[terating over data
with Python

B

Jordi Cortadella and Jordi Petit
Department of Computer Science

Outline

Iterables and iterators
Generators
Comprehensions
Enumerate and Zip
Map, Filter and Reduce
A-functions

ITERABLES AND ITERATORS

Iterables

e Jterables are containers of data in
which we can iterate to obtain
elements one by one

Iterable

. . . iter()
 Lists, tuples, sets, dictionaries,

strings, etc. are iterables

next()
* Jterators are objects used to iterate when another when the
it bl next() element is iterator is
over 1terables available exhausted

Returns
 Two important functions: elgﬁ]xgnt
— iter(): creates an iterator from an
iterable Stoplteration
— next():returns the next item (exception)

Iterating over data © Dept. CS, UPC 4

Iterables: example

>>> 1st = [1, 2, 3] # 1lst is an iterable
>>> it = iter(lst) # it is an iterator
>>> next(it)

1
;» next(it) next () raises a Stoplteration
. exception when no more items
>>> next(it) are available
3

>>> next(it)

Traceback (most recent call last):
File "<stdin>", line 1, in <module>

StopIteration

>>>

Iterating over data © Dept. CS, UPC 5

next(it, default)

it = iter(some_iterable) # Creates an iterable

next(it, default) does not raise any exception.
Instead, it returns the default value.
v = next(it, None)
while v is not None:

do_something(v)

v = next(it, None)

Equivalent code
for v in it:
do_something(v)

Iterating over data © Dept. CS, UPC

GENERATORS

Designing data pipelines

* Big data systems often have to process long streams
of data with pipelines chaining different operations.

* How to store the data between operations?

e Operation 1
Operation 2
(return data) P

Large data
storage

Iterating over data © Dept. CS, UPC

Designing data pipelines

* Big data systems often have to process long streams
of data with pipelines chaining different operations.

* How to store the data between operations?

Operation 1 ,
(return data) e Operation 2

Large data
storage

Iterating over data © Dept. CS, UPC

Generators

* A mechanism to avoid storage of large
amounts of data.

* Generators are lazy iterators that do not store
the whole data structures in memory.

@) Operation 1
(yield data)

Iterating over data © Dept. CS, UPC 10

Generators: example

>>>

>>>
>>>

>>>

>>>

>>>

def natural _numbers():

n =0

while True:
yield n
n += 1

gen = natural_numbers()
next(gen)

next(gen)
next(gen)

next(gen)

>>> for i in natural_numbers():
if is_prime(i):
print(i)

R NUTWNDN-

1
672131
672137

672143
ACTraceback (...)

KeyboardInterrupt
>>>

Hamming numbers

Hamming numbers are those numbers whose only prime
divisors are 2, 3, and 5.

Examples:
— 20 is a Hamming number (2% - 3° . 51)
— 21 is not a Hamming number (3 - 7)

Exercise: design a program that prints the n smallest
Hamming numbers.

Strategy: for every Hamming number 2! - 37 - 5%, we can
generate three new numbers by increasing each one of the
exponents.

How to generate them in ascending order?

Hamming numbers

* Generating the next Hamming numbers:

2t -3/ . 5K
2i+1.3j,5k 2i,3j+1,5k 2i,3j.5k+1

* How to generate them in ascending order?

— Use a priority queue to store the pending numbers

* How to avoid repetitions?

— Remember the last delivered number

Hamming numbers: simulation

Value |Priority Queue

1
1 235

2 3456 10

3 |(45669 10 15

4 56689 10 12 15 20

5 6689 10 10 12 15 15 20 25

6 |6 8910 10 12 12 15 18 20 25 30

6 8 9 10 10 12 12 15 18 20 25 30

8 |9 10 10 12 12 15 16 18 20 24 25 30 49

9 10 10 12 12 15 16 18 18 20 24 25 27 30 40 45

=
o

10 12 12 15 16 18 18 20 20 24 25 27 30 30 40 45 50

Hamming numbers

import heapq
from typing import Iterator

def hamming numbers() -> Iterator[int]:
"""Generates all Hamming numbers in ascending order

pq = [1] # priority queue storing Hamming numbers
prev = @ # the last delivered number
while True:
value = heapqg.heappop(pq) # get the smallest number
if value != prev: # avoid repetitions
yield value # deliver the value and wait (lazy)

prev = value
for x in 2, 3, 5: # generate new numbers

nxt = x*value
heapqg.heappush(pg, nxt)

Iterating over data © Dept. CS, UPC 15

Hamming numbers

def main(n: int) -> None:
"""Test to print first n hamming numbers

hammings = hamming_numbers() # the generator

for _ in range(n):
print(next(hammings))

if _name__ == '_main__':
main(20)

Iterating over data © Dept. CS, UPC

OOV~ WNR

16

Merging sequences

* Functions can receive iterators as parameters
and generate iterators as results

* Let us design a function that merges two
sorted iterators and generated a sorted
iterator

-+ 15 10 8 1
-+ 11 6 5 3

+11 16 8 6 5 3 1

Iterating over data © Dept. CS, UPC

17

Merging sequences: typing

from typing import Iterator, TypeVar, Protocol

This is an abstract class that contains the __ 1t
operator (<). No need to implement it.
class Comparable(Protocol):

def 1t (self: 'T', other: 'T') -> bool:

This is a generic type. The bound attribute indicates
that the type must contain the operators of Comparable.
T = TypeVar('T', bound=Comparable)

The merge function dealing with sequences of elements
that are "Comparable" (i.e., the type contains the
the operator <).

def merge(a: Iterator[T], b: Iterator[T]) -> Iterator[T]:

reads two sorted iterators and generates a sorted
iterator by merging them"™"

Iterating over data © Dept. CS, UPC 18

Merging sequences: code

def merge(a: Iterator[T], b: Iterator[T]) -> Iterator[T]:
"""reads two sorted iterators and generates a sorted

iterator by merging them"""
X, Yy = next(a, None), next(b, None)
while x is not None and y is not None:
if x < y:
yield x
x = next(a, None)
else:
yield y
y = next(b, None)

if x is not None:
yield x
yield from a # delivers values from another iterator

if y is not None:
yield y
yield from b

Iterating over data © Dept. CS, UPC 19

COMPREHENSIONS

Comprehensions

e Set builder notation. Example:

S ={x?|x <1000,x is prime}

e Conventional Python using a for loop:

s = {}
for x in range(1000):
if is_prime(x):
s.add(x**2)

* Using comprehensions:

s = {x*¥*2 for x in range(1000) if is_prime(x)}

Nested comprehensions

Given a list of words, create a dictionary with the key-value
pairs <word: number of vowels>
words = ['cat', 'kangaroo', 'lion', 'dog', 'hippopotamus’]

We can use s.count(x) to count the number of occurrences
of x in the string s, e.g., 'kangaroo'.count('o') is 2

vowels = {w: sum(w.count(x) for x in 'aeiou') for w in words}

print(vowels)
{'cat': 1, 'kangaroo': 4, 'lion': 2, 'dog': 1, 'hippopotamus': 5}

Let us print a list of the words with more than 3 vowels

print([w for w in vowels.keys() if vowels[w] > 3])
[‘'kangaroo', 'hippopotamus’]

Iterating over data © Dept. CS, UPC

Creating matrices with comprehensions

Let us create a 4x4 identity matrix
matrix = [[0]*4]*4
for i in range(4):

matrix[i][i] = 1

Surprise! What’s wrong?
print(matrix)
[[1) 1) 1) 1]) [1) 1) 1) 1]) [1.' 1) 1) 1]) [1) 1) 1) 1]]

Let us use comprehensions

matrix = [[1 if i==j else O for j in range(4)] for i in range(4)]
print(matrix)

[[1J 0, 9, 9], [0, 1, 0: 0], [GJ 0: 1, @], [0, @, 0, 1]]

How to create a zero matrix with n rows and m columns
matrix = [[@]*m for _ in range(n)]

Iterating over data © Dept. CS, UPC 23

Generator expressions: example

>>> import sys

>>> # A list comprehension

>>> squares_lc = [i**2 for 1 in range(10**6)]
>>> # It generates a long list (larger than 8Mb)
>>> sys.getsizeof(squares_1c)

8448728

>>>

>>> # But we can also create a generator using (..)
>>> squares_gc = (i**2 for i in range(10**6))

>>> sys.getsizeof(squares_gc)

104

>>> # and we can iterate over the generator
>>> for n in squares_gc:
if is_prime(n+1):
print(n+1)

Iterating over data © Dept. CS, UPC

ENUMERATE AND ZIP

enumerate

Different ways of printing indices and values
1st = [x**2 for x in range(100)]

for i in range(len(lst)):
print(i, 1st[i])

i=20

for v in 1st:
print(i, v)
i+=1

for i, v in enumerate(lst):
print(i, v)

It also works for generators!

lst _gen = (x**2 for x in range(100))

for i, v in enumerate(lst_gen):
print(i, v)

Iterating over data © Dept. CS, UPC

26

Hamming numbers

def main(n: int) -> None:
"""Test to print first n hamming numbers
for i, x in enumerate(hamming_ numbers()):
if 1 == n:
break
print(x)

if _name__ == '_main__':

main(20)

Iterating over data © Dept. CS, UPC

OOV~ WNR

27

ZIp

>>> # Zipping lists

>>> 1stl = [x**2 for x in range(100)]
>>> 1st2 = [2*x for x in range(100)]
>>> 1st3 = zip(1lstl, 1lst2)

>>> # 1lst3 is an iterator!

>>> print(1st3)

<zip object at Ox7fd8d8beacco>

>>> for x, y in 1st3:

print(x, y)

OrPRLRO-
AP~ DNO-

16 8
25 10
36 12
49 14

Iterating over data © Dept. CS, UPC

1stl

1st2

28

Zipping and unzipping

>>> # Let us zip two lists

>>> letters = ['a', 'b', 'c', 'd']

>>> numbers = [1, 2, 3, 4]

>>> 1n_zip = zip(letters, numbers)

>>> list 1ln = list(ln_zip)

>>> print(list_1n)

[(‘a’, 1), ('b', 2), ('c', 3), ('d', 4)]
Now we can unzip the list of tuples
>>> lett, numb = zip(*1list_1n)

>>> print('letters ="', lett)
letters = ('a', 'b', 'c', 'd")

>>> print('numbers =', numb)
numbers = (1, 2, 3, 4)

Iterating over data © Dept. CS, UPC

29

MAP, FILTER AND REDUCE

map, filter and reduce

Loops, comprehensions and generators are techniques used
to process data in iterable objects.

The functionsmap(), filter() and reduce() provide a
functional programming approach to achieve similar goals.

—

They can be applied to any iterable object (list, tuple, set, ...

These functions can provide a very elegant solution to
compute expressions like this:

S

0<i<n, is_prime(i)

map, filter, reduce: auxiliary functions

def square(x: int) -»> int:
return x*x

def add(x: int, y: int) -> int:
return x + vy

def is _prime(n: int) -> bool:

if n <= 1:

return False
d =2
while d*d <= n:

if nkd == 9:

return False

d += 1

return True

Iterating over data © Dept. CS, UPC

map

st = [1, 2, 3, 4, 5, 6]

map creates an iterator that applies a function
to all elements of the iterable object

result = map(square, 1lst)

list(result)

Output: [1, 4, 9, 16, 25, 36]

Iterating over data © Dept. CS, UPC 33

filter

filter creates an iterator that selects the
elements that satisfy the filtering condition
result = filter(is_prime, range(30))
list(result)

Output: [2, 3, 5, 7, 11, 13, 17, 19, 23, 29]

Iterating over data © Dept. CS, UPC 34

reduce

from functools import reduce

reduce visits all elements and executes a
function that "accumulates™ their values
result = reduce(add, range(10))

result

Output: 45

An initial value can also be specified
result = reduce(add, range(10), 5)
result

Output: 50

Iterating over data © Dept. CS, UPC

35

Back to our problem

>

0<i<n,is_prime(i)

generator: filter: map:

range(n) is_prime(1i) square(x)

n = 10**7

r = reduce(add, map(square, filter(is_prime, range(n))))
print(r)

Output: 21113978675102768574

Important: no intermediate lists are generated. Very low storage is required (< 1000 bytes).
By using lists to store the intermediate results, about 400Mb of storage would be required.

Iterating over data © Dept. CS, UPC 36

Pythonic Boolean reductions

any() and all() are particular cases of reduce functions
with Boolean results.

>>> numbers = [2, 3, 7, 11, 13, 23]
>>> all(is_prime(x) for x in numbers)

True

>>> all(x%2 == 1 for x in numbers)
False

>>> any(6 < x < 12 for x in numbers)
True

>>> words = ['cat', 'kangaroo’', 'lion', 'dog', 'hippopotamus’]
>>> all(len(w) > 10 for w in words)

False

>>> any(len(w) > 10 for w in words)

True

>>> all(len(w) < 15 for w in words)

True

>>> any(w[@] == 'h' for w in words)

True

Iterating over data © Dept. CS, UPC

37

Pythonic numerical reductions

sum(), min() and max () are particular cases of reduce
functions with numerical parameters.

>>>
>>>
17
>>>
27
>>>
-2
>>>
8
>>>
3.4
>>>
>>>
-11
>>>
>>>
-11

numbers = [5, 8, -2, 6, O]
sum(numbers)

sum(numbers, start=10) # with an initial value of the sum
min(numbers)

max(numbers)

sum(numbers)/len(numbers) # mean

a, b =1[3, -4, 2], [1, 3, -1] # two vectors
sum([x*y for x, y in zip(a, b)]) # dot product of a and b

a more memory-efficient solution, why?
sum(x*y for x, y in zip(a, b))

Iterating over data © Dept. CS, UPC

38

Generate or list?

import random, sys, time

n = 200 _000_ 000
a = [random.random() for _ in range(n)]
b = [random.random() for _ in range(n)]

tinit = time.perf_counter()

gen = (x*y for x,y in zip(a,b))
sum_gen = sum(gen)

time_gen = time.perf_counter() - tinit
size_gen = sys.getsizeof(gen)

tinit = time.perf_counter()

1st = [x*y for x,y in zip(a,b)]
sum_1st = sum(lst)

time_lst = time.perf_counter() - tinit
size_lst = sys.getsizeof(lst)

print(f'time: gen={time_gen:.2f} secs, list={time_lst:.2f} secs"')
print(f'memory: gen={size_gen} bytes, list={size_lst:,} bytes')

time: gen=13.51 secs, list=12.32 secs
memory: gen=104 bytes, 1list=1,693,045,240 bytes

Iterating over data © Dept. CS, UPC

39

MapReduce

A programming model for big data sets using
parallel, distributed algorithms

Iterating over data © Dept. CS, UPC

40

A-FUNCTIONS

A-functions

* Lambda functions are anonymous functions that receive
parameters and return expressions

* Syntax:
lambda parameters: expression
is equivalent to:

def anonymous(parameters):
return expression

 Examples:

lambda x: x*Xx
lambda x, y: Xx+y

Using A-functions in map/filter/reduce

S

0<i<n,is_prime(i)

r = reduce(add, map(square, filter(is_prime, (range(n)))))

Using A-functions
r = reduce(lambda x, y: x+y,
map(lambda x: x*x, filter(is_prime, range(n)))

)

Using generators
r = sum(i*i for i in range(n) if is_prime(i))

Iterating over data © Dept. CS, UPC

43

Conclusions

* Processing long streams of data is one of the
main tasks of big data systems. Memory
storage is one of the critical resources

* When designing data pipelines exploit lazy
evaluation mechanisms to generate data upon
demand and avoid unnecessary data storage

EXERCISES

Comprehensions

* Create a dictionary where the keys are the
numbers of a list and the values are the
highest one-digit divisor of each number

* Create a list with all positive numbers smaller
than n that are divisible by some number
included in a list called divisors

* Given a rectangular matrix (list of lists),
calculate its transpose using list
comprehensions

Generating the Fibonacci series

* Design a generator of the Fibonacci series

* Given a list of divisors, design a generator that generates
the Fibonacci numbers that are divisible by all divisors of
the list. Example:

divisors = [3, 5, 7, 11]
gen = (..) # design the generator
for x in gen:

print(x)

Output:

%)

102334155

23416728348467685
5358359254990966640871840
1226132595394188293000174702095995

Iterating over data © Dept. CS, UPC

Intersection of sequences

Implement the function intersect with the following specification:
from typing import Iterator, TypeVar, Protocol

class Comparable(Protocol):
def 1t (self: 'T', other: 'T') -> bool:

T = TypeVar('T', bound=Comparable)
def intersect(a: Iterator[T], b: Iterator[T]) -> Iterator|[T]:

"""reads two sorted iterators and generates a sorted
iterator with only the common elements"""

Example:
& a-=1[1, 3, 5, 5, 6, 7, 10, 13, 16, 18]
& b=1[2, 5, 5, 8 13, 13, 15, 16, 20]

output: [5, 13, 16]

Iterating over data © Dept. CS, UPC 48

Farey sequence

The Farey sequence of order n is the sequence of completely
reduced fractions between 0 and 1 with denominators less than or
equal to n, arranged in ascending order. Example:

{01112132341}

Design the generator farey(n) that generates the Farey sequence
of order n:

def farey(n: int) -> Iterator[tuple[int, int]]:

Write Python expressions to calculate:
— the sum of the elements of F,
— the number of elements of F,

Hint: The next element of the Farey sequence can be calculated using
only the two previous elements (find the rule in Wikipedial)

Filter/reduce pipeline

Design two versions of the following function using a filter-reduce
pipeline:

— One version with auxiliary functions

— One version with lambda functions

from dataclasses import dataclass
from typing import Iterable
from functools import reduce

@dataclass

class Person:
name: str
age: int
salary: float

def avg salary(people: Iterable[Person],

min_age: int, max_age: int) -> float:
Returns the average salary of the people with age
between min_age and max_age"""

	Iterating over data�with Python
	Outline
	ITERABLES and iterators
	Iterables
	Iterables: example
	next(it, default)
	generators
	Designing data pipelines
	Designing data pipelines
	Generators
	Generators: example
	Hamming numbers
	Hamming numbers
	Hamming numbers: simulation
	Hamming numbers
	Hamming numbers
	Merging sequences
	Merging sequences: typing
	Merging sequences: code
	COMPREHENSIONS
	Comprehensions
	Nested comprehensions
	Creating matrices with comprehensions
	Generator expressions: example
	Enumerate and Zip
	enumerate
	Hamming numbers
	zip
	zipping and unzipping
	MAP, FILTER and REDUCE
	map, filter and reduce
	map, filter, reduce: auxiliary functions
	map
	filter
	reduce
	Back to our problem
	Pythonic Boolean reductions
	Pythonic numerical reductions
	Generate or list?
	MapReduce
	𝝀-functions
	𝜆-functions
	Using 𝜆-functions in map/filter/reduce
	Conclusions
	EXERCISES
	Comprehensions
	Generating the Fibonacci series
	Intersection of sequences
	Farey sequence
	Filter/reduce pipeline

