Algorithm Analysis (II)

Jordi Cortadella and Jordi Petit
Department of Computer Science
Examples

• Selection sort

• Insertion sort

• The Maximum Subsequence Sum Problem

• Convex Hull
Selection sort uses this invariant:

- This is sorted and contains the i-1 smallest elements.
- This may not be sorted but all elements here are larger than or equal to the elements in the sorted part.
Selection Sort

```python
def selection_sort(v: list[Any]) -> None:
    
    
    for i in range(len(v)-1):
        k = i
        for j in range(i+1, len(v)):
            if v[j] < v[k]:
                k = j;
        v[k], v[i] = v[i], v[k]
```

Algorithm Analysis © Dept. CS, UPC

Observation: notice that \(T(n) \in \Omega(n^2) \), also. Therefore, \(T(n) \in \Theta(n^2) \).
Insertion Sort

• Let us use inductive reasoning:
 – If we know how to sort arrays of size n-1,
 – do we know how to sort arrays of size n?
Insertion Sort

```python
def insertion_sort(v: list[Any]) -> None:
    """Sorts v in ascending order""
    for i in range(1, len(v)):  # n-1 times
        x = v[i]
        j = i
        while j > 0 and v[j - 1] > x:  # 0..i times
            v[j] = v[j - 1]
            j -= 1
        v[j] = x
```

Algorithm Analysis

\[
T(n) = \Omega(n)
\]

\[
T(n) = O(n^2)
\]

\[
T_{\text{worst}}(n) = \sum_{i=1}^{n-1} i \cdot O(1) = O(n^2) \quad \Rightarrow \text{sorted in reverse order}
\]

\[
T_{\text{best}}(n) = \sum_{i=1}^{n-1} O(1) = O(n) \quad \Rightarrow \text{already sorted}
\]
The Maximum Subsequence Sum Problem

• Given (possibly negative) integers A_1, A_2, \ldots, A_n, find the maximum value of $\sum_{k=i}^{j} A_k$. (the max subsequence sum is 0 if all integers are negative).

• Example:
 – Input: -2, 11, -4, 13, -5, -2
 – Answer: 20 (subsequence 11, -4, 13)

The Maximum Subsequence Sum Problem

def max_sub_sum(a: list[int]) -> int:
 """Returns the sum of the maximum subsequence of a""
 n = len(a)
 max_sum = 0
 # try all possible subsequences
 for i in range(n):
 for j in range(i, n):
 this_sum = 0
 for k in range(i, j+1):
 this_sum += a[k]
 max_sum = max(max_sum, this_sum)
 return max_sum

Algorithm Analysis

\[T(n) = \sum_{i=0}^{n-1} \sum_{j=i}^{n-1} \sum_{k=i}^{j} 1 \]
The Maximum Subsequence Sum Problem

\[T(n) = \sum_{i=0}^{n-1} \sum_{j=i}^{n-1} \sum_{k=i}^{j} 1 \]

\[= \sum_{i=0}^{n-1} \sum_{j=i}^{n-1} (j - i + 1) \]

\[= \sum_{i=0}^{n-1} \frac{(n - i + 1)(n - i)}{2} = \ldots \]

\[= \frac{n^3 + 3n^2 + 2n}{6} = \Theta(n^3) \]
def max_sub_sum(a: list[int]) -> int:
 '''Returns the sum of the maximum subsequence of a'''
 n = len(a)
 max_sum = 0
 # try all possible subsequences
 for i in range(n):
 this_sum = 0
 for j in range(i, n):
 this_sum += a[j] # reuse computation
 max_sum = max(max_sum, this_sum)
 return max_sum

Algorithm Analysis

\[
T(n) = \sum_{i=0}^{n-1} \sum_{j=i}^{n-1} 1 = \Theta(n^2)
\]
Max Subsequence Sum: Divide&Conquer

<table>
<thead>
<tr>
<th>First half</th>
<th>Second half</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>-1</td>
</tr>
<tr>
<td>-3</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>-2</td>
<td>-2</td>
</tr>
</tbody>
</table>

The max sum can be in one of three places:
- 1st half
- 2nd half
- Spanning both halves and crossing the middle

In the 3rd case, two max subsequences must be found starting from the center of the vector (one to the left and the other to the right)
def max_sub_sum_rec(a: list[int], left: int, right: int) -> int:
 """Returns the sum of the maximum subsequence of a[left:right+1]"""
 if left == right: # base case
 return max(a[left], 0)

 # Recursive cases: left and right halves
 center = (left + right)/2
 max_left = max_sub_sum_rec(a, left, center)
 max_right = max_sub_sum_rec(a, center+1, right)

 # Subsequence in a[center+1:right+1]
 max_rcenter, right_sum = 0, 0
 for i in range(center+1, right+1):
 right_sum += a[i]
 max_rcenter = max(max_rcenter, right_sum)

 # Subsequence in a[left:center+1]
 max_lcenter, left_sum = 0, 0
 for i in range(center, left-1, -1):
 left_sum += a[i]
 max_lcenter = max(max_lcenter, left_sum)

 return max(max_left, max_right, max_lcenter + max_rcenter)
Max Subsequence Sum: Divide&Conquer

\[T(1) = 1 \]
\[T(n) = 2T(n/2) + \Theta(n) \]

We will see how to solve this equation formally in the next lesson (Master Theorem). Informally:

\[T(n) = 2T(n/2) + n = 2(2T(n/4) + n/2) + n \]
\[= 4T(n/4) + n + n = 8T(n/8) + n + n + n = \cdots \]
\[= 2^kT(n/2^k) + n + n + \cdots + n \]

when \(n = 2^k \), we have that \(k = \log_2 n \), hence

\[T(n) = 2^kT(1) + kn = n + n \log_2 n = \Theta(n \log n) \]

But, can we still do it faster?
The Maximum Subsequence Sum Problem

• Observations:
 – If $a[i]$ is negative, it cannot be the start of the optimal subsequence.
 – Any negative subsequence cannot be the prefix of the optimal subsequence.

• Let us consider the inner loop of the $O(n^2)$ algorithm and assume that all prefixes of $a[i..j-1]$ are positive and $a[i..j]$ is negative:

 - If p is an index between $i+1$ and j, then any subsequence from $a[p]$ is not larger than any subsequence from $a[i]$ and including $a[p-1]$.
 - If $a[j]$ makes the current subsequence negative, we can advance i to $j+1$.
The Maximum Subsequence Sum Problem

```cpp
int maxSubSum(const vector<int>& a) {
    int maxSum = 0, thisSum = 0;
    for (int i = 0; i < a.size(); ++i) {
        int thisSum += a[i];
        if (thisSum > maxSum) maxSum = thisSum;
        else if (thisSum < 0) thisSum = 0;
    }
    return maxSum;
}
```

Algorithm Analysis

$T(n) = O(n)$

<table>
<thead>
<tr>
<th>a:</th>
<th>4</th>
<th>-3</th>
<th>5</th>
<th>-4</th>
<th>-3</th>
<th>-1</th>
<th>5</th>
<th>-2</th>
<th>6</th>
<th>-3</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>thisSum:</td>
<td>4</td>
<td>1</td>
<td>6</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>3</td>
<td>9</td>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>maxSum:</td>
<td>4</td>
<td>4</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
</tbody>
</table>
The Maximum Subsequence Sum Problem

```python
def max_sub_sum(a: list[int]) -> int:
    """Returns the sum of the maximum subsequence of a""
    max_sum, this_sum = 0, 0
    for x in a:
        this_sum += x
        max_sum = max(max_sum, this_sum)
        this_sum = max(this_sum, 0)
    return max_sum
```

Algorithm Analysis

\[T(n) = \Theta(n) \]

<table>
<thead>
<tr>
<th>a:</th>
<th>4</th>
<th>-3</th>
<th>5</th>
<th>-4</th>
<th>-3</th>
<th>-1</th>
<th>5</th>
<th>-2</th>
<th>6</th>
<th>-3</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>this_sum:</td>
<td>4</td>
<td>1</td>
<td>6</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>3</td>
<td>9</td>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>max_sum:</td>
<td>4</td>
<td>4</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
</tbody>
</table>
A polygon can be represented by a sequence of vertices.

Two consecutive vertices represent an edge of the polygon.

The last edge is represented by the first and last vertices of the sequence.

Vertices: (1,3) (4,1) (7,3) (5,4) (6,7) (2,6)

Edges: (1,3)-(4,1)-(7,3)-(5,4)-(6,7)-(2,6)-(1,3)

// A polygon (an ordered set of vertices)
using Polygon = vector<Point>;
Create a polygon from a set of points

Given a set of n points in the plane, connect them in a simple closed path.
Simple polygon

- **Input:** \(p_1, p_2, \ldots, p_n \) (points in the plane).
- **Output:** \(P \) (a polygon whose vertices are \(p_1, p_2, \ldots, p_n \) in some order).

- Select a point \(z \) with the largest \(x \) coordinate (and smallest \(y \) in case of a tie in the \(x \) coordinate). Assume \(z = p_1 \).
- For each \(p_i \in \{ p_2, \ldots, p_n \} \), calculate the angle \(\alpha_i \) between the lines \(z - p_i \) and the \(x \) axis.
- Sort the points \(\{ p_2, \ldots, p_n \} \) according to their angles. In case of a tie, use distance to \(z \).
Simple polygon
Simple polygon

Implementation details:

- There is no need to calculate angles (requires arctan). It is enough to calculate slopes ($\Delta y/\Delta x$).
- There is not need to calculate distances. It is enough to calculate the square of distances (no sqrt required).

Complexity: $O(n \log n)$. The runtime is dominated by the sorting algorithm.
Compute the convex hull of n given points in the plane.
Clockwise and counter-clockwise

How to calculate whether three consecutive vertices are in a clockwise or counter-clockwise turn.

counter-clockwise

\(p_3\) at the left of \(\overrightarrow{p_1p_2}\)

\[\alpha < \beta\]

clockwise

\(p_3\) at the right of \(\overrightarrow{p_1p_2}\)

\[\alpha > \beta\]

Returns true if \(p_3\) is at the left of \(\overrightarrow{p_1p_2}\)

```python
def leftof(p1, p2, p3):
    return (p2.x - p1.x) * (p3.y - p1.y) > (p2.y - p1.y) * (p3.x - p1.x)
```
Convex hull: gift wrapping algorithm

Convex hull: gift wrapping algorithm

- **Input:** \(p_1, p_2, \ldots, p_n \) (points in the plane).
- **Output:** \(P \) (the convex hull of \(p_1, p_2, \ldots, p_n \)).

- **Initial points:**
 \(p_0 \) with the smallest \(x \) coordinate.

- **Iteration:** Assume that a partial path with \(k \) points has been built (\(p_k \) is the last point). Pick some arbitrary \(p_{k+1} \neq p_k \). Visit the remaining points. If some point \(q \) is at the left of \(p_k p_{k+1} \) redefine \(p_{k+1} = q \).

- Stop when \(P \) is complete (back to point \(p_0 \)).

Complexity: At each iteration, we calculate \(n \) angles. \(T(n) = O(hn) \), where \(h \) is the number of points in the convex hull. In the worst case, \(T(n) = O(n^2) \).
Polygon convexHull(const vector<Point>& points) {
 int n = points.size();
 Polygon hull;

 // Pick the leftmost point
 int left = 0;
 for (int i = 1; i < n; i++)
 if (points[i].x < points[left].x) left = i;

 int p = left;
 do {
 hull.push_back(points[p]); // Add point to the convex hull

 int q = (p + 1) % n; // Pick a point different from p
 for (int i = 0; i < n; i++)
 if (leftof(points[p], points[q], points[i])) q = i;

 p = q; // Leftmost point for the convex hull
 } while (p != left); // While not closing polygon

 return hull;
}
Convex hull: Graham Scan

https://en.wikipedia.org/wiki/Graham_scan
Convex hull: Graham scan

Input: \(p_1, p_2, \ldots, p_n \) (points in the plane).
Output: \(q_1, q_2, \ldots, q_m \) (the convex hull).

Initially:
Create a simple polygon \(P \) (complexity \(O(n \log n) \)).
Assume the order of the points is \(p_1, p_2, \ldots, p_n \).

// \(Q = (q_1, q_2, \ldots) \) is a vector where the points
// of the convex hull will be stored.
\[
q_1 = p_1; \quad q_2 = p_2; \quad q_3 = p_3; \quad m = 3;
\]
for \(k = 4 \) to \(n \):

\[
\text{while leftof}(q_{m-1}, q_m, p_k): \quad m = m - 1;
\]
\[
m = m + 1;
\]
\[
q_m = p_k;
\]

Observation: each point \(p_k \) can be included in \(Q \) and deleted at most once.
The main loop of Graham scan has linear cost.

Complexity: dominated by the creation of the simple polygon \(\rightarrow O(n \log n) \).
EXERCISES
Summations

Prove the following equalities:

\[\sum_{i=1}^{n} i = \frac{n(n + 1)}{2} \]

\[\sum_{i=1}^{n} i^2 = \frac{n(n + 1)(2n + 1)}{6} \]

\[\sum_{i=0}^{n} 2^i = 2^{n+1} - 1 \]
For loops: analyze the cost of each code

Calculate the value of variable \(s \) and the end the code

```python
# Code 1
s = 0
for i in range(n):
    s += 1

# Code 2
s = 0
for i in range(0, n, 2):
    s += 1

# Code 3
s = 0
for i in range(n):
    s += 1
for j in range(n):
    s += 1

# Code 4
s = 0
for i in range(n):
    for j in range(n):
        s += 1

# Code 5
s = 0
for i in range(n):
    for j in range(i):
        s += 1

# Code 6
s = 0
for i in range(n):
    for j in range(i, n):
        s += 1
```
For loops: analyze the cost of each code

Code 7
s = 0
for i in range(n):
 for j in range(n):
 for k in range(n):
 s += 1

Code 8
s = 0
for i in range(n):
 for j in range(i):
 for k in range(j):
 s += 1

Code 9
s = 0
i = 1
while i <= n:
 s += 1
 i *= 2

Code 10
s = 0
for i in range(n):
 j = 1
 while j <= n:
 s += 1
 j *= 2

Code 11
s = 0
for i in range(n):
 for j in range(i*i):
 for k in range(n):
 s += 1

Code 12
s = 0
for i in range(n):
 for j in range(i*i):
 if j%i == 0:
 for k in range(n):
 s += 1
The following statements refer to the *insertion sort* algorithm and the X’s hide an occurrence of O, Ω or Θ. For each statement, find which options for $X \in \{O, \Omega, \Theta\}$ make the statement true or false. Justify your answers.

1. The worst case is $X(n^2)$
2. The worst case is $X(n)$
3. The best case is $X(n^2)$
4. The best case is $X(n)$
5. For every probability distribution, the average case is $X(n^2)$
6. For every probability distribution, the average case is $X(n)$
7. For some probability distribution, the average case is $X(n \log n)$
The following algorithms try to determine whether $n \geq 0$ is prime. Find which ones are correct and analyze their cost as a function of n.

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Code</th>
</tr>
</thead>
</table>
| is_prime1 | def is_prime1(n: int) -> bool:
 if n <= 1:
 return False
 for i in range(2,n):
 if n%i == 0:
 return False
 return True |
| is_prime2 | def is_prime2(n: int) -> bool:
 if n <= 1:
 return False
 for i in range(2, int(math.sqrt(n))):
 if n%i == 0:
 return False
 return True |
| is_prime3 | def is_prime3(n: int) -> bool:
 if n <= 1:
 return False
 for i in range(2, round(math.sqrt(n))):
 if n%i == 0:
 return False
 return True |
| is_prime4 | def is_prime4(n: int) -> bool:
 if n <= 1:
 return False
 for i in range(2, int(math.sqrt(n))+1):
 if n%i == 0:
 return False
 return True |
| is_prime5 | def is_prime5(n: int) -> bool:
 if n <= 1:
 return False
 if n == 2:
 return True
 if n%2 == 0:
 return False
 for i in range(3, int(math.sqrt(n))+1, 2):
 if (n%i == 0):
 return False
 return True |
The Sieve of Eratosthenes

The following program is a version of the Sieve of Eratosthenes. Analyze its complexity.

```python
def primes(n: int) -> list[bool]:
    p: list[bool] = [True]*(n+1)
    p[0] = p[1] = False
    for i in range(2, int(math.sqrt(n))+1):
        if p[i]:
            for j in range(i*i, n+1, i):
                p[j] = False
    return p
```

You can use the following equality, where $p \leq x$ refers to all primes $p \leq x$:

$$\sum_{p \leq x} \frac{1}{p} = \log \log x + O(1)$$
The Cell Phone Dropping Problem

- You work for a cell phone company which has just invented a new cell phone protector and wants to advertise that it can be dropped from the f^{th} floor without breaking.

- If you are given 1 or 2 phones and an n story building, propose an algorithm that minimizes the worst-case number of trial drops to know the highest floor it won’t break.

- Assumption: a broken cell phone cannot be used for further trials.

- How about if you have p cell phones?

(Source: Wood & Yasskin, Texas A&M University)