Divide & Conquer (I)

Jordi Cortadella and Jordi Petit
Department of Computer Science
Divide-and-conquer algorithms

• Strategy:
 – Divide the problem into smaller subproblems of the same type of problem
 – Solve the subproblems recursively
 – Combine the answers to solve the original problem

• The work is done in three places:
 – In partitioning the problem into subproblems
 – In solving the basic cases at the tail of the recursion
 – In merging the answers of the subproblems to obtain the solution of the original problem
Conventional product of polynomials

Example:

\[P(x) = 2x^3 + x^2 - 4 \]
\[Q(x) = x^2 - 2x + 3 \]

\[(P \cdot Q)(x) = 2x^5 + (-4 + 1)x^4 + (6 - 2)x^3 + 8x - 12 \]

\[(P \cdot Q)(x) = 2x^5 - 3x^4 + 4x^3 + 8x - 12 \]
Conventional product of polynomials

function PolynomialProduct(P, Q)
 // P and Q are vectors of coefficients.
 // Returns R = P × Q.
 // degree(P) = size(P)-1, degree(Q) = size(Q)-1.
 // degree(R) = degree(P)+degree(Q).

 R = vector with size(P)+size(Q)-1 zeros;

 for each Pi
 for each Qj
 Ri+j = Ri+j + Pi · Qj

 return R

Complexity analysis:
- Multiplication of polynomials of degree n: O(n^2)
- Addition of polynomials of degree n: O(n)
Product of polynomials: Divide & Conquer

Assume that we have two polynomials with n coefficients (degree $n - 1$)

\[
P(x) \cdot Q(x) = P_L(x) \cdot Q_L(x) \cdot x^n +
\]
\[
(P_R(x) \cdot Q_L(x) + P_L(x) \cdot Q_R(x)) \cdot x^{n/2} +
\]
\[
P_R(x) \cdot Q_R(x)
\]

\[
T(n) = 4 \cdot T(n/2) + O(n) = O(n^2)
\]

\(\leftarrow\) Shown later
Product of complex numbers

• The product of two complex numbers requires four multiplications:

\[(a + bi)(c + di) = ac - bd + (bc + ad)i\]

• Carl Friedrich Gauss (1777-1855) noticed that it can be done with just three: \(ac, bd\) and \((a + b)(c + d)\)

\[bc + ad = (a + b)(c + d) - ac - bd\]

• A similar observation applies for polynomial multiplication.
Product of polynomials with Gauss’s trick

\[R_1 = P_L Q_L \]
\[R_2 = P_R Q_R \]
\[R_3 = (P_L + P_R)(Q_L + Q_R) \]

\[PQ = P_L Q_L x^n + \underbrace{(P_R Q_L + P_L Q_R)}_{R_3 - R_1 - R_2} x^{n/2} + \underbrace{P_R Q_R}_{R_2} \]

\[T(n) = 3T(n/2) + O(n) \]
Polynomial multiplication: recursive step

\[
P = \begin{bmatrix} 1 & -2 & 3 & 2 & 0 & -1 \end{bmatrix}
\]

\[
Q = \begin{bmatrix} 2 & 1 & 0 & -1 & 3 & 0 \end{bmatrix}
\]

\[
P_L = \begin{bmatrix} 1 & -2 & 3 \end{bmatrix}
\]

\[
Q_L = \begin{bmatrix} 2 & 1 & 0 \end{bmatrix}
\]

\[
P_R = \begin{bmatrix} 2 & 0 & -1 \end{bmatrix}
\]

\[
Q_R = \begin{bmatrix} -1 & 3 & 0 \end{bmatrix}
\]

\[
P_L Q_R + P_R Q_L = \begin{bmatrix} 3 & 7 & -11 & 8 & 0 \end{bmatrix}
\]

Divide & Conquer

© Dept. CS, UPC
Pattern of recursive calls

Branching factor: 3

\[\log_2 n \text{ levels} \]
Useful reminders

• Sum of geometric series with ratio r:

$$S = a + ar + ar^2 + ar^3 + \cdots + ar^{n-1}$$

$$S = a \left(\frac{1 - r^n}{1 - r} \right) = \frac{a}{1 - r} + \frac{r}{r - 1} ar^{n-1}$$

• Logarithms:

$$\log_b n = \log_b a \cdot \log_a n$$

$$a^{\log_b n} = a^{(\log_a n)(\log_b a)} = n^{\log_b a}$$
The time spent at level k is

$$3^k \cdot O\left(\frac{n}{2^k}\right) = \left(\frac{3}{2}\right)^k \cdot O(n)$$

For $k = 0$, runtime is $O(n)$.

For $k = \log_2 n$, runtime is $O\left(3^{\log_2 n}\right)$, which is equal to $O\left(n^{\log_2 3}\right)$.

The runtime per level increases geometrically by a factor of $3/2$ per level. The sum of any increasing geometric series is, within a constant factor, simply the last term of the series.

Therefore, the complexity is $O(n^{1.59})$.
A popular recursion tree

Branching factor: 2

$\log_2 n$ levels

Example: efficient sorting algorithms.

$$T(n) = 2 \cdot T\left(\frac{n}{2}\right) + O(n)$$

Algorithms may differ on the amount of work done at each level: $O(n^c)$
Examples

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Branch</th>
<th>c</th>
<th>Runtime equation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power ((x^y))</td>
<td>1</td>
<td>0</td>
<td>(T(y) = T(y/2) + O(1))</td>
</tr>
<tr>
<td>Binary search</td>
<td>1</td>
<td>0</td>
<td>(T(n) = T(n/2) + O(1))</td>
</tr>
<tr>
<td>Merge sort</td>
<td>2</td>
<td>1</td>
<td>(T(n) = 2 \cdot T(n/2) + O(n))</td>
</tr>
<tr>
<td>Polynomial product</td>
<td>4</td>
<td>1</td>
<td>(T(n) = 4 \cdot T(n/2) + O(n))</td>
</tr>
<tr>
<td>Polynomial product (Gauss)</td>
<td>3</td>
<td>1</td>
<td>(T(n) = 3 \cdot T(n/2) + O(n))</td>
</tr>
</tbody>
</table>
Master theorem

• Typical pattern for Divide&Conquer algorithms:
 – Split the problem into a subproblems of size n/b
 – Solve each subproblem recursively
 – Combine the answers in $O(n^c)$ time

• Running time: $T(n) = a \cdot T(n/b) + O(n^c)$

• Master theorem:

\[
T(n) = \begin{cases}
O(n^c) & \text{if } c > \log_b a \quad (a < b^c) \\
O(n^c \log n) & \text{if } c = \log_b a \quad (a = b^c) \\
O(n^{\log_b a}) & \text{if } c < \log_b a \quad (a > b^c)
\end{cases}
\]
Master theorem: recursion tree

Size \(n \)

Size \(\frac{n}{b} \)

Size \(\frac{n}{b^2} \)

Branching factor \(a \)

Depth \(\log_b n \)

Width \(a^{\log_b n} = n^{\log_b a} \)
Master theorem: proof

• For simplicity, assume n is a power of b.
• The base case is reached after $\log_b n$ levels.
• The kth level of the tree has a^k subproblems of size n/b^k.
• The total work done at level k is:

\[
a^k \times O\left(\frac{n}{b^k}\right)^c = O(n^c) \times \left(\frac{a}{b^c}\right)^k
\]

• As k goes from 0 (the root) to $\log_b n$ (the leaves), these numbers form a geometric series with ratio a/b^c. We need to find the sum of such a series.

\[
T(n) = O(n^c) \cdot \left(1 + \frac{a}{b^c} + \frac{a^2}{b^{2c}} + \frac{a^3}{b^{3c}} + \cdots + \frac{a^{\log_b n}}{b^{(\log_b n)c}}\right)
\]

$\log_b n$ terms
Master theorem: proof

- Case $a/b^c < 1$. Decreasing series. The sum is dominated by the first term ($k = 0$): $O(n^c)$.

- Case $a/b^c > 1$. Increasing series. The sum is dominated by the last term ($k = \log_b n$):

\[
 n^c \left(\frac{a}{b^c} \right)^{\log_b n} = n^c \left(\frac{a^{\log_b n}}{(b^{\log_b n})^c} \right) = a^{\log_b n} = n^{\log_b a}
\]

- Case $a/b^c = 1$. We have $O(\log n)$ terms all equal to $O(n^c)$.
Master theorem: visual proof

\[
\frac{a^{\log_b n}}{n^c}
\]

\[
n^c
\]

\[
a > b^c
\]

\[
\log_b n \text{ levels}
\]

\[
n^c
\]

\[
am = b^c\]

\[
n^c \log n
\]

Divide & Conquer

© Dept. CS, UPC 18
Master theorem: examples

Running time: \[T(n) = a \cdot T(n/b) + O(n^c) \]

\[T(n) = \begin{cases}
 O(n^c) & \text{if } a < b^c \\
 O(n^c \log n) & \text{if } a = b^c \\
 O(n^{\log_b a}) & \text{if } a > b^c
\end{cases} \]

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>a</th>
<th>c</th>
<th>Runtime equation</th>
<th>Complexity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power ((x^y))</td>
<td>1</td>
<td>0</td>
<td>(T(y) = T(y/2) + O(1))</td>
<td>(O(\log y))</td>
</tr>
<tr>
<td>Binary search</td>
<td>1</td>
<td>0</td>
<td>(T(n) = T(n/2) + O(1))</td>
<td>(O(\log n))</td>
</tr>
<tr>
<td>Merge sort</td>
<td>2</td>
<td>1</td>
<td>(T(n) = 2 \cdot T(n/2) + O(n))</td>
<td>(O(n \log n))</td>
</tr>
<tr>
<td>Polynomial product</td>
<td>4</td>
<td>1</td>
<td>(T(n) = 4 \cdot T(n/2) + O(n))</td>
<td>(O(n^2))</td>
</tr>
<tr>
<td>Polynomial product (Gauss)</td>
<td>3</td>
<td>1</td>
<td>(T(n) = 3 \cdot T(n/2) + O(n))</td>
<td>(O(n^{\log_2 3}))</td>
</tr>
</tbody>
</table>

\(b = 2\) for all the examples