10 12 12 15 16 18 20 24 25 30 40

9 10 10 12 12 15 16 18 18 20 24 25 27 30 40 45

10 10 12 12 15 16 18 18 20 20 24 25 27 30 30 40 45 50

⋮ ⋮

Hamming numbers
import heapq
from typing import Iterator

def hamming_numbers() -> Iterator[int]:
"""Generates all Hamming numbers in ascending order"""
pq = [1] # priority queue storing Hamming numbers
prev = 0 # the last delivered number
while True:

value = heapq.heappop(pq) # get the smallest number
if value != prev: # avoid repetitions

yield value # deliver the value and wait (lazy)
prev = value
for x in 2, 3, 5: # generate new numbers

nxt = x*value
heapq.heappush(pq, nxt)

Iterating over data © Dept. CS, UPC 15

Hamming numbers

def main(n: int) -> None:
"""Test to print first n hamming numbers"""
hammings = hamming_numbers() # the generator
for _ in range(n):

print(next(hammings))

if __name__ == '__main__':
main(20)

Iterating over data © Dept. CS, UPC 16

1
2
3
4
5
6
8
9
10
12
15
16
18
20
24
25
27
30
32
36

Merging sequences
• Functions can receive iterators as parameters

and generate iterators as results

• Let us design a function that merges two
sorted iterators and generated a sorted
iterator

Iterating over data © Dept. CS, UPC 17

merge
⋯ 15 10 8 1
⋯ 11 6 5 3

⋯ 11 10 8 6 5 3 1

Merging sequences: typing
from typing import Iterator, TypeVar, Protocol

This is an abstract class that contains the __lt__
operator (<). No need to implement it.
class Comparable(Protocol):

def __lt__(self: 'T', other: 'T') -> bool: ...

This is a generic type. The bound attribute indicates
that the type must contain the operators of Comparable.
T = TypeVar('T', bound=Comparable)

The merge function dealing with sequences of elements
that are "Comparable" (i.e., the type contains the
the operator <).
def merge(a: Iterator[T], b: Iterator[T]) -> Iterator[T]:

"""reads two sorted iterators and generates a sorted
iterator by merging them"""

...

Iterating over data © Dept. CS, UPC 18

Merging sequences: code
def merge(a: Iterator[T], b: Iterator[T]) -> Iterator[T]:

"""reads two sorted iterators and generates a sorted
iterator by merging them"""

x, y = next(a, None), next(b, None)
while x is not None and y is not None:

if x < y:
yield x
x = next(a, None)

else:
yield y
y = next(b, None)

if x is not None:
yield x
yield from a # delivers values from another iterator

if y is not None:
yield y
yield from b

Iterating over data © Dept. CS, UPC 19

COMPREHENSIONS

Iterating over data © Dept. CS, UPC 20

Comprehensions
• Set builder notation. Example:

𝑆𝑆 = 𝑥𝑥2 𝑥𝑥 < 1000, 𝑥𝑥 is prime}

• Conventional Python using a for loop:

s = {}
for x in range(1000):

if is_prime(x):
s.add(x**2)

• Using comprehensions:

s = {x**2 for x in range(1000) if is_prime(x)}

Iterating over data © Dept. CS, UPC 21

Nested comprehensions

Iterating over data

Given a list of words, create a dictionary with the key-value
pairs <word: number of vowels>
words = ['cat', 'kangaroo', 'lion', 'dog', 'hippopotamus']

We can use s.count(x) to count the number of occurrences
of x in the string s, e.g., 'kangaroo'.count('o') is 2
vowels = {w: sum(w.count(x) for x in 'aeiou') for w in words}
print(vowels)
{'cat': 1, 'kangaroo': 4, 'lion': 2, 'dog': 1, 'hippopotamus': 5}

Let us print a list of the words with more than 3 vowels
print([w for w in vowels.keys() if vowels[w] > 3])
['kangaroo', 'hippopotamus']

© Dept. CS, UPC 22

Creating matrices with comprehensions

Iterating over data

Let us create a 4x4 identity matrix
matrix = [[0]*4]*4
for i in range(4):

matrix[i][i] = 1

Surprise! What’s wrong?
print(matrix)
[[1, 1, 1, 1], [1, 1, 1, 1], [1, 1, 1, 1], [1, 1, 1, 1]]

Let us use comprehensions
matrix = [[1 if i==j else 0 for j in range(4)] for i in range(4)]
print(matrix)
[[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]]

How to create a zero matrix with n rows and m columns
matrix = [[0]*m for _ in range(n)]

© Dept. CS, UPC 23

Generator expressions: example
>>> import sys
>>> # A list comprehension
>>> squares_lc = [i**2 for i in range(10**6)]
>>> # It generates a long list (larger than 8Mb)
>>> sys.getsizeof(squares_lc)
8448728
>>>
>>> # But we can also create a generator using (…)
>>> squares_gc = (i**2 for i in range(10**6))
>>> sys.getsizeof(squares_gc)
104
>>> # and we can iterate over the generator
>>> for n in squares_gc:
... if is_prime(n+1):
... print(n+1)
...

Iterating over data © Dept. CS, UPC 24

ENUMERATE AND ZIP

Iterating over data © Dept. CS, UPC 25

enumerate
Different ways of printing indices and values
lst = [x**2 for x in range(100)]

for i in range(len(lst)):
print(i, lst[i])

i = 0
for v in lst:

print(i, v)
i += 1

for i, v in enumerate(lst):
print(i, v)

It also works for generators!
lst_gen = (x**2 for x in range(100))
for i, v in enumerate(lst_gen):

print(i, v)

Iterating over data © Dept. CS, UPC 26

Hamming numbers

def main(n: int) -> None:
"""Test to print first n hamming numbers"""
for i, x in enumerate(hamming_numbers()):

if i == n:
break

print(x)

if __name__ == '__main__':
main(20)

Iterating over data © Dept. CS, UPC 27

1
2
3
4
5
6
8
9
10
12
15
16
18
20
24
25
27
30
32
36

zip

Iterating over data © Dept. CS, UPC 28

>>> # Zipping lists
>>> lst1 = [x**2 for x in range(100)]
>>> lst2 = [2*x for x in range(100)]
>>> lst3 = zip(lst1, lst2)
>>> # lst3 is an iterator!
>>> print(lst3)
<zip object at 0x7fd8d8beacc0>
>>> for x, y in lst3:
... print(x, y)
...
0 0
1 2
4 4
9 6
16 8
25 10
36 12
49 14

lst1 lst2

lst3

zipping and unzipping

>>> # Let us zip two lists
>>> letters = ['a', 'b', 'c', 'd']
>>> numbers = [1, 2, 3, 4]
>>> ln_zip = zip(letters, numbers)
>>> list_ln = list(ln_zip)
>>> print(list_ln)
[('a', 1), ('b', 2), ('c', 3), ('d', 4)]
Now we can unzip the list of tuples
>>> lett, numb = zip(*list_ln)
>>> print('letters =', lett)
letters = ('a', 'b', 'c', 'd')
>>> print('numbers =', numb)
numbers = (1, 2, 3, 4)

Iterating over data © Dept. CS, UPC 29

MAP, FILTER AND REDUCE

Iterating over data © Dept. CS, UPC 30

map, filter and reduce
• Loops, comprehensions and generators are techniques used

to process data in iterable objects.

• The functions map(), filter() and reduce() provide a
functional programming approach to achieve similar goals.

• They can be applied to any iterable object (list, tuple, set, …)

• These functions can provide a very elegant solution to
compute expressions like this:

�
0≤𝑖𝑖<𝑛𝑛, is_prime(𝑖𝑖)

𝑖𝑖2

Iterating over data © Dept. CS, UPC 31

map, filter, reduce: auxiliary functions
def square(x: int) -> int:

return x*x

def add(x: int, y: int) -> int:
return x + y

def is_prime(n: int) -> bool:
if n <= 1:

return False
d = 2
while d*d <= n:

if n%d == 0:
return False

d += 1
return True

Iterating over data © Dept. CS, UPC 32

map

lst = [1, 2, 3, 4, 5, 6]

map creates an iterator that applies a function
to all elements of the iterable object
result = map(square, lst)

list(result)

Output: [1, 4, 9, 16, 25, 36]

Iterating over data © Dept. CS, UPC 33

filter

filter creates an iterator that selects the
elements that satisfy the filtering condition
result = filter(is_prime, range(30))

list(result)

Output: [2, 3, 5, 7, 11, 13, 17, 19, 23, 29]

Iterating over data © Dept. CS, UPC 34

reduce

from functools import reduce

reduce visits all elements and executes a
function that "accumulates" their values
result = reduce(add, range(10))
result
Output: 45

An initial value can also be specified
result = reduce(add, range(10), 5)
result
Output: 50

Iterating over data © Dept. CS, UPC 35

Back to our problem

n = 10**7
r = reduce(add, map(square, filter(is_prime, range(n))))
print(r)
Output: 21113978675102768574

Iterating over data © Dept. CS, UPC 36

�
0≤𝑖𝑖<𝑛𝑛, is_prime(𝑖𝑖)

𝑖𝑖2

generator:
range(n)

filter:
is_prime(i)

map:
square(x)

reduce:
add(x,y) r

Important: no intermediate lists are generated. Very low storage is required (< 1000 bytes).
By using lists to store the intermediate results, about 400Mb of storage would be required.

Pythonic Boolean reductions
any() and all() are particular cases of reduce functions
with Boolean results.

Iterating over data © Dept. CS, UPC 37

>>> numbers = [2, 3, 7, 11, 13, 23]
>>> all(is_prime(x) for x in numbers)
True
>>> all(x%2 == 1 for x in numbers)
False
>>> any(6 < x < 12 for x in numbers)
True
>>> words = ['cat', 'kangaroo', 'lion', 'dog', 'hippopotamus']
>>> all(len(w) > 10 for w in words)
False
>>> any(len(w) > 10 for w in words)
True
>>> all(len(w) < 15 for w in words)
True
>>> any(w[0] == 'h' for w in words)
True

Pythonic numerical reductions
sum(), min() and max() are particular cases of reduce
functions with numerical parameters.

Iterating over data © Dept. CS, UPC 38

>>> numbers = [5, 8, -2, 6, 0]
>>> sum(numbers)
17
>>> sum(numbers, start=10) # with an initial value of the sum
27
>>> min(numbers)
-2
>>> max(numbers)
8
>>> sum(numbers)/len(numbers) # mean
3.4
>>> a, b = [3, -4, 2], [1, 3, -1] # two vectors
>>> sum([x*y for x, y in zip(a, b)]) # dot product of a and b
-11
>>> # a more memory-efficient solution, why?
>>> sum(x*y for x, y in zip(a, b))
-11

Generate or list?

Iterating over data © Dept. CS, UPC 39

import random, sys, time

n = 200_000_000
a = [random.random() for _ in range(n)]
b = [random.random() for _ in range(n)]

tinit = time.perf_counter()
gen = (x*y for x,y in zip(a,b))
sum_gen = sum(gen)
time_gen = time.perf_counter() – tinit
size_gen = sys.getsizeof(gen)

tinit = time.perf_counter()
lst = [x*y for x,y in zip(a,b)]
sum_lst = sum(lst)
time_lst = time.perf_counter() – tinit
size_lst = sys.getsizeof(lst)

print(f'time: gen={time_gen:.2f} secs, list={time_lst:.2f} secs')
print(f'memory: gen={size_gen} bytes, list={size_lst:,} bytes')

time: gen=13.51 secs, list=12.32 secs
memory: gen=104 bytes, list=1,693,045,240 bytes

MapReduce
A programming model for big data sets using
parallel, distributed algorithms

Iterating over data © Dept. CS, UPC 40

map

map

map

map

input
data

mapped
data

mapped
data

mapped
data

mapped
data

reduce

reduce

reduce

reduce

host

𝝀𝝀-FUNCTIONS

Iterating over data © Dept. CS, UPC 41

𝜆𝜆-functions
• Lambda functions are anonymous functions that receive

parameters and return expressions

• Syntax:

lambda parameters: expression

is equivalent to:

def anonymous(parameters):
return expression

• Examples:

lambda x: x*x
lambda x, y: x+y

Iterating over data © Dept. CS, UPC 42

Using 𝜆𝜆-functions in map/filter/reduce

r = reduce(add, map(square, filter(is_prime, (range(n)))))

Using 𝝀𝝀-functions
r = reduce(lambda x, y: x+y,

map(lambda x: x*x, filter(is_prime, range(n)))
)

Using generators
r = sum(i*i for i in range(n) if is_prime(i))

Iterating over data © Dept. CS, UPC 43

�
0≤𝑖𝑖<𝑛𝑛, is_prime(𝑖𝑖)

𝑖𝑖2

Conclusions

• Processing long streams of data is one of the
main tasks of big data systems. Memory
storage is one of the critical resources

• When designing data pipelines exploit lazy
evaluation mechanisms to generate data upon
demand and avoid unnecessary data storage

Iterating over data © Dept. CS, UPC 44

EXERCISES

Iterating over data © Dept. CS, UPC 45

Comprehensions
• Create a dictionary where the keys are the

numbers of a list and the values are the
highest one-digit divisor of each number

• Create a list with all positive numbers smaller
than 𝑛𝑛 that are divisible by some number
included in a list called divisors

• Given a rectangular matrix (list of lists),
calculate its transpose using list
comprehensions

Iterating over data © Dept. CS, UPC 46

Generating the Fibonacci series
• Design a generator of the Fibonacci series

• Given a list of divisors, design a generator that generates
the Fibonacci numbers that are divisible by all divisors of
the list. Example:

divisors = [3, 5, 7, 11]
gen = (…) # design the generator
for x in gen:

print(x)

Output:
0
102334155
23416728348467685
5358359254990966640871840
1226132595394188293000174702095995
...

Iterating over data © Dept. CS, UPC 47

Intersection of sequences
Implement the function intersect with the following specification:

from typing import Iterator, TypeVar, Protocol

class Comparable(Protocol):
def __lt__(self: 'T', other: 'T') -> bool: ...

T = TypeVar('T', bound=Comparable)

def intersect(a: Iterator[T], b: Iterator[T]) -> Iterator[T]:
"""reads two sorted iterators and generates a sorted

iterator with only the common elements"""
...

Example:
a = [1, 3, 5, 5, 6, 7, 10, 13, 16, 18]
b = [2, 5, 5, 8, 13, 13, 15, 16, 20]
output: [5, 13, 16]
Iterating over data © Dept. CS, UPC 48

Farey sequence
• The Farey sequence of order 𝑛𝑛 is the sequence of completely

reduced fractions between 0 and 1 with denominators less than or
equal to 𝑛𝑛, arranged in ascending order. Example:

𝐹𝐹5 =
0
1 ,

1
5 ,

1
4 ,

1
3 ,

2
5 ,

1
2 ,

3
5 ,

2
3 ,

3
4 ,

4
5 ,

1
1

• Design the generator farey(n) that generates the Farey sequence
of order 𝑛𝑛:

def farey(n: int) -> Iterator[tuple[int, int]]:

• Write Python expressions to calculate:
– the sum of the elements of 𝐹𝐹𝑛𝑛
– the number of elements of 𝐹𝐹𝑛𝑛

Hint: The next element of the Farey sequence can be calculated using
only the two previous elements (find the rule in Wikipedia!)

Iterating over data © Dept. CS, UPC 49

Filter/reduce pipeline
Design two versions of the following function using a filter-reduce
pipeline:

– One version with auxiliary functions
– One version with lambda functions

Iterating over data © Dept. CS, UPC 50

from dataclasses import dataclass
from typing import Iterable
from functools import reduce

@dataclass
class Person:

name: str
age: int
salary: float

def avg_salary(people: Iterable[Person],
min_age: int, max_age: int) -> float:

"""Returns the average salary of the people with age
between min_age and max_age"""

	Iterating over data�with Python
	Outline
	ITERABLES and iterators
	Iterables
	Iterables: example
	next(it, default)
	generators
	Designing data pipelines
	Designing data pipelines
	Generators
	Generators: example
	Hamming numbers
	Hamming numbers
	Hamming numbers: simulation
	Hamming numbers
	Hamming numbers
	Merging sequences
	Merging sequences: typing
	Merging sequences: code
	COMPREHENSIONS
	Comprehensions
	Nested comprehensions
	Creating matrices with comprehensions
	Generator expressions: example
	Enumerate and Zip
	enumerate
	Hamming numbers
	zip
	zipping and unzipping
	MAP, FILTER and REDUCE
	map, filter and reduce
	map, filter, reduce: auxiliary functions
	map
	filter
	reduce
	Back to our problem
	Pythonic Boolean reductions
	Pythonic numerical reductions
	Generate or list?
	MapReduce
	𝝀-functions
	𝜆-functions
	Using 𝜆-functions in map/filter/reduce
	Conclusions
	EXERCISES
	Comprehensions
	Generating the Fibonacci series
	Intersection of sequences
	Farey sequence
	Filter/reduce pipeline

