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Abstract—We formally define—at the stream transformer @

level—a class of synchronous circuits that tolerate any variabil-

ity in the latency of their environment. We study behavioral

properties of networks of such circuits and prove fundamental s T2l T 11]

compositionality results. The paper contributes to bridging the ® w[a] Ta] Tol2] . ~[zl el [ [2[ [3] ]

gap between the theory of latency-insensitive systems and the

correct implementation of efficient control structures for them. Fig. 1. (a) Conventional synchronous adder, (b) Synchronous elastic adder.

I. INTRODUCTION

The conventional abstract model for a synchronous circuitggoofs are omitted, but are available in the technical report
a machine that reads inputs and writes outputs at every cy([Iﬂ

The outputs at cyclé are produced according to a calculation _
that depends on the inputs at cycles..,i. Computations A. Overview
and data transfers are assumed to take zero delay. Figure 1(a) depicts the timing behavior of a conventional
Latency-insensitive desidoy Carloni et al. [2] aims to relax synchronous adder that reads input and produces output data
this model by elasticizing the time dimension and so decoat every cycle (boxes represent cycles). In this adder;-the
pling the cycles from the calculations of the circuit. It enablesutput value is produced at thieth cycle. Figure 1(b) depicts
the design of circuits tolerant to any discrete variation (ia related behavior of an elastic adder—a synchronous circuit
the number of cycles) of the computation and communicatiamo—in which data transfer occurs in some cycles and not in
delays. With this modular approach, the functionality of thethers. We refer to the transferred data itemgo&ensand we
system only depends on the functionality of its componengay that idle cycles contaibubbles
and not on their timing characteristics. Put succinctly, elasticization decouples cycle count from
The motivation for latency-insensitive design comes frooken count. In a conventional synchronous circuit, tkt
the difficulties with timing and communication in nanoscaléoken of a wire is transmitted at theth cycle, whereas in
technologies. The number of cycles required to transmit datasynchronous elastic circuit theth token is transmitted at
from a sender to a receiver is governed by the distanseme cyclek > i.
between them, and often cannot be accurately known untilTurning a conventional synchronous adder into a syn-
the chip layout is generated late in the design process. Tedrronous elastic adder requires a communication discipline
ditional design approaches require fixing the communicatidhat differentiates idle from non-idle cycles (bubbles from
latencies up front, and these are difficult to amend wheakens). INSELF, this is implemented by a pair of single-
layout information finally becomes available. Elastic circuitbit control wires:Valid and Stop Every input or output wire
offer a solution to this problem. In addition, their modularityZ in a synchronous component is associated thannelin
promises novel methods for microarchitectural design théite elastic version of the same component. The channel is a
can use variable-latency components and tolerate static ariple of wires(Z, validz, stop), with Z carrying the data and
dynamic changes in communication latencies, while—unlikbe other two wires implementing the control bits, as shown
asynchronous circuits—still employing standard synchronoirs Figure 2(b). A token is transferred on this channel when
design tools and methods. validz A —stop: the sender sends valid data and the receiver
Cortadella et al. [4] present a simple elastic protocol, callesl ready to accept it; see Figure 4. Additional constraints that
SELF (Synchronous_HEistic How) and describe methods forguarantee correct elastic behavior are given in Section lII.
efficient implementation of elastic systems and for conversidihere we define precisely the class of elastic circuits and what
of regular synchronous designs into elastic form. Inspired litymeans for a circuitd® to be an elastization of a given circuit
the original work on latency-insensitive design [8ELF also  A. In particular, our definition implies livenesgt® produces
differs from it in ways that render the theory developed in [dhfinite streams of tokens if its environment produces infinite
hardly applicable. streams of tokens at the input channels and is ready to accept
In this paper we give theoretical foundations ®ELF: a infinite streams at the output channels.
novel and arguably more practicable definition of elasticity, SupposeN is a network of standard (non-elastic) compo-
and the basic compositionality results. For space reasons, tieats, as in Figure 2(a). Suppose we then take elasticizations of
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Fig. 2. A synchronous network (a) and its elastic counterpart (b). Fig. 3. Four machines (left) put into a netwokk (middle), and the network’s
dependency grapi\(A) (right). The nodes ofA(N) are wires; internal
wires get two labels. The arcs an@n-sequentialnput-output wire pairs of

. . ._component circuits. Dotted arcs indicate that (1,2) and (7,10) are sequential
these standard components and join their channels accordin for A andC resp.; they are not part ak () so0 A(A) is acyclic.

as in Figure 2(b), ignoring the buffer. Will the resulting
network ¢ be an elasticization of/? Will it be elastic at all?
These fundamental questions are answered by Theorem 4rnamire complex than that SELF (Figure 4) and consequently
Section IV, which is the main result of the paper. The answeltD requires significantly more complex implementation. For
are “yes”, provided a certain graph®(A®) associated with example, conversion of a regular design ibi® form needs
N¢is acyclic. This graph captures the information about patlswrapper or registers around every module, increasing the la-
inside elastic systems that contain no tokens—analogoustéacy of each module’s computation by two cycles—a penalty
combinational paths in ordinary systems. Importanfiy(A/©) that is not required in th&ELF elasticization. There might
can be constructed using only local information (the “sequealso be practical challenges in interfacind @ system with
tiality interfaces”) of the individual elastic components. an existing nori-:ID module, requiring the latter to generate
Since elastic networks tolerate any variability in the latencgtop signals with complex semantics.
of the components, empty FIFO buffers can be inserted in

any channel, as shown in Figure 2(b), without changing the | cycle |0 1 2 3 4 5 6 7 8 9

functional behavior of the network. This practically important | dataz | * A4 B B B C x x D D

fact is proved as a consequence of Theorem 4. validz 40 1 1 1 1 1 0 0 1 1

Synchronous circuits are modeled in this paper as streamlsPz [0 0 1 1 0 0 0 1 1 0
transformers, callethachinesThis well-known technique (see L SELF [0 t 0O 0O t t 0 0O 0 t |
t t O t t O 0 O t ..|

[8] and references therein) appears to be quite underdeveloped.\ LD | O
Our rather lengthy preliminary Section Il elaborates the negiy. 4. Comparing th6&ELF andLID protocols. The bottom rows show the

essary theory of networks of machines, culminating with mtes of t|h§ Ch?]nnéi’i diﬁereﬁtieging between b:lbbleﬁg %n?églfenslt()-
s S en-wvalidz, the value at the data wire is irrelevant (labe cycles
surprisingly novel combinational loop theorem (Theorem 1)0, 6 and 7). The receiver can issuatap, even when the sender does not

Figure 3 illustrates Theorem 1 and, by analogy, Theoremsénd valid data (cycle 7). In the cycles 3, 4, and 9, the sender persistently
as well. It relies on the formalization of the notion of combina®aintains the same valid data as in the previous cycl&HhbF, data transfer
: : _ : : es place in cycles 1,4,5,9, so the transferred sequend&iSD .. .. In
_tlonal depender_me at the 'eYe' Qf m_DUt OUtpUt_ wire pairs. Ea , the same sequence of values on the channel wires signifies transfer of a
input-output pair of a machine is eithsequentialor not, and different sequence of datalBBCD . . . This is because a token is transferred
the set of sequential pairs provides a machine’s “sequentiamytféel-le clf]lannelll Wf&en_/alidtﬁ A —(stopy /I\ pZT?IEStOfPZt))’ wherepre -
H ” H H stands for the value during the previous cycle. e TIrst occurrence o e
interface”. Whe!’n several _m.aCh!neS are put FOgether mtos%p requesttop,, = 1 means “perhaps you will need to stop next cycle”
network A/, their sequentiality interfaces define the graphnd the data iten sent through the channel during cycle 2 is assumed to
A(N), the acyclicity of which is a test for the network tobe successfully transmitted to the receiver.)
be a legitimate machine itself. ) L . .
Elasticizations of ordinary circuits are not uniquely defined. \We emphasize that the limitations bfD implementations
On the other hand, for every elastic machidethere is a are not inherent to the concept of patient processes. Regarding
unique standard machine, denotdd, that corresponds to it. latency properties, they do not seem to be more limited than
We do not discuss any specific elasticization procedures in tRigstic systems. Still, it turns out that patient processes are not
paper, but state our results in the form that only involves elasggneral enough to model elastic systems as we define them
machines and their unique standard counterparts. This makes>ection lll. This we prove in Section V where patient

the results applicable to multiple elasticization procedures. Processes and elastic systems are compared as alternative
formalizations of latency-insensitive circuits.

B. Related Work Suhaib et al. [12] revisited and generalized Carloni’'s elasti-
Carloni et al. [2] pioneered a theory of latency-insensitiveization procedure, validating its correctness by a simulation

circuits based on their notion gfatient processesPatient method based on model checking.

processes are defined at a high level of abstraction that modelsee et al. [9] studycausality interfacegpairwise input-

communication on a channel only by “token or bubble”, leawautput dependencies) and are “interested in existence and

ing implementation protocol(s) unspecified. In the companiamiqueness of the behavior of feedback composition”, but do

paper [3], Carloni et al. give an incomplete description afot go as far as deriving a combinational loop theorem.

an implementation protocol. Assuming our recovery of that In their work on design of interlock pipelines [6], Jacobson

protocol (let us call iLLID) is accurate, its transfer condition iset al. use a protocol equivalent ®ELF, without explicitly




specifying it. Lemma 1:If f: A~ — A is contractive, then it has a
Manohar and Martin discuss “slack elasticity” of asynunique fixpoint.

chronous implementations in [10]. Their slack elasticity con- Remark.One can define thelistanced(a,b) between se-
ditions relate to the structure of choices in the asynchronogsencesa and b to be 1/2*, wherek is the length of the
specification. Unlike [10], in the current paper we deal wittargest common prefix of andb. This gives the setd > and
synchronous systems and we take a black box view of their the structure of complete metric spaces and Lemma 1 is an
control—no information about the control flow (and hence oimstance of Banach Fixed Point Theorem. See the review paper
the structure of choices) is ever used. Instead the connectij} for more details and references about the metric semantics
information corresponding to the system data-flow is used fof systems and [13] for “diadic arithmetic of circuits”. We
elasticization. Conservatively ignoring control flow may leadhoose not to use the metric space terminology in this paper
to a performance penalty, but simplifies the translation to amce all “metric reasoning” we need can be as easily done
elastic system. with equivalence relations, instead. See [11] for principles

of reasoning with such “converging equivalence relations” in
Il. CIRCUITS ASSTREAM FUNCTIONS
more general contexts.

In this section we introducenachinesas a mathematical
abstraction ofircuits without combinational cycleor sim- B, Systems
plicity, this abstraction implicitly assumes that all sequential

elements inside the circuit aieitialized. Extending to par- TR . . . .
970 PA" 1 individual wirew is a settype(w) associated to it. A

tially initialized systems appears to be trivial. While there is L . .
) . . . . W-behavioris a functiono that associates a streasmw €
large body of work studying circuits or equivalent objects with ) .
. L . type(w)™ to each wirew € W. The set of alllW-behaviors
good (e.g. constructive [1]) combinational cyclesd their

= ) X . . will be denoted[W7]. Slightly abusing the notation, we will
composition (e.g. [5]), we deliberately restrict con&deraﬂo&so write [w] for the settype(w)>. Notice that the equiva-

to the fully acyclic objects, since neither logic synthesis n?r : .
. . o h L ?nce relationsv; extend naturally from streams to behaviors:
timing analysis can properly treat circuits with combinational

cycles.

Most of the effort in this section goes into establishing
modularity conditions guaranteeing that a system obtained as &otice also that d4-behavioros can be seen as a single
network of machines (the feedback construction in particulegjream(c[0], o[1],...) of W-states where a state is an as-
is a machine itself. signment of a value inype(w) to each wirew.

Definition 1: A W-systemis a subset of W].
) o Example. A circuit that at each clock cycle receives an

A stream overA is an infinite sequence whose elementseqer as input and returns the sum of all previously received
belong to the sel. The first element of a streamis referred inputs is described by th&l-systemsS, where W consists
to by a[0], the second by.[1], etc. For example, the equationyt o wires u,v of type Z, and S consists of all stream
ali] = 3i + 1 describes the s_treal(rl74,77...). ' pairs (a,b) € Z> x Z*> such thatb[0] = 0 and b[n] =

The; set of all streams Wl!l be denotetP°. Occasionally al0]+- - ~+a[n—1] for n > 0. Each stream paii, b) represents
we will need to consider finite sequences too; the set of all,pehaviors such thato.w = a ando.v = b.
finite or infinite, sequences ovef is denotedA®. We will use wires as typed variables in formulas meant to

We will write a ~; b to indicate that the streams and yeqcribe system properties. The formulas are built using ordi-
b have a common prefix of length. The equivalence rela- 5 mathematical and logical notation, enhanced with tempo-
tions ~o, ~1,~»,... are progressively finer and have trivial,| oneratormext always andeventually denoted respectively
intersection. Thus, to prove two sequenaesndb are equal, by ()*, G, F. As an illustration, the syster in the example
it suffices to showa ~; b holds for everyk. Note also that above is characterized by the propesty: 0AG (v+ = v+u).

a ~o b holds for everya andb. Also, one hasS = F G (u > 0) = FG (v > 1000), where =

We will use the equwalenpe relgtlomk to exp.resg Prop- is used to denote that a formula is true of a system.
erties of systems and machines viewed as multivariate stream

functions. All these properties will be derived from the folc. operations on Systems

lowing two basic properties of single-variable stream functions , ) . L
fi A% 5 B>, If W’ C W, there is an obvious projection map +—

o | W' [W] — [W']. These projections are all one needs
causality: Va,be A*.Vk>0. a~p b= f(a) ~ f(b) for the definition of the following two basic operations on
contraction:Va,b € A®°. Vk > 0. a ~p b= f(a) ~py1 f(b) Systems.

) , i Definition 2: (a) If S is a W-system and¥’ C W, then
Informally, f is causal if (for every:) the firstk elements of hiding W’ in S produces a(IW — W')-system hidey(S)
f(a) are determined by the first elements ofa, and f is  yefined by

contractive if the firstt elements off(a) are determined by
the firstk — 1 elements ofa. 7 € hidey(S) iff Joe€S. 7= (W-W).

SupposelV is a set of typedwires all we know about

oc~po  iff YweW. cw e~y o' w

A. Streams



(b) The compositionof a W;-systemS; and all;-systemS,  holds if and only ifo x 7 € S. The causality condition for
is a (W71 U Wy)-systemS; U S, defined by suchS can be also written as follows:

oce S USy iff UlWlGSl/\UlWQGSQ. VO’,U’E[[IH.VkZO.UNkU/:>F(U)NkF(U/).

The system in the example in Section II-B is a machine if
we regardu as an input wire and as an output wire. The
same is true of the syste@onn(u,v): its associated function
F is the identity function.

If W and W’ are disjoint wire setsg € [W], andr €
[W'], then there is a unique behaviére [WUW’] such that
oc=19|W andrT =9 | W’. This “product” of behaviors will
be written asy = ox7. (If W is the empty set, thefit’] has
one element—a “trivial behavior” that is also a multiplicativee, Feedback on Machines
unit for the product operation.) We will also use the notation

[u = a,v—b,..]for the {u,v,...}-behavioro such that o oniioned in Section 11-C whesi is a machine and the

o4 = a, 0.v=1>, etc. wires « and v of the same type are an input and output of

Hiding and composm_on SL.Jﬁ'Ce. to defln_e complex netv_vork§ respectively. Our concern now is to understand under what
of systems. To model identification of wires, we use S'mplgonditions the feedback produces a machine

connection system®y definition, Conn(u, v) is the {u, v} 14 fiy the notation, assumé is an (1, 0)-machine given
system consisting of all behaviosssuch thato.u = o.v. by F: [I] — [O], with wiresu € I, v € O of the same type

We will use the termfeedbackfor the system(S |u = v)

Now if Si,...,Sm are giv_en _systems andy, ..., Un: A By the note at the end of Section II-C, we have that for

vy, ..., v, are some of their wires, the network obtalneg _ _
o . ) veryo € [I —{u}] andr € [O — {v}],
from these systems by identifying each wite with the
corresponding wirey; (of equal type) is the system oxT €(S|u=v)
(S1,.. S |ur =v1, .., up = vy) if and only if

defined ashidery, ... u, 1 ,...,0.} (S), Where Ja e A®. F(o* [uw a]) = 7% [v— a]),

S=8 U---US,, UConn(u,vy)U---LConn(uy,,vy,). S0 (S|u = v) is functional when the functio’d, : A> —

A defined byF? (a) = F(o * [u — a]).v has a unique
The simplest caser{ = n = 1) of networks is the construction fixpoint. By Lemma 1, this is guaranteedAf, is contractive.
(S| u =) = hide(, . (S U Conn(u, v)), The f_ollpwing definitic_m introd_uce; the key concept of
sequentiality that formalizes the intutive notion that there is
used for afeedbackdefinition in Section II-E. A behavios no combinational dependence of a given output wire on a
belongs to(S|u = v) if and only if o * [u — a,v — a] € S given input wire. Sequentiality of the pg(r, v) easily implies

for somea € [u]. contractivity of 7, for all o.
) Definition 4: The pair(u,v) is sequentiafor S if for every
D. Machines 0,0’ € [I] and everyk > 0
Supposel and O are disjoint sets of wires, calleidputs ,
and outputs correspondingly. By definition, afi, O)-system oU~g—10 .U = F(0)w ~g F(o')w

is just an(I U O)-system. Consider the following properties A Vx € I —{u}. (c.x ~ 0’.x)

of an (7, 0)-systems. Lemma 2 (Feedback)f (u,v) is a sequential input-output

deterministic: pair for a machineS, then the feedback syste(§ |u = v) is
, oy oy a machine too.
Yw,w €S wil=wll = wlO0=wl0 Example.Consider the systen$ with I = {u,v}, O =
functional: {w, 2}, specified by equations
Vo € [I]. 37 € [O]. eS
o€l 3 €0 oxr w=u® ((0)#v) z=vPHv,
causal:
Vo, €SVE>0. wllrmpw [T = w]O~pw |O where all wires have typeZ, the symbol&® denotes the
componentwise sum of streams, afidlenotes concatenation.
Clearly, functionality implies determinism. Conversely, &ince > does not depend on, the pair(u, z) is sequential.
deterministic system is functional if and only if it accept§he pair (v, w) is also sequential since to compute a prefix
all inputs. Note also that causality implies determinism: ibf w it suffices to know (a prefix of the same sizewfand)
wll =w|I thenw|T ~; ' | I holds for everyk, so a prefix of smaller size of. The remaining two input-output

w] O ~ w' | O holds for everyk too, sow | O = w’ | O. pairs (u, w) and (v, z) are not sequential.
Definition 3: An (I, O)-machineis an(I, O)-system thatis  To find the machine(S|v = w), we need to solve the
both functional and causal. equationv = u® ((0)#v) for v. For eachu = (ag, a1, as, .. .),

A functional systemS uniquely determines and is deterthe equation has a unique solutior= @ = (ag, ap + a1, ao +
mined by the functionF': [I] — [O] such thatF'(c) = 7 ai+asz,...). Substituting the solution inte = v&wv, we obtain



a description of S | v = w) by a single equation that relates itsA. Input-output Structure, Channels, and Transfer

input and outputz = a4 ®a. The other feedbackS |u = 2) IS \yg assume that the set of wires is partitioned idada,
easier to calculate; itis given by equatien= vdvd((0)#v).  yalid, and stop wires, so that for each data wir& there
exist associated wireslidx andstopy of boolean type. (In
€Qctual circuit implementationsalid x andstopy need not be
physical wires; it suffices that they be appropriately encoded.)
Consider a networkV' = (S1,..., S |u1r = v1,. .., uy = Definition 5: Let 1,0 be disjoint sets of data wires. An
vn), WhereSy, ..., S, are machines with disjoint wire sets[I, O]-systemis an (I’,0’)-machine, wherelI’ = T U
and the pairs(uy,v1),...(un,v,) iNvolve n distinct input {validx | X € I} U {stopy|Y € O} and O’ = O U
wires u; andn distinct output wires;. (There is no assump- {validy |Y € O} U {stopx | X € I}.
tion thatu,, v; belong to the same machigg.) Our goalisto ~ The triples (X,validx,stopy) (for X € I) and
understand under what conditions the syst&nis a machine. (Y, validy,stop,-) (for Y € O) are to be thought of aslastic
Note thatNV = (S|u; = v9,...,u, = v,), whereS = input and output channelsf the system.
S1U---US,. Itis easy to check that an input-output pair Let transfer; be a shorthand fovalidz A —stop, and say
(u,v) of S is sequential if either (1Ju,v) is sequential for that transfer alongZ occurs in a states if s |= transfery.
somes;, or (2) v andv belong to different machines. Thus,Given a behavios = (o[0], o[1],0[2], ...) of an[I, O]-system
the information about sequentiality of input-output pairs of thend Z € I U O, let oz be the sequence (perhaps finite!)
“parallel composition” machiné is readily available from the obtained fromo.Z = (0[0].Z,0[1].Z,0[2].Z, . ..) by deleting
sequentiality information about the component machiSgs all entrieso[i].Z such that transfer along does not occur
and our problem boils down to determining when a multiplm o[i]. The transfer behavioro™ associated withr is then
feedback operation performed on a single machine resultsdiefined byoT.Z = 0. If all sequences ; are infinite, then
a system that is itself a machine. oT is an(I U O)-behavior; in general, however, we only have
Simultaneous feedback specified by a set of two or more; € type(Z2)“.
input-output pairs of a machine does not necessarily producd=or each wireZ of an [I,0]-system S we introduce
a machine even if all pairs involved are sequential. Indeea) auxiliary transfer counter variabletct; of type Z. The
in the example in Section II-E, we had a systéfnwith counters serve for expressing system properties related to
two sequential pairgu,z) and (v,w), but (u,z) ceases to transfer. By definitiontct, is equal to the number of states
be sequential fokS |v = w). Indeed, ifz andu are related that precede the current state and in which transfer aléng
by z = @ @4, then knowing a prefix of length of z requires has occurred. That is, for every behavierof S, we have
knowing the prefix of the same length af a shorter one o.tctz = (o,t1,...), wheret; is the number of indiceg
would not suffice. such thati < k and transfer along’ occurs inc[i]. Note that
To ensure that a multiple feedback construction producedh® sequence.tct is non-decreasing and begins with= 0.
machine, one needs to show that, in addition to the wire pairsThe notationmin_tctg, for any subsetS of 1 U O will be
to be identified, sufficiently many other input-output pairs aresed to denote the smallest of the numhetg, whereZ € S.
also sequential. A precise formulation fordaublefeedback
is given by a version of the BekiLemma: for the system
(S|lu = w,v = z) to be a machine, it suffices th#tree An elastic component, when ready to communicate over
pairs of wires be sequentialf+, w), (v, z), and one ofu,z), an output channel must remain ready until the transfer takes
(v,w). This non-trivial auxiliary result is needed for the prooplace.
of Theorem 1 below, and is a special case of it. Definition 6: The persistence conditiondfor an [I,0]-
Given an(1, O)-machineS, let its dependency graph\(S) systemS are given by
have the vertex set U O and directed edges that go from . .
to v for each pair(u,v) € I x O that is not sequential. For S | G (validy Astopy = (validy)" AYT =Y) (1)
a network systerdV' = (S1,..., S |u1 = v1,...,un = vn),  for everyY € O.
its graph A(V) is then defined as the direct sum of graphs The conjuncty+ = Y can be removed from (1) without
A(S1), ..., A(Sm) with each vertexy; (1 <i < n) identified  affecting the definition of elastic machines (it follows from

with the corresponding vertex; (Figure 3). other conditions). The most useful consequence of persistence
Theorem 1 (Combinational Loop Theoremfjhe network s the “handshake lemma™

system\ is a machine if the grapk\(\) is acyclic.

F. Networks of Machines and the Combinational Loop Th
rem

B. Definition of Elasticity

S = GFvalidy A GF —stopy. = GF transfery

I1l. ELASTIC MACHINES . . . .
Liveness of an elastic component is expressed in terms of to-

In this section we give the definition of elastic machinesken count: if all input channels have seetransfers and there
Its four parts—input-output structure, persistence conditioris,an output channel that has seen less, then the communication
liveness conditions, and the transfer determinism conditionen output channels with the minimum amount of transfer must
are covered by Definitions 5-8 below. be eventually offered. The following definition formalizes this,



2=qa c=>1 2=xa c=>1 2=a c=l k transfers on the output channels in the cooperating envi-
d=>0 d=>1 =1 h . .. h h th fi
1=bb  ef>1 1=>b  er>1 2enb ebb1 ronment. Thus, it is not surprising (even though the proof is
not obvious) that the determinism postulated in Definition 8
Fig. 5. Liveness: Only the hungriest channels (shaded) are being sen@Hffices to derive the causality ofT:
The numbers indicate the current token count at each channel. Theorem 2:If S is an [[’ O]-e|astic machine, theST is an
(I, 0)-machine.
. - . : In the situation of Definition 8, we say th& is anela-

together with a similar commitment to eventual readiness Weizati : .
. : Sticizationof ST and thatST is thetransfer machineof S.
input channels. (See also Figure 5.)

Definition 7: The liveness conditiongor an [I, O]-system
are given by

[=%

IV. ELASTIC NETWORKS

An elastic network\/ is given by a set of elastic machines
. S1,...,S,, with no shared wires, together with a set of chan-

S G (min_tctjuo = tctx = F —stopy) () nel pairs(X1,Y1),. .., (Xn,Y,), where theX; aren distinct
for everyY € O and everyX ¢ I. input channels and th¥; aren distinct output channels. As

In practice, elastic components will satisfy simpler (bu"i1 network of standard machines, the elastic netwbfkis

stronger) liveness properties; e.g. remowe_tctp > tcty defined by
from (2) and replacamin_tct;uo > tctx with min_tctp > . _ . o
tctyx in (3). However, a composition of such componentsj,v = (S S [ Xa = Vi validy, = validy;, _
while satisfying (2) and (3), may not satify the stronger stopy, = stopy, (1 <i<n))
versions of these conditions.

Consider single-channél, O]-systems satisfying the per-

S = G (min_tctp = tcty A min_tct; >tcty = Fvalidy)(2)

for which we will use the shorter notation

sistence and liveness conditions: afastic consumelis a N ={(St,....Sn | X1 =Y1,..., X0 = Y,,).
[{Z}, 0]-system( satisfying (4) below; similarly, arelastic
produceris a [0, {Z}]-systemP satisfying (5) and (6). We will define a graph that encodes the sequentiality infor-
C k= GF —stop 4) mation about the network/ and prove in Theorem 4 that
z acyclicity of that graph implies thal/ is an elastic machine
P k= G (validz Astop, = (validz)™) () and thatNT = (ST,..., ST | X1 =Y1,..., X, = Yy,).
P = GFvalidz (6)

. A. Elastic Feedback
Let Cz be the{Z, validz, stop, }-system characterized by astic reedbac

condition (4)—the largest (in the sense of behavior inclusion) Elastic feedbacks a simple case of elastic network:

of the systems satisfying this condition. Similarly, 1 be . _

the {Z, valid, stop , }-system characterized by properties (545 | P = Q) = (S| P = @, validp = validg, stopp = stopg).
and (6). Finally, defin¢he [I, O]-elastic environmento be the

system Definition 9: SupposeS is an elastic machine. An input-

output channel paifP, will be called sequentiaffor S if

Env[vo:UXEIPXUUYGOCY' p p ( 7Q) q S
Note thatEnv; o is only a system; it is not functional and so  § |= G ( min_tctyo =tetg FVa“dQ) . (D
is not a machine. A min_tct;_gpy > tetg

When a system satisfying the persistence and liveness concondition (7) is a strengthening of the liveness condition
ditions (1-3) is coupled with a matching elastic environmenfp) for channel(. It expresses a degree of independence of
the transfer on all data wires never comes to a stall: the output channel) from the input channeP: e.g., the first

Lemma 3 (Liveness)if S satisfies (1-3), then for everyioken atQ need not wait for the arrival of the first token
behaviorw of S'U Envy o, all the component sequences oft p. This independence can be achieved in the system by

the transfer behaviacT are infinite. _ storing some tokens inside, between these two channels. Note
As_a_n immediate consequence of Liveness Lemmas if that (7) does not guarantee that connecting chanReisd Q
satisfies (1-3), then would not introduce ordinary combinational cycles. Therefore
the acyclicity condition in the following theorem is required
ST={wT|w e SUEnv ) A
{wT] rol to ensure (by Theorem 1) that the elastic feedback, viewed as
is a well-defined(I, O)-system. an ordinary network, is a machine.

Definition 8: An [I,O]-systemS is an [I,O]-elastic ma-  Theorem 3:Let S be an elastic machine arél the elastic
chine if it satisfies the properties (1-3) and the associatddedback systen{S| P = @Q)). If the channel pai( P, Q) is
systemST is deterministic. sequential foiS, then: (a) the wire paifP, Q) is sequential for

The liveness conditions (2,3) are visibly related to causalityT. If, in addition, A(F) is acyclic, then: (b)F is an elastic
at the transfer levelk transfers on the input channels implymachine, and (cfFT = (ST| P = Q).



B. Main Theorems If A(N), A(M), andA°(N) are acyclic, thenM is an elastic

Sequentiality of two channel pair&P, Q), (P',Q) of an Machine, and\™ = A'T.
elastic machine does not imply their “simultaneous sequen-The precise relationship between graphs\1) and A(\)

tiality” can be easily described. In practice they are at the same time
. acyclic or not, as a consequence of sequentiality of sufficiently
min_tctyuo = tctg . many input-output wire pairs dB.
SEG ( A min,tctj,{P,P/} > tetg = FV3|IC|Q),

This deviates from the situation with ordinary machines, where V. ELASTIC VS. PATIENT SYSTEMS

the analogous property holds and is instrumental in the proofElastic machines angatient processesf [2] provide two
of Combinational Loop Theorem. formalizations of the intuitive concept of latency-insensitive
To justify multiple feedback on elastic machines, we hawircuits. In this section we address their connections and differ-
thus to postulate that simultaneous sequentiality is true wheeces. We begin with an overview of [2], using a minimalistic
required. Specifically, we demand that elastic machines comgproach and terminology that differs from the original. We
with simultaneous sequentiality information:Sfis an[I,0]- believe, however, that Definition 11 below matches the original
elastic machine, then for evely € O a sets(Y) C I is given definion accurately in most important aspects.
so that ,
] A. Patient Systems
SEG < A 2::7:2?@ - t;ttyct = Fvalidy>- (8)  The notationA* is for the set of finite sequences ovér A
—HHe) Y finitary WW-system, by definition, is a set of behaviersuch
Note that if P € (@), then the pai( P, Q) is sequential, but thato.w is a finite sequence for every € W.
the converse is not implied. A functioh: O — 2! with the A stalling streamover A is a stream overd U {O0}. We
property (8) will be called aequentiality interfacdor S. will refer to O as thebubbleand to elements ofl astokens
For an |7, O]-elastic machineS with a sequentiality inter- We will consider only stalling streams that contain finitely
face §, we defineA°(S,d) to be the graph with the vertexmany tokens. Ifa is such a stream, let € A* denote the
set7 U O and directed edge6X,Y) where X ¢ §(Y). By sequence over obtained by dropping all bubbles from

Theorem 3(a) A°(S, §) containsA(ST) as a subgraph. Clearly, a is determined byz and the sequena&(a) € N* of
Given an elastic network\V' = ((S1,...,Sm[X1 = lengths of bubble sequences between consecutive tokens of

Yi,..., X, = Y,)), where eachS; comes equipped with a For example, if

sequentiality interfacé;, its graphA©(N) is by definition the

direct sum of graphsA®(Sy,6), ..., A%(Sm,d,,) With each a=(0,0,7,0,4,5,0,0,0,8,...) )

vertex X; (1 < i < n) identified with the corresponding verteX, e havea — (7,4,5,8,...) andd(a) = (2,1,0,3,...). Two

Y; stalling streamsu, b are latency equivalentwritten a = b,

whena = b. Note thata = a.
By definition, astalling W-systemis a set of behaviors
o such that for everyw € W, o.w is a stalling stream over

Y, '.’X” =Yn)is a mac_hl_ne, and/T - N. type(w). Latency equivalence extendslid-behaviors andV -
As in Theorem 3, acyclicity ofA(N) is needed to ensuresystemsz; = 7 iff o.w = 7w holds for everyw € W; S = S’

(by Theorem 1) that\/ defines a machine. Elasticization”;f for every o € S (o € S') there existsr € &' (r € S) such

procedures (e.qg. [4]) will typically produce elastic componen{ﬁata o

W?th enough_sequential input-out_put wir(_a pairs, so tha/) A stalling W-systemS determines a standard finitaby -

will be acyclic as soon ag\°(N\) is acyclic. systemST — {7 | o € S}, wheres is given byz.w — 5@
Note, however, that cycles id°(N') need not correspond (for all w € W). Clearly S’T s

to combinational cycles inV' seen as an ordinary network, Stalling thek.-th toker’1 ofa by.d steps produces a latency

since empty buffers with sequential elements cuiting trze%uivalent stream that will be denotetll(a, k, d). Omitting

combinational feedbacks may be inserted icvfoEven though the easy definition, we give an example‘ai{s r;ls i.n (9), then

non-combinational in the ordinary sense, these cycles contain ' '

no tokens and therefore no progress along them can be made stali(a, 1,3) = (0,0,7,0,0,0,0,4,5,0,0,0,8, .. .)
Theorem 4 impies that insertion of empty elastic buffers

does not affect the basic functionality of an elastic network, Definition 11: Let < be a well-founded ordéron W/ and

as illustrated in Figure 2(b). let D > 0. A patient IV -system(relative to < and D) is a

Definition 10: An empty elastic buffeis an elastic machine

Theorem 4:1f the graphsA(N) and A°(N) are acyclic,
then the network system\/ is an elastic machine, the cor-
responding non-elastic systelw” = (Sf,...,ST X3

Lintroduction of a well-founded ordering of wires is motivated in [2] with

§ such thatST = Conn(X,Y’) for someX, Y. the purpose of modeling combinational dependencies, but such dependencies
Theorem 5 (Buffer Insertion Theorem$upposeB is an in patient systems are not discussed in any detail. Moreover, the ordering of
empty elastic buffer with channelsX.Y. Let N/ = Wwiresis implicitly assumed to bwotal in [2], which is somewhat unnatural.
’ For instance, when constructing a patient adder with inputs and output
<<81, s Sm |] X1 = Y, X, = Yn>> and M = w, one has two ordering choices: <1 v <1 w andv <2 u <2 w. It is not

(B,S1,..., 8| X=Y1,X1=Y,Xo=Y5,...,X,, =Y,)). clear that a patient adder in the, -sense will be patient in the;z-sense too.



stalling systemP such that for everyr € P, everyu € W, Are elastic machines more general?The answer is an easy
and everyk > 0 there existss’ € P such that “no” since, for example, the set of all possible stallifig-
(Pat-1) o'.u = stall(o.u, k, 1) behaviors is a patient system in the sense of Definition 11.
and for everyv # u there existsl, < D such that However, if one adds to Definition 11 a reasonable require—
stall(o.v, k, d) if u—<ov ment that a patient system be a machine, the answer is not
(Pat-2) o'.v :{ r

stall(o.v,k +1,d,) otherwise immediately clear. _ , _
Which formalization is easier to use? Without offering a

The main results of [2] can now be summarized: definitive answer, we would argue that verifying that a low-
1) atheorem saying that the composition of patient systengsel design (RTL, say) implements an elastic machine would
(with the samd¥V, <, and D) is a patient system; be easier than verifying that it implements a patient system.

2) the definition and analysis @atient buffersi.e. patient The bottom line is that the conditions for a system to be
systemsB such thatBT = Connﬁn(u,v)—the finitary an elastic machine are expressible as temporal properties of
connection system; suitably constructed infinite-state models. This is not obvious

3) a general construction that, for a given finitary systerfior the determinism condition folST in Definition 8, but
M without combinational dependencies (model of san be done by replacing determinism with causality and
Moore machine), produces a patient systBrsuch that introducing auxiliary variables for sequences of transferred
P =M. values over channels. Even though (e.g., because of infinite

counters involved) these conditions are not directly checkable

o ] ] ] by the existing model checking technology, there are palpable
The formalization given by patient systems is at a highgy,nortunities to find manageable stronger conditions that taken

level of ab_strac_tion. While elastic machir?es _deal explicitly Wit_tbgether imply elasticity (e.g., postulating a limit on the token

handshaking signals between communicating systems, patigs\int differences between channels eliminates the need for
systems communicate purely in the token/bubble languageinfinite counters). On the other hand, the definition of a patient
Given an elastic (as defined in Section [ll) O]-systemé,  gystem, being of the form “for every behavier there exists

the corresponding stallingl U O)-system&® is obtained by g’ pehaviors’ such that ..." appears to us to be intrinsically

projecting the finite-transfer behaviors &fto data wires and ore complex. Our only positive conclusion, however, is that

replacing data items on each wire withat all cycles where he mechanical checking of either of the definitions is an open
transfer along that wire does not occur. Precisely,etbe problem deserving further study.

the subset of consisting of all behaviors such thatwT.Z

B. Comparison

is finite for all channelsZ.? Then, givenw € £F, we define a VI. CONCLUSION
stalling (I U O)-behaviorw® by We have presented a theory of elastic machines that gives an
g _ (w.2)[i] if (w.validz)[i] A —(w.stop,)][i] easy-to-check condition for the compositional theorem of the
(W= 2)[i] = {D otherwise form “an elasticization of a network of ordinary components

) ) ) is equivalent to the network of components’ elasticizations”.
and finally we define the stalling systefit as the set of all \sgrification of a particular implementation is reduced to prov-
such behaviors,”. Clearly, the systent&™)T is the finitary g that conditions of Definition 8 are satisfied for all elastic
version of the standard machige. ) ) components used, and that the graph(\°) is acyclic for

Now we can address some questions pertinent to the Cojary network\” to which the elasticization is applied. While
parlson.of patient processes vs. elastic machines. __ the definition of the graphs\® may appear complex because
Are patient processes more general?The answeris "No™ of the sequentiality interfaces involved, it should be noted that
because there exist elastic machigesuch thate™ is not g ojasticization procedures, e.g. [4], are reasonably expected
patle_nt. To see _thls, consider an elastic macHinthat starts to completely preserve sequentiality: a chanRebelongs to
offering new valid outputs on channelonly on even cycles. ; Q) if the wire-pair (P, Q) is sequential in the original non-
(The existence of such elastic machines is obvious.) Obse Estic machine. This ensures (\V°) = A(N) and so testing

thato.u = (0,7,9,...) is possible for some behavier of ¢, sequentiality is done at the level of ordinary networks.

1 . .
gﬁ (token 7, e\l/en tho‘;]gh transmitted on cycle 1 was first £,q,re work will be focused on proving correctness of
offered on cycle 0). Thestall(o.u,0,1) = (0,0,7.9,...)  padicylar elasticization methods, on techniques for mechanical

must gls_q be part (.)f a be_havior 6F, by cc_)nd_ition (Pat-1) \erification of elasticity, and on extending the theory to more
of Definition 11. This implies that token 9 is first offered 0N gvanced protocols.

cycle 3, contrary to our assumption.

The ap(_)ve exampl_e can be _vu_—:wed as an |nd_|cat|on _t%knowledgments:Luca Carloni clarified some details of [2].
the conqmon (Pat-1) 1S too res_t_rlct|ye. It would be mteresanen McMillan pointed out several inaccuracies in a previous
to see if an appropriate modification of (Pat-1) results in YErsion of the paper and further clarified [2] for us. Gerard
definition of patient processes that captures elastic machin%%rry Ching-Tsun Chou, John Harrison, and the anonymous

20ne can prove that s the set of all limits of behaviors &F and sos ~ '€viewers pro_wded useful remarks. We are grateful for all the
is determined byeF. help we received.
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APPENDIX Lemma 4:1f f: A~ — A is contractive andz is an

PROOFS ANDAUXILIARY RESULTS arbitrary element ofA> then the sequence of iteratiofig(a)
Contents (n > 0) converges to the fixpoint of.

A Proof of Lemma 1 Proof. By Lemma 1,f has a unique fixpoint.. We prove
B Proof of Lemma 2 that f™(a) ~, a holds for everym,n such thatm > n.
C Bekic Lemma (This clearly implies the lemma.) Our statement is obvious
D Proof of Theorem 1 for n = 0. Arguing by induction onn, for n > 1 we have
E Handshake Lemma f™ (@) ~,_1 a (induction hypothesis), so applying to
F Proof of Lemma 3 both sides and using the contraction property gifd) = a
G Preliminaries for Proof of Theorem 2 we derive f™(a) ~, a. 0
H Proof of Theorem 2
I

Example: Strong Liveness Not Preserved B. Proof of Lemma 2

by Feedback Sequentiality of the paifu,v) implies that for everyr €
J Proof of Theorem 3 (a) [I — {u}] there exists a unique fixpoini, of F?,. (We
K Proof of Theorem 3 (b) continue with the notation from the paragraph preceding the
L Proof of Theorem 3 (c) lemma.) Consequently; (o [u — a]) has the formr«[v — a]
M Sequentiality Interface for Elastic Feedbacfor a uniquer € [O—{v}]. LetG: [I—{u}] — [O—{v}] be
N Proof of Theorem 4 the function that associateswith ¢ in the way just described.
(0] Proof of Theorem 5 It is easy to verify (by definition of7) that
A. Proof of Lemma 1 oxT €(Slu=v) iff Glo)=r1

Remark.Lemma 1 and Lemma 4 below are WeII-knowrho|dS for everyo € [I — {u}],7 € [O — {v}], so it only

facts. We give their proofs for the sake of completeness. yemains to prove that: satisfies the causality condition. That
Suppose: andb are both fixpoints off. By the contraction jy tym is a simple consequence of the causalityoind the

property,a ~j, b = a ~j1 b holds for everyk. Sincea ~o b, causality of the parametrized fixpoint operator that associates

it follows thata ~y, b holds for everyk, soa = b. This proves , \ith 4. By the latter we mean that, ~j a, always

the uniqueness part. follows from o ~;, o’. This we state now and prove as a
Supposep is any finite sequence of lengthand letS, be  ggparate lemma.

the set of all streams € A* such thatp is a prefix ofa. It Lemma 5:If (u,v) is a sequential pair foF', o ~;, ¢/, and

follows from the contraction condition that all streams in the 4nq,,_, are the fixpoints of?, and F7’ thenaa/Nk g,

set{f(a)|a € S,} have a common prefix of length+ 1. We . "

will denote that common prefix by'. Thus, for every € A*, Eroof. LeLAH: [u] :_[[;)J and leti: [ _({)u}]] x A T ﬁ
there existg! € A* such thatlp’| = 1 + |p| and € given byH(a,a) = F(o x [u — a]).v. Our sequentiality
assumption reads as follows:

Vae A®. p<a=pl = , 10
“ pa=p =fla) (10 Vo,0' a,a'. 0 ~pi10'Na~pad = H(o,a) ~,y1 H(o',d)

where < stands for the prefix relation. This implies (12)
Starting with an arbitrary: € A, define

Vpge A" p=q=p' <. (11)

: , _Ja ifn=20
Consider now the sequeneg:’, ¢'f, .. ., wheree is the empty =9 H(o,an_1) if n>1
sequence. Since < €', by repeated use of (11), we obtain _

e < el < €T < .... Since the sequences in this chain have a — a !f n =20
increasing length, there is a unique “limii"c A* satisfying " H(o'yal,_y) if n>1

e < el <€l < ... < a. By (10), the relationg < a,ef <
Tt i T Tt Tt .

fT_’he jj’ + %"ﬁqglie j{f(a), € hé r{(fa)’ ¢ f ), b we have (by Lemma 4) that, = lim a,,, and similarlya,, =
us,e < el 2 ell <. < f(a), which forcesa = f(a) (Y 15 1 "By induction, it follows from (12) thati, ~ a,, and

the uniqueness of the “limit” stream), proving the existence of " & hold for everyn. Also by induction, it follows from

the fixpoint. This finishes the proof of Lemma 1. (fZ) tﬁatg o holds for alln < k. Theref’ore,a o o

as required. O
The following fact will be used in the proof of Lemma 2. q

To state it, we need a definition: A sequengeof elements of C. BekE Lemma
A (i.e. a sequence of streams ovEy convergeso a € A

if every prefix ofa is the prefix of all but finitely many of the
a,. More formally,

Sincea, is the fixpoint of the functionF?, : a — H(o,a),

[Bibliographical information. Bekic Lemma asserts that
the fixpoint of a two-variable function can be computed by
iterating the fixpoint operators along the two coordinates. It
lima, =a iff ¥n>0.3k>0VYm>0. m>k= a,, ~, a. holdsinvarious contexts. The original resultis in: Hans Beki
Definable operations in general algebras, and the theory of
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automata and flowchartd. NCS, vol. 177, pp. 3-35, Springer L7 7 LA
1984.] V u )!QV M
We begin with a generalization of the concept of sequen- /l\
tiality. 3 4 5 3 4 5 3 4 5
.. . . (@ (b) (c)

Definition 12: Let S be an (I,0)-machine given by
F:[I] — [O] and letA C I, v € O. The pair(A,v) is Fig. 6. (@), (b) I'fu=y. (€) Nuw
sequentialfor S if for every k > 0, everyo,o’ € [I — A],
and everyr, 7’ € [A] one has )
where ¢ and o’ are the unique fixpoints of’?, and F7,
respectively. We also added~, a’ to the assumptions; this is
justified because ~, a’ follows from the other assumptions
by Lemma 5.

We finish the proof now by deriving (13) from any of our

Proof. The “only if” part is trivial. We prove the “if” part.for two assumptions (i),(ii). If (i) holds, then (13) immediately
the case wheml has two elements. The general case is onfy|iows. If (ji) holds, we first derivea ~j41 o’ from the

01 ONT ~p T = F(o*7)w ~ppq Fo' 7).

Lemma 6:(4,v) is sequential if and only if(u,v) is
sequential for every, € A.

notationally more difficult. assumptions of (13) and sequentiality @fu,v},w). Then
Thus, supposel = {z,y} and both(z,v) and (y,v) are wjth ¢ ~,,, o' in place ofa ~; o’ in the assumptions of
sequential. We need to prove (13), the conclusior: ~j,; ¢ follows by sequentiality of
o~pproNa~ga Ab~p b (v,2). O
= Flox[z—a]x[y—b]).v D. Proof of Theorem 1
~pp1 Flo' s [z = dTx [y — V). The notationl'},,—,, . ..., Will stand for the quotient
For the proof, just observe that baft{o [z — a]*[y — b]).v graph ob_tamed by identifying the vertices and v; (i =
and F (¢’ + [z — d/] * [y — b/]).v are equivalent in the sensels----7) NI
of ~pi1 With F(o’ « [z — a'] x [y — b]).v as a consequence For a given directed graph, a source vertéxu of r, and
of the assumed sequentiality 6f, v) and (y, v).  asink vertexv of I', let I',,, denote the graph obtained from

Lemma 7 (Beki Lemma): Suppose(u,w) and (v,z) are 1 DY:
sequential pairs for a maching and suppose that the four (1) removingu,v and all edges incident with them;
wires involved are distinct. If one of the paifs, z), (v,w) (2) adding an edgéw, z) for all w, z such that(w,«) and

is also sequential, thefv, z) is sequential for(S |u = w), (v, 2) are edges of .
(u,w) is sequential forS | v = z), and (therefore) the system(See Figure 6.)
(S|u=w,v=z) is a machine. Definition 13: If T and I'" are directed graphs such that

Proof. In view of Lemma 6, it suffices to prove thét, z) is every vertex ofl" is a vertex of[” and every two vertices
sequential for(S |u = w) under either of the following two joined by an edge il are joined by a path ii”, then we

assumptions: say thatl" is immersedin IV and writel" < T".
(i) (u,w) and({u,v},z) are sequential; In the main text, we used the same notatidnfor de-
(i) (v,z) and({u,v},w) are sequential. pendency graphs of machines and systems. This is slightly
Thus, our goal is to prove ambiguous, however. For example Sfis an (I, O)-machine,
then V' = (S | u = v) is a system, but at the same time an
o~y 0l Ab g (I—{u}, O—{v})-machine. Wheu\ is regarded as a network,
= G(ox*[v—1b)).2 ~pr1 Glo' x[v—b]).z, then A(N) is the quotient graph oA (S)[,—,). When\ is

where G is the function corresponding to the systenlr}egarﬁed as?machmed, thed\_/erte>t<)_seix(11\/)r:§IuOf_{u,v}.
(S |u =w). We can restate this in a more convenient form or the proof, we need to disambiguate this notation.
' Definition 14: The dependency graptD(S) of an (I, O)-
o ~gy1 0 Ab~p b machine S has I U O as the vertex set, and(u,v) €
A Glox[vs b)) =Tz d I x O | (u,v) is not sequential foS} as its set of directed
edges. Thedependency graphA(N) of a network A/ =

/ 1\ /
AN G v b)) =Tz ] (81, Smlur = v1,...,un = vy is (D(S) U -+ U

/
= ke D(S))fus =1y
By definition of G, this can be further restated as Definition 15: We write N’ ~ N when the networksV'
, , , and A/’ describe the same system.

T~ k1 0 Nb~p b Aarvya To appreciate Definition 15, note that networks are a form

AN Flox[vbl*ur—al)=7x[z— ¢ *[wr a of system descriptions, so that, strictly speaking, a network
/ / "y / /

A F(U * [v - b} ¥ [u —a ]) - [Z H C] * [w —a ] 3A source vertex is a vertex with no incoming edges; a sink vertex is a
= crppr ¢ (13) vertex with no outgoing edges.
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is not a system, although it uniquely determines one. THoof. From (1) we obtain
equivalenceN' ~ N implies D(N) = D(N”) but it does

not imply A(A) = AW\). S = G (validy A F —stopys = Ftransfery ),

Lemma 8:If u,v are vertices ofl” and if I' — I, then which implies the lemma. O
/
Plu=o) = Ty F. Proof of Lemma 3
Proof. Trivial. O

Assuming the contrary, let be a behavior ofS LU Env; o
and letZ be a wire such that the transfer sequendeZ is
finite and of shortest length. This assumption implies=

Lemma 9:If u is a source of* andv is a sink ofI", then
Puv — F[u:v}'

Proof. Easy. (Use Figure 6.) T FGmin_tctyuo > tety. If Z € I, then from (3) we geb |=
Lemma 10:If (u,v) is sequential forS, then D((S|u =  GF —stop,. We also haves = G Fvalid, by (6). Since elastic
v)) = D(S) ju=)- producers satisfy the persistence condition, Handshake Lemma

Proof. The proof follows fromD((S|u = v)) — D(S)u, Iimpliesw |= GFtransferz, which is a contradiction.
andD(S)uw — D(S)u=v). The second of these relations is an There remains the case € O, where we can also assume
instance of Lemma 9. For the first, we prove that(S|u = that there are naX € I with w7.X of the same length
v)) is a subgraph of)(S),,. Notice that these graphs haveas wT.Z. From this additional assumption we haue =

a common set of vertice$ U O — {u,v}. Suppose(w,z) FG(min_tct; > tctz A min_tcto > tctz), so from (2) we

is an edge ofD((S|u = v)), i.e., (w, z) is not sequential in get w = GFvalidz. A call to consumer liveness (4) and
(S |u = v). By Bekic Lemma, this implies that eithéw, z) is  then to Handshake Lemma yields the contradictory conclusion
not sequential i or that both(w, v), (u, z) are not sequential w = G F transfer;, as in the previous case.

in S. In both cases, it follows thdtw, z) is an edge IMD(S) .. G. Preliminaries for Proof of Theorem 2

Define arelastick-produceras a systern® that satisfies the
We strenghten now Theorem 1 as follows: producer persistence condition (5) and the following weakened
fN=(S,....,8n|u1 =v1,...,u, =v,) and A(N) form of the producer liveness condition (6):
is acycllc,.then/\/ is a machine and)(N) <—>_A(./\/). P Gltety < k= Falidy). (14)
We prove this strengthened theorem by inductiomoiihe
casen = 0 amounts to the fact mentioned in the main texifhus, ak-producer promises to cooperate in creation of at
if S1,...,S, are machines with disjoint wire sets, thén= leastk transfers.
S)U---US,, is a machine and an input-output péir, v) is Similarly, we weaken the definition of the systefg (for
sequential forS if either (1) (u, v) is sequential for soms;, any wireZ) and defineP} as the system defined by conditions

or (2) u andv belong to different machines;, S;. (5) and (14). Then we define tikeenvironmenia system, but
For the induction step, lelV’ = (Si,...,S,|u; = hota machine)

Vi,...,Un_1 = vnp_1). By induction hypothesisA” is a

machine, so we can writd/ ~ (N’ |u, = v,). Note that EnV’?,o = Uxer P Ullyeo Oy

AWN) = ,A(N/)[Iun:vn]- Itfc:llows from t/his and the induction  the following is a finite-transfer version of Lemma 3,
hypot_hesusD(N) - A(N) that_D_(/\/)[u”:vn]_ t_’_A(N)' proved in much the same way. Note that sifeev; o C
This in turn, together with acyclicity ofA(N), implies that Env? i

: i ' 4 ' 1.0 for everyk, Lemma 12 actually implies Lemma 3.
(un,vy) is & sequential pair faN”. Thus, by Lemma 2V'is | eyma 12:Let S be an[I, O]-system satisfying the condi-

a machine. Finally, tions (1-3). Then for every behavior € S L Env} ,, all the
DN) = DN |u, =vy)) Icomtpk(:)nent streams of the transfer behawidrhave length at
s DN eastk. | _
< AW Proof. The proof of Lemma 3 applies almost verbatim. The
[tn =] only change is that, arguing by contraction, we can now
= AW), assume that, in addition to being finite, the sequen&eZ

finishing the proof. The first immersion is justified by?2S length< k. Consequently, the intermediate resulti=
Lemma 10 and the second by induction hypothesis togettzF validz is derived from (14), (6), and |= tctz < k. [
with Lemma 8. We will also need two easy lemmas about standard (non-

elastic) machines.

E. Handshake Lemma
. N ) Lemma 13:Recall that every network
Persistence conditions (1) will be used through the follow-

ing easily derived consequence. N =(S81,...,Smlur =v1,...,up = vyp)
Lemma 11 (Handshake)f S satisfies (1), then, for everyis the system obtained by hiding the wires and v; in the
Y eO, corresponding system
S = GFvalidy A GF —stopy = GFtransfery. N=8SU---US, U Conn(uy,vy) U --- U Conn(uy,vy,).
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and thatiWé = W U {uy,vy,...,un,v,} is the relationship condition is vacuously true and the conjumet< |a| can be
between the wire sets of these systems. Suppose that the grapmoved from the first condition.
A(N) acyclic. Then the mag — o | W: N* — N is a Lemma 15:For every behaviow € Pg, the transfer se-
bijection. In particular, ifi¥’ = (), then N'* has exactly one quencesT.Z is a prefix ofc.
behavior. Define also the “eager consumer” machitg (for any wire
Proof. Consider the case = 1. For this case, our lemma %), characterized by the property
says that wherS, u,v are as in Lemma 2, then for every .
behaviors € (S|u = v) there is a unique € [u] such that Cz = G—stopy.
o#*[u— a]l*[v— a] €S. This is clear from considerations
in Section II-E, notably Lemma 2.
The general case follows by induction. O 0 _ 0 o 0 _ 0.X
Lemma 14:SupposeC is a machine with all input-output §7=8UP Ullyeo Gy, where P =[]xe, Px™. (1)
wire pairs sequential. Suppose also that in the netwdrk- Lemma 16:Let # be a partial/-behavior of lengtht. The

(C.C'| X1 =M1,..., X, =Y,) exactly one wire of each pair systemsS? has exactly one behaviar and it satisfiesoT.7 =
(Xi,Y;) is a wire of C and the other is a wire of’. Then ¢ Moreover,|wT.Y| > k for everyY € O.

A(N) is acyclic.

Proof. By assumption, the grap(C) has no edges. Thus,
A(N) is the union of a bipartite grap®(C’) and a set of
vertices, and so is acyclic.

For any partiall-behaviord, define the system

Proof. It is easy to check that for finite sequencesone
hasPg C P2, while for infinite o one hasPy C Py.
Consequently, if is a partial/-behavior of lengthk, we have
that S? is a subsystem af L Env];O, where we assume that
H. Proof of Theorem 2 Su Env?f’o is jUStS [ EnV[}o. By Lemma 12,‘(4)T.Z| >k
holds for all behaviorss of S? and all channelsZ.

The eager producer and eager consumer machines have the
property that their outputs depend sequentially on all their
inputs. Note thatS? is of the form Nt (see Lemma 13)
for a network ' whose one component iS and all other
V¢, 9 € SUEnvio. (T.I=97.1 = (7.0 =97.0. (15) components are eager producers or consumers. Repeated appli-
cation of Lemma 14 proved(S?) is acyclic. Then Lemma 13
implies thatS? has a unique behaviav. Sincew is also a
behavior of P?, we obtain from Lemma 15 that for every
input channelX the sequenceT™.X is a prefix ofd.X. Since
|wT.X| > k, this implieswT.X = 0.X for every X, which is
to say thatwT.I = 6. O

We will prove thatST = {wT|w € SUEnv; o} is causal
and accepts every input stream.
By assumption, the transfer determinism condition holds f
S:

Let us define gartial W-behavior(for any given setV of
wires) as a functio that associates to every witec W a
(finite or infinite) sequencé.w € type(w)®. Note that every
behavior is a partial behavior as well. If all sequenées
(w € W) have lengthk, we will say thatf is a partial W-
behavior of lengthk . We allow k& = oo in this definition, so
that a partial behavior of lengtto is just a behavior. Lemma 16 implies immediately that for evefiyc [I] there

Our main goal—the causality &#T—uwill be proved when existsw € S such thatwT.J = 6. Thus,ST accepts all inputs
we have established the following equivalent property: Faihd it remains to prove that it satisfies the causality property
every partialI-behavior¢ of finite length k, there exists a (16). For this proof, we fix a partial-behavioré of finite
partial O-behaviory of lengthk such that length & and letw be as provided by Lemma 16. The lemma

T T also implies the existence of a numbersuch thatw(n
VeSUEwLo. 0 29TT = x ZIT.0. (16) tct; > k for all channelsZ. Thus, there exist a pa[trt]if{']i

To prove this, we will need to put our systefhin “eager” behaviory of lengthk such thaty < wT.0 and

environments that are themselves machines, defined next. The

eager environments will let us defineas a function ob; see V(. (~pw = x 2(T.0 (18)
(18) below. In the remainder of the proof, we will check that o )
the so obtained satisfies (16). Suppose now) € S U Envy o satisfiesd < 97.1. (This

For any wire Z and a (finite or infinite) sequence of is the assumption from th_e causality property (_16).) To finish
elements ofype(Z), let P2 be the “eager producer” machineth€ Proof, we need to verify that < J7.0. We will do it by
that offers transfer of elements afin order, and if it succeeds €xhibiting a behavioC € S LiEnvy o such that
in transferring them all, then it stops offering further transfer. T a7
As a system, it is characterized by the following properties: (TI=0T.1 and ¢~ w. (19)

P E Gtz =mAm<|a| = validg A Z =a[m]) In view of (15) and (18), these two properties indeed imply

. <97.0.
a > ~validz A Z = A x= : o
Pz = Glictz 2o = ~validz A bz) We proceed to define a behavigrsatisfying (19). (The
where |a| denotes the length ok and Arbz is an arbitrary definition will take more effort than the proof that it satisfies

element oftype(Z). Note that whemn is infinite the second (19).)
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Consider the variatio®y”*" of the producer machin®s, 223 G123 G

. d=> 0 d=> 0
given by b e b e
Pg’k’"FG(ctSn/\tth:m/\m<k: = validz A Z = a[m]) ul
PeMM =G (ct <nAtcty >k = -wvalidg A Z = Arby) (@ (b)
Pg’k’" EG(ct>nAtctz =m = validz A Z = a[m]) Fig. 7. Example demonstrating that feedback does not preserve the strong

forward liveness.

where the variablet denotes the position in the stream, i.e.,
for everyo € S, we seto[n] = ct = n. The numbers:, n are 2@ G=o2 2 =@ C=2
arbitrary in this definition, although we will use the producers 0 :>g o 0 :>g
just defined with the values fdr andn as defined in previous 1=>r---- =1 Ef - - 93 1
paragraphs. The sequengés arbitrary but infinite. Intuitively,
7357’“’” eagerly offers the firsk elements ofa for transfer (@ (b)

while ct < n. If all & get transfered, then the machine Walt1'::‘ig. 8. Example demonstrating that feedback does not preserve the strong

until ct > n and then eagerly offers the rest @ffor transfer. packward liveness.
It is easy to see thawg’k’" is a subsystem oPz and that
it is an elastic machine with its two outputdata, validy
depending sequentially on its inputtop,. Moreover, for hence (20) implies future progress férf valid,. No progress
every behaviors of this machine, one has™.Z =< «. In Onc can be guaranteed, sineén_tcty, ;; = tct..

particular,cT.Z = « for every behavioro such thatsT is  To prove the strong forward liveness f61(S) = (S b =
infinite. e)) shown in Figure 7(b) one needs to prove progress for output

Define the system channelsd and ¢, since for 7(S) channelb is not an input
n anymore andmin_tct;; = min_tcty,y = 2 > tct.. Progress

§"=SUP’UllyeoC, where P” =], Py "™ on d follows immediately from progress o in machine
S. Progress orc does not. However, if we can show that
the second transfer would eventually occur on the feedback
channel(b, e), it would imply progress om. By the definition
of transfer and the Handshake Lemma 11 it is necessary
and sufficient to demonstrate thavalid. and F —stop, hold.
The former holds due to the sequentiality of the input-output
channel pair(b, e). The latter does not hold since the strong
backward liveness condition f& cannot be applied until the
first transfer on the output channéloccurs. Hence (20) does
. Example: Strong Liveness Not Preserved by Feedback Nt hold for 7(S). Note that (2) is satisfied since it only
requires progress on the output chaniel

Figure 8 shows an example demonstrating that feedback
does not preserve the strong backward liveness either. The
S [ G(mintct; > tcty = Fvalidy) (20) counter-example for the strong backward liveness is (almost)
symmetric to the forward case. Figure 8(a) depicts an elastic
machineS with a sequential channel pdis, e) during a cycle
for every X € I and for everyY € O. when channela has seen 2 transfers, channgl(an input

In practice, elastic components satisfy these strong livenéd@nnel in this example) - 0 transfers, and all other channels
conditions. However, a composition of such components, whiel transfer each. For machirte
satisfying weaker liveness conditions (2) and (3), may not
satisfy the stronger versions (20) and (21). The fundamental
difference between the liveness and the strong liveness ish&sice (21) implies future progress for inpitF —stop,;. No
follows: while the strong liveness promises progressatin progress oru can be guaranteed, sineéin_tct. .} < tct,.
under-servecbutput (20) or input (21) channels, the liveness To prove the strong backward liveness $6(S) = (S [b =
only guarantees progress on fleast servedso to speak the e)) shown in Figure 8(b) one needs to prove progress for input
“hungriest”, channels. channelsd anda, since forF(S) channele is not an output
Figure 7 shows an example demonstrating that feedba@rymore and
does not preserve the strong forward liveness. Figure 7(a)
depicts an elastic maching with a sequential channel pair
(b,e) during a cycle when channel has seen 2 transfers,Progress ond follows immediately from progress od in
channeld - O transfers, and all other channels - 1 transfenachineS. If we can show that the second transfer would
each. For machiné: min_tct; = min_tcty,;; = 1 > tctg, eventually occur on the feedback changiek), it would imply

Arguing as in the proof of Lemma 16, we obtain tigit has
exactly one behaviof and that it satisfiegT.] = ¢7.1.

Finally, to deduce¢ ~, w, note thatP? and P’ are
machines with identical behaviors “up ta = n”; that is,
for every behavior ofP? there is a~,,-equivalent behavior of
PY and vice versa. Therefore, the systefifsandS? must be
in the same relationship. Singg w are the only behavors of
SY, SY respectively, it follows that ~,, w.

The forward and backwarstrong liveness conditiorfer an
[I,O]-system are given by

S [ G(mintcto > tcty = F-stopy)  (21)

min_tcto = min_tct. oy =1 > tctg =0

min_tctor = min_tctyy = 2 > tct,.

14



progress om. By the definition of transfer and the Handshakaumbern we choose now any integer such thét| = tctg =
Lemma 11 it is necessary and sufficient to show thadlid. %, and for anyd such that < 97.1, we define

and F —stop,. The latter holds due to the strong backward S —suP’ U] co

liveness (21) of the original machirg The former, however, - veoly:
does not hold since the sequentiality of chanftek) cannot where

be applied until the first transfer on the input chanhetcurs. po = pil-bhmln |_| puTXkn,
Hence (21) does not hold foF(S), while (3) holds since it Xel-P
only requires progress on the input chandel The remaining details of the derivation gf< 97.Q are now

pure repetition of what is done in the proof of Theorem 2 and

J. Proof of Theorem fa) are therefore omitted
é .

This proof will use results and arguments from the pro
of Theorem 2 above. Let us begin with the appropriaté. Proof of Theorem 3b)
strengthening of Lemma 12. We will prove here that(S|P = Q)) satisfies the per-
Lemma 17:Let sistence and liveness conditions. The transfer determinism
EnVlf,o,p _ P}L;A Ulesp Pk L Ly o Cv (Sez;/;?ofnutcgglrg\;:\llllty) property follows from part (c), proved in
and letS be an[I, O]-system satisfying the conditions (1-3) Let us start with notation:
and (7). Then for every behaviar € S U Env’}’oyp one has

! _ 1 _ _ / _ -
wT.Q| 2 k. §=(sIP=Q) TI'=I-{P} 0'=0-{Q)
Proof. Letw € SUENVY ; p. Clearly,Envi o p C Envil,so  #z =mintctipo > tety  pz = min-tetpuor > tety
by Lemma 12w |= FGtctz > k—1 holds for allZ € TUO. Recall that for every behaviay’ of S’ there exists a unique
Assume|wT.Q| < k, the contrary of what we are to prove.penaviorw of S such that
Thus,

w(I'u0)=uw wP=wQ (23)

wEFG(mintctjuo > k— 1A tctg =k — 1). (22) wvalidp = w.validg  w.stopp = w.stopy

We claim now thatw |= FGtcty > k for every X' € Just from the observation that for each € I' U O’
I — P. To prove this claim, assume it is not true. Then wg. . ¢ cam triples (w'.Z,w'valid, o' stop,)  and
havew = FG(mintcto > k — 1 Atcty =k —1) for some (7 oid, wstop,) are equal, it follows thatS’
Xel-P .Thus,w = FGm'n’tCtIUO > tctx and since satisfies the persistence conditions (1).
w € S, the liveness ofS implies w = GF —stopy. On the iy 1o the liveness conditions, we first prove an auxil-
other hand, sinces.{X,validx,stopy} € P%, from w |= iary result.
FGtctx = k —1 and (14) we can derive |= GFvalidx. Lemma 18:Let ¢, = min_tct; > nAmin_tctor > n. Then
Since P%. satisfies the persistence condition (1), Lemma 1, everyn > 0 and every behaviap € S as in (25), one has
impliesw = G F transferx, which contradicts our assumptionw = G (¢ N Ftctp > n).
w = FGtctx = k — 1. This finishes the proof of the claim.
From (22), the claim above, and the elastic sequentiali
condition (7), we obtainu = G Fvalidg. On the other hand, w = G(¢pp = Ftctp > n). (24)
we havew = GF —stop, sinceCq, is a component of our sys-
tem. Invoking Lemma 11 again, we obtain= G F transfer,
which contradicts our starting assumpti’.Q)| < k& and so
finishes the proof.

Ryoof. The proof is by induction om. We can assume

Indeed, this is trivially true forn = 0, and forn > 0 it follows
from the induction hypothesiss = G(¢,_1 = Ftctp >
n — 1) and the obvious faat = ¢,, = ¢,—1.

Arguing by contradiction, we can assume
Suppose now is a partial I-behavior with|6.P| = k — 1
and|0.X| = k for all X € I — P. Define the systens? in the w = F(gn AGtctp <n),
eager environment by the same equation (17) used in the pragfich, in view of (24), can be sharpened into
of Theorem 2. In the same way that we derived Lemma 16
from Lemma 12, Lemma 14, and Lemma 13, we can now use
Lemma 17 in place of Lemma 12 and prove the followingsince w = G(¢n = G¢,) (by monotonicity oftcty), this
The systemS? has a unique behaviap, and that behavior implies
satisfies the properties™.] = 6 and |wT.Q)| > k. w = FG (¢, Atctp =n). (25)
Let x be the prefix of lengttk of wT.Q. For the proof that
the pair(P, Q) is sequential foiST, it suffices to prove

V19€$|_IEnv17O. 0 <971 = XjﬂT.Q.

w = F (¢, A Gtctp =n).

Clearly,
wlEG(p, Atctp =n = up),

which with (25) givesw = F G pp, which in turn, combined
This can indeed be derived in the same manner we derivsidh (3), gives
the similar condition (16) in the proof of Theorem 2. For the w = FGF —stopp. (26)

15



Sincew = G (tctp = tctg), we have
w ': G (¢n Atctp =n = ug N min_tct;s > 'EC'CQ)7

which with (25) givesw = FG(ug A min_tctpy > tctg),
which in turn, combined with (7) gives

w = FGFvalidg.

From (26) and (27), we derivev = (GF-stopp) A
(GFvalidp). Then by Lemma 11, we have = G F transferp,
which impliesw |= Ftctp > n, contradicting (25). This
finishes the proof of Lemma 18. O

(27)

The liveness conditions faf’ amount to the following, to
be proved for everyw as in (23).

v
o

for every X € I’ and everyY € O'.

G (¢ A min_tctp > tcty = Fvalidy)
G (¢y = F —stopy)

(28)
(29)

We prove the simpler property (29) first. Relying on the

backward liveness of (3), it suffices to check

w = G((1x = F-stopy) V Fpx),
which is equivalent to

wE G(ux AGstopy = Fux).

It is easy to verify that

w = G(Gstopyx = In. Gtctx = n),
so it suffices to prove

wE Gy ANGtctxy =n = Fpux).

Sincew = G(ux < (' Atctp > tcty)), our goal can be
restated as

wkE Gy ANGtctx =n = F(uy Atctp > tctx))

and then, in view ofv = G(uy A Gtctxy = n = Guk),
reduced to

wE Gy ANGtcty =n = Ftctp > n).

Sincew = G (ux Atctx = n = ¢,,—1), Lemma 18 finishes
the proof.

For the proof of (28), notice first that, in view of (2), it
suffices to prove

w ': G ((H’IY ANy = Fvalidy) vV F(y,y Ntctp > tcty A ’l/))),
where = min_tct;; > tcty. This is equivalent to
wE G((uy AN AG-validy) = F (uy Atctp > tety Av)).

Since
w = G(G-walidy = 3n. Gtcty = n),

it suffices to prove

wE G(uy AN AGtcty =n = F (uy Atctp > tcty A1))).
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Sincew = G (u4 Atctp > tcty = py ), We can restate this
goal as

wE G(Gtcty =n = ufy A= F(uy A Atctp > n)).

Now we usew = G(Gtcty =n = G(uy A & ¢,)) tO
further rewrite our goal as

wkE G(Gtcty =n = ¢, = F (¢, Atctp > n)).

This finally follows from the already seenl= G (¢,, = G ¢,,)
(true by monotonicity ofict) and Lemma 18.

L. Proof of Theorem 3c)

We continue with the notatio’, O’, S’ from the previous
section.

We need to prove that for every’ € S’ U Envyr o there
existsw € S U Envy o such thatwT.(I’ U O’) = T and
wT.P = wT.Q. Indeed, we have already seen that, givére
&', there existsw € S such that

w(I'uo)=uw wP=wQ
w.validp = w.validg w.stopp = w.stopg

(see (23) above), so it only remains to prove that Env; o
holds for thisw.

By Part(b) of the theorem (proved in the previous section)
and Lemma 3 we know thatT.Z is infinite for everyZ <
I' UO'. It follows then from Lemma 18 that the sequences
wT.P and wT.QQ are (equal and) infinite. This implies that
w.{P,validp,stopp} € Pp andw.{Q,validg,stopg} € Cq.
(The persistence condition in the definition/f is equivalent
to the persistence condition for the wigefor w and is satisfied
becausev € S and (@ is an output ofS.) SinceEnvy o =
Envio UPp LUCqg andw’ € Envyr o/, we finally obtain the
desiredw € Envy o.

M. Sequentiality Interface for Elastic Feedback

Definition 16: Given a functions: O — 2! and M ¢
I,N € O, the functiondjp,_nj: O — {N} — 2/-1M} s
defined by
5 (V) = SY)—{M} if MesY)

M=N]E) = 6(Y)NS(N)  otherwise

The following formula is another characterization of
dM=N]-

Lemma 19:For everyX € I — {M} andY € O — {N},
X ¢ op=n)(Y) iff X &5(Y)V(XEIN)AM¢o(Y)).
Proof. Easy. O

Lemma 20:Suppose: O — 27 andP, M € I andQ, N €
O, where P # M and Q # N. Then (d;p=n1)ip=q] =
(Op=q)(M=nN7]-
Proof. Directly check that for both’ = (0a/—n})[p=¢) and
0" = (Orp=q))m=n) One hasX ¢ ¢'(Y") if and only if
X YVX~>NAM—Y)V(X~QAP~Y)
(X ~>NAM~QAP~Y)
(X~>~QAP~»NAM~Y)

V
V
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where, to avoid clutter, we used the notatidh ~~ Y for Assuming the contrary, we obtain, in a similar fashion as
X ¢46(Y). [1 before,

Lemma 21:If_5 is a sequentiality interface for an gle_lstic wl=FG (0 Atctg =n A —walidg).
machineS and if M € §(N), thendjy,—nj is a sequentiality
interface for(S[ M = NJ). for somen, whered stands for the antecedent part of the
Proof. Let us start again with notation: implication in (33). Again by Lemma 18, we have

S' = (S|M = N) 5’:5[M:N] wkEG@Atctg =n = Ftctyr > n),

A S ! _ ! B , , . i i . i .
I'=1-{M} 0" = 0-{N} pz = min-tctruor 2 tCtth|ch, combined with the previous formula, implies

For every@ € O’ we need to prove )
wEFG(0Atctg = n A —wvalidg A Ftcty > n).
w = G (g A min_tcty_s gy > tetg = Falidg), ' o N
i . _ This further implies (by monotonicity ofcty,)
wherew is a behavior ofS that corresponds to a behavior of
S'sie. wEFG(0 Atctg = n A -wvalidg Atcty > n).
wM =w.N wuvalidy =w.wvalidy w.stop;; = w.stopy L . .
Now, it is clear that one of the following must hold:
Consider first the case whell € §(Q). By definition of .
&', we havel’ — §'(Q) = I — §(Q) and accordingly restate ~ « [ FG(6Atctg =n A -validg Atcty > n), (34)

our goal: w E FG(OAtctg =nA-wvalidg Atcty =n). (35)
/ H .
w F G (g A min-tetr_sq) > tetg = Falidg). We proceed to prove that both (34) and (35) lead to
With the shorthand notatiol = min_tct; s > tcto, let contradiction.
us assume the contrary: Suppose (34) is true. Notice that
w = F(ug A A G-validg). (B0) w = G (upAtctar > nAtctg = n = poAmin_tct;_sq) > tetg),

Sincew = G (G —walidg = 3n. Gtctg = n), we have
w = F(ug A A Gtctg = n)

for somen, and therefore

so by combining with (8) we obtain
w = G (pg Atctar > n Atctg = n = Fvalidg),

, _ which (sinceyuy, is a conjunct off) contradicts (34).
wEFGug AP Atctg =n). (1) suppose (35) is true. Since = tcty = tety, we have
Note now that
w = G (tcty = tctg A g = pn)
0= G(ug ANtctg =n = ¢n_1),

) . ) ) . SinceM € 6(N), we havel — §(N) C I' — §(Q) N§(N).
where¢ is as in Lemma 18. Lemma 18 is true in the currenfith these observations. we derive

context, so we have

w G(M’Q A Atcto = n = Ftcty > n). (32) ¢ = G (OAtctg = tctyr = n = pyAmin_tct;_sv) > tety).

From (31) and (32), we derive In view of (8), this implies
w | FG(ug A Atctg =n Atcty > n). w k= G0 Atctg = tcty; = n = Fvalidy).  (36)
This implies

_rG Sincew = tcty, = tcty and sinced haspuy as one of the
wEFG(ugAY) conjuncts, by liveness af (3) we also get

and then, in view of (8),

wEFG(ug A AFvalidg),

which directly contradicts (30), finishing the first branch o

w = G (0 Atctg = tctyy = n = F—stopy,).  (37)

?incew E validy = validy,, from (36), (37), and (35) we get

the proof. w = F G (Fvalidy A F—stopy,)
Suppose nowV! ¢ §(Q). By definition of ¢’, we havel’ — .
5/(Q)p£ '~ 5(Q) fé((]%) an)(/i our goal is By Lemma 11 (andv = validy; = validy), we obtainw |=
F Gtransfery;. Thus,w = F Gtcty; > n, contradicting (35).
w = G (ug Amin_tcty_s(g)ns(ny > tetg = Falidg). (33) O
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N. Proof of Theorem 4 andon = (dn7)[x,=v,]- Since A(N”’) has the acyclic graph

In Section D, we disambiguated the use of the dependen@f”\') as & quotient, it must be acyclic too. Similarly? (A”)
symbol A and now we do the same fat®. must be acyclic as well. By induction hypothesig; is an
Definition 17: The dependency grapi<(S, §) of an elas- ela}stic machine with a sequentility interfadg-, so we can
tic [, 0]-machineS with a sequentiality interfacé has the Write V' ~ (N[ X, = Y,,)). _
vertex set/ U O and a directed edgeX,Y) for every X,Y We would like to use Theorem 3(b) to conclude titis
such thatX ¢ §(Y). The dependency grapm®(A) of an an elastic machine, but there are two conditions to check: (1)
elastic network\" = (Si,...,Sm | X1 =Y1,..., X0 = Y,) (X,,Y,) is a sequential channel pair for (the elastic system
is (D°(S1,01) U+ U D®(Smy )Xy =¥1. X0 — Vo] determined byV’, and (2)A({N' | X, =Y,,))) is acyclic.
e For (1), it suffices to prove that,, € dx-(Y,,). If this were
Following the analogy with ordinary networks, we will writent true, there would be a path fro, to ¥, in (A", ).
N ~ A" when two elastic network determine the same elasRy induction hypothesis, this graph is immersed (")
system. so there would be a path fromX,, to Y,, in A°(N’), so
Lemma 22:Let S = S, U --- U Sy, where eachs; is an  A°N) = A°(NV')px, =, would not be acyclic, which it is.
[I;, 0;]-elastic machine with a sequentiality interfage Let TNiS contradiction proves (1).
I=U", I andO = ", O;, and assume that these unions 0" (2), we have the derivation
are disjoint. Define: O — 2! by oY) = a(Y)UU;u L AN X =Y, )
for Y € O;. ThenS is an[I, O]-machine, is a sequentiality

. . . . = D N/ =Y, ,vali =vali =
interface for it, andD®(S,4) is the direct sum of graphs V) ixo=va el =vald, ston x, =sopy |

De(Si, (51) — A(./\/—/)[X,L:Yn,validxn =validy,, ,stop y, =stopy; |
Proof. Straightforward checking. O = AW),

Lemma 23:Under the assumptions of Lemma 287 = \here the immersion holds because the netwdfk is a
STu---uSk. machine (induction hypothesis) and we found in the proof of
Proof. Straightforward checking. [0 Theorem 1 thatD(M) — A(M) holds for every machine

Definition 18: Given an elastic network A/ = M.

(S1,...,Sn| X1 =Y1,..., X, = Y,)) of elastic machines We have now completed the proof thaf is an elastic
with disjoint inputs and outputs, let be as in Lemma 22, machine. To finish the induction step, we need to check that
and definen = dx, =vy]---[x, =v,.]- dn is a sequentiality interface fo¥" and thatD®(N, dnr) —

Remark.By Lemma 20, the order of the operations that A°(N). The first of these statements follows from Lemma 21
lead fromé to &, is irrelevant. and the factX,, € d5~(Y,,) (proved above). For the second,

Lemma 24:1f § is a sequentiality interface & and X ¢ we have the following derivation:

5(Y), thenDe(<S | X = Y>75[X=Y]) — DE(S, (;)[u:,“]. De(N, 5./\/) — De(<Nl | Xn _ n>’ (6/\/’)[}(,”:)@])

Proof. (Mutatis mutandis, the proof is the same as that of S DN, n ) ixy
Lemma 10.) The lemma follows fro¢((S| X =Y)) — o j\/”, [Xn=Yal

D¢(S)xy — D°(S);x=y], where the second immersion is = AN)ix,=va)

an instance of Lemma 9. For the first immersion, we prove = A°(N),

that D°((S[ X = Y))) is actually a subgraph ab°(S)xy. The first immersion here is justified by Lemma 24 and the

Notice that these graphs have a common set of vertides gecong s justified by the induction hypothesis together with
O —{X,Y}. By Lemma 19, Lemma 8.

W ¢ Six—y((2) iff W ¢8(Z)v (W ¢6(Y)AX ¢6(2)) We h_ave finished the inductive proof' of the claim that_
generalizes part of Theorem 4. It remains to prove that if
The left-hand side of this relation says ti{ak’, Z) is an edge A = (S;,....S,, [ X, = Y1,..., X, = Y,)) and both graphs
of D°(<S|X_ =Y),éx=v}), while the right-hand side implies A(A/), A°(\) are acyclic, thenV = (S7,...,8I X, =
that (W, Z) is an edge ofD°(S,d)xy . O vy,...,X, =Y,) is a machine, and/'T = \.
Starting the proof of Theorem 4, consider the following OPServe that Theorem 3(a) implig(ST) — D°(S, ) for
claim. every elastic maching and a sequentiality interfacefor it.

fFN = (S,....,8 ] X1 = Yi,..., X, = Y,) and As a consequence,
both graphsA(N), A°(N) are acyclic, thenV is an  A(N)
elastic machineg s is a sequential interface for it, and = (D(SHU---UD(S!))ix1=v
DV, o) = 45N, o (DU(S10) U+ U DS b))yt =
We prove this claim by induction on. The casen = 0 — AW
follows immediately from Lemma 22. o
For the induction step, letV! = (Si,...,S» ]| X1 = SinceA®(N) is acyclic, it follows thatA(N) is acyclic too,
Y1,...,Xn-1 = Ya_1)). Note thatA®(NV) = A°(NV7)[x,~y,] and then by Theorem 1 thaf is a machine.
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Fig. 9. From left to right: the graphd®(N”), A®(N), andA®(M). Shaded
areas show pairs of vertices that need to be identified. The archmY
should be absent o (Y) = {X}.

Finally, the equality\'T = A is proved by induction om.
The caser = 0 is Lemma 23. For the induction step, we have

NT = (<< H n = n>>)T

= (V)T X, =Y
= < ‘Xn—Yn>
= '/\7,

Where./\T, = <Sir7 . 7571-1 |X1 = Yl, .. .,Xn,1 = Yn,1>.
The second equality here follows from Theorem 3(b), and the
third follows by induction hypothesis.

O. Proof of Theorem 5

We begin with an easy lemma about ordinary machines.

Lemma 25:1f S is a machine with a sequential pair
(Xl,Yl) then

S1X1=7)=(SUConn(X,Y)|X =Y, X, =Y).

Let NV = (S1,...,8m[Xo = Ya,...,X,, = V,,)). We
have

A*(N) AN x,=v3)

A*(M) = (A W)U D(B,do))ix=v1,x,=v]
whered, is a sequentiality interface fd, which must be given
either by do(Y) = {X} or 6o(Y) = 0. A simple analysis
shows that the existence of a cycle itf (M) implies the
existence of a cycle im*(\) (Figure 9).

Theorem 4 now implies
NT = (V)T X1=Y)
MT = (NM)TBT|X =Y, X, =Y)

Since BT = Conn(X,Y’), Lemma 25 completes the proof of
Theorem 5.
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