
Synchronous Elastic Networks
Sava Krstíc

Strategic CAD Labs, Intel Corporation
Hillsboro, Oregon, USA

Jordi Cortadella
Universitat Polit̀ecnica de Catalunya

Barcelona, Spain

Mike Kishinevsky, John O’Leary
Strategic CAD Labs, Intel Corporation

Hillsboro, Oregon, USA

Abstract— We formally define—at the stream transformer
level—a class of synchronous circuits that tolerate any variabil-
ity in the latency of their environment. We study behavioral
properties of networks of such circuits and prove fundamental
compositionality results. The paper contributes to bridging the
gap between the theory of latency-insensitive systems and the
correct implementation of efficient control structures for them.

I. I NTRODUCTION

The conventional abstract model for a synchronous circuit is
a machine that reads inputs and writes outputs at every cycle.
The outputs at cyclei are produced according to a calculation
that depends on the inputs at cycles0, . . . , i. Computations
and data transfers are assumed to take zero delay.

Latency-insensitive designby Carloni et al. [2] aims to relax
this model by elasticizing the time dimension and so decou-
pling the cycles from the calculations of the circuit. It enables
the design of circuits tolerant to any discrete variation (in
the number of cycles) of the computation and communication
delays. With this modular approach, the functionality of the
system only depends on the functionality of its components
and not on their timing characteristics.

The motivation for latency-insensitive design comes from
the difficulties with timing and communication in nanoscale
technologies. The number of cycles required to transmit data
from a sender to a receiver is governed by the distance
between them, and often cannot be accurately known until
the chip layout is generated late in the design process. Tra-
ditional design approaches require fixing the communication
latencies up front, and these are difficult to amend when
layout information finally becomes available. Elastic circuits
offer a solution to this problem. In addition, their modularity
promises novel methods for microarchitectural design that
can use variable-latency components and tolerate static and
dynamic changes in communication latencies, while—unlike
asynchronous circuits—still employing standard synchronous
design tools and methods.

Cortadella et al. [4] present a simple elastic protocol, called
SELF (Synchronous Elastic Flow) and describe methods for
efficient implementation of elastic systems and for conversion
of regular synchronous designs into elastic form. Inspired by
the original work on latency-insensitive design [2],SELF also
differs from it in ways that render the theory developed in [2]
hardly applicable.

In this paper we give theoretical foundations ofSELF: a
novel and arguably more practicable definition of elasticity,
and the basic compositionality results. For space reasons, the

3267

...

...
...1253

2014
3267+e

123 5

2014

...

...
...+(a)

(b)

Fig. 1. (a) Conventional synchronous adder, (b) Synchronous elastic adder.

proofs are omitted, but are available in the technical report
[7].

A. Overview

Figure 1(a) depicts the timing behavior of a conventional
synchronous adder that reads input and produces output data
at every cycle (boxes represent cycles). In this adder, thei-th
output value is produced at thei-th cycle. Figure 1(b) depicts
a related behavior of an elastic adder—a synchronous circuit
too—in which data transfer occurs in some cycles and not in
others. We refer to the transferred data items astokensand we
say that idle cycles containbubbles.

Put succinctly, elasticization decouples cycle count from
token count. In a conventional synchronous circuit, thei-th
token of a wire is transmitted at thei-th cycle, whereas in
a synchronous elastic circuit thei-th token is transmitted at
some cyclek ≥ i.

Turning a conventional synchronous adder into a syn-
chronous elastic adder requires a communication discipline
that differentiates idle from non-idle cycles (bubbles from
tokens). InSELF, this is implemented by a pair of single-
bit control wires:Valid and Stop. Every input or output wire
Z in a synchronous component is associated to achannelin
the elastic version of the same component. The channel is a
triple of wires〈Z, validZ , stopZ〉, with Z carrying the data and
the other two wires implementing the control bits, as shown
in Figure 2(b). A token is transferred on this channel when
validZ ∧¬stopZ : the sender sends valid data and the receiver
is ready to accept it; see Figure 4. Additional constraints that
guarantee correct elastic behavior are given in Section III.
There we define precisely the class of elastic circuits and what
it means for a circuitAe to be an elastization of a given circuit
A. In particular, our definition implies liveness:Ae produces
infinite streams of tokens if its environment produces infinite
streams of tokens at the input channels and is ready to accept
infinite streams at the output channels.

SupposeN is a network of standard (non-elastic) compo-
nents, as in Figure 2(a). Suppose we then take elasticizations of

C

B

D C

e

e

A

(b)

B
e

D
e

(a)

data

valid
channel

=

A bu
ff

er

stop

Fig. 2. A synchronous network (a) and its elastic counterpart (b).

these standard components and join their channels accordingly,
as in Figure 2(b), ignoring the buffer. Will the resulting
networkN e be an elasticization ofN? Will it be elastic at all?
These fundamental questions are answered by Theorem 4 of
Section IV, which is the main result of the paper. The answers
are “yes”, provided a certain graph∆e(N e) associated with
N e is acyclic. This graph captures the information about paths
inside elastic systems that contain no tokens—analogous to
combinational paths in ordinary systems. Importantly,∆e(N e)
can be constructed using only local information (the “sequen-
tiality interfaces”) of the individual elastic components.

Since elastic networks tolerate any variability in the latency
of the components, empty FIFO buffers can be inserted in
any channel, as shown in Figure 2(b), without changing the
functional behavior of the network. This practically important
fact is proved as a consequence of Theorem 4.

Synchronous circuits are modeled in this paper as stream
transformers, calledmachines. This well-known technique (see
[8] and references therein) appears to be quite underdeveloped.
Our rather lengthy preliminary Section II elaborates the nec-
essary theory of networks of machines, culminating with a
surprisingly novel combinational loop theorem (Theorem 1).

Figure 3 illustrates Theorem 1 and, by analogy, Theorem 4
as well. It relies on the formalization of the notion of combina-
tional dependence at the level of input-output wire pairs. Each
input-output pair of a machine is eithersequentialor not, and
the set of sequential pairs provides a machine’s “sequentiality
interface”. When several machines are put together into a
network N , their sequentiality interfaces define the graph
∆(N), the acyclicity of which is a test for the network to
be a legitimate machine itself.

Elasticizations of ordinary circuits are not uniquely defined.
On the other hand, for every elastic machineA there is a
unique standard machine, denotedAᵀ, that corresponds to it.
We do not discuss any specific elasticization procedures in this
paper, but state our results in the form that only involves elastic
machines and their unique standard counterparts. This makes
the results applicable to multiple elasticization procedures.

B. Related Work

Carloni et al. [2] pioneered a theory of latency-insensitive
circuits based on their notion ofpatient processes. Patient
processes are defined at a high level of abstraction that models
communication on a channel only by “token or bubble”, leav-
ing implementation protocol(s) unspecified. In the companion
paper [3], Carloni et al. give an incomplete description of
an implementation protocol. Assuming our recovery of that
protocol (let us call itLID) is accurate, its transfer condition is

1

3 4

2
A

5 6
8

B

7

10
C

9

11 12
D

1

3 4

2
A

5 6
8

B

7

10
C

9

11 12
D

A

AA

B

B

D

DC

10−11

3 6

8−94−7

2−5

12−1
A

Fig. 3. Four machines (left) put into a networkN (middle), and the network’s
dependency graph∆(N) (right). The nodes of∆(N) are wires; internal
wires get two labels. The arcs arenon-sequentialinput-output wire pairs of
component circuits. Dotted arcs indicate that (1,2) and (7,10) are sequential
pairs forA andC resp.; they are not part of∆(N) so ∆(N) is acyclic.

more complex than that ofSELF (Figure 4) and consequently
LID requires significantly more complex implementation. For
example, conversion of a regular design intoLID form needs
a wrapper or registers around every module, increasing the la-
tency of each module’s computation by two cycles—a penalty
that is not required in theSELF elasticization. There might
also be practical challenges in interfacing aLID system with
an existing non-LID module, requiring the latter to generate
stop signals with complex semantics.

cycle 0 1 2 3 4 5 6 7 8 9 . . .

dataZ ∗ A B B B C ∗ ∗ D D . . .

validZ 0 1 1 1 1 1 0 0 1 1 . . .

stopZ 0 0 1 1 0 0 0 1 1 0 . . .

SELF @ t @ @ t t @ @ @ t . . .

LID @ t t @ t t @ @ @ t . . .

Fig. 4. Comparing theSELF andLID protocols. The bottom rows show the
states of the channelZ, differentiating between bubbles (@) and tokens (t).
When¬validZ , the value at the data wire is irrelevant (labelled∗ in cycles
0, 6 and 7). The receiver can issue astopZ even when the sender does not
send valid data (cycle 7). In the cycles 3, 4, and 9, the sender persistently
maintains the same valid data as in the previous cycle. InSELF, data transfer
takes place in cycles 1,4,5,9, so the transferred sequence isABCD In
LID, the same sequence of values on the channel wires signifies transfer of a
different sequence of data:ABBCD . . . This is because a token is transferred
on theLID channel whenvalidZ ∧ ¬(stopZ ∧ pre(stopZ)), wherepre
stands for the value during the previous cycle. (The first occurrence of the
stop requeststopZ = 1 means “perhaps you will need to stop next cycle”
and the data itemB sent through the channel during cycle 2 is assumed to
be successfully transmitted to the receiver.)

We emphasize that the limitations ofLID implementations
are not inherent to the concept of patient processes. Regarding
latency properties, they do not seem to be more limited than
elastic systems. Still, it turns out that patient processes are not
general enough to model elastic systems as we define them
in Section III. This we prove in Section V where patient
processes and elastic systems are compared as alternative
formalizations of latency-insensitive circuits.

Suhaib et al. [12] revisited and generalized Carloni’s elasti-
cization procedure, validating its correctness by a simulation
method based on model checking.

Lee et al. [9] studycausality interfaces(pairwise input-
output dependencies) and are “interested in existence and
uniqueness of the behavior of feedback composition”, but do
not go as far as deriving a combinational loop theorem.

In their work on design of interlock pipelines [6], Jacobson
et al. use a protocol equivalent toSELF, without explicitly

2

specifying it.
Manohar and Martin discuss “slack elasticity” of asyn-

chronous implementations in [10]. Their slack elasticity con-
ditions relate to the structure of choices in the asynchronous
specification. Unlike [10], in the current paper we deal with
synchronous systems and we take a black box view of their
control—no information about the control flow (and hence on
the structure of choices) is ever used. Instead the connectivity
information corresponding to the system data-flow is used for
elasticization. Conservatively ignoring control flow may lead
to a performance penalty, but simplifies the translation to an
elastic system.

II. C IRCUITS AS STREAM FUNCTIONS

In this section we introducemachinesas a mathematical
abstraction ofcircuits without combinational cycles. For sim-
plicity, this abstraction implicitly assumes that all sequential
elements inside the circuit areinitialized. Extending to par-
tially initialized systems appears to be trivial. While there is a
large body of work studying circuits or equivalent objects with
good (e.g. constructive [1]) combinational cyclesand their
composition (e.g. [5]), we deliberately restrict consideration
to the fully acyclic objects, since neither logic synthesis nor
timing analysis can properly treat circuits with combinational
cycles.

Most of the effort in this section goes into establishing
modularity conditions guaranteeing that a system obtained as a
network of machines (the feedback construction in particular)
is a machine itself.

A. Streams

A stream overA is an infinite sequence whose elements
belong to the setA. The first element of a streama is referred
to by a[0], the second bya[1], etc. For example, the equation
a[i] = 3i+ 1 describes the stream(1, 4, 7, . . .).

The set of all streams will be denotedA∞. Occasionally
we will need to consider finite sequences too; the set of all,
finite or infinite, sequences overA is denotedAω.

We will write a ∼k b to indicate that the streamsa and
b have a common prefix of lengthk. The equivalence rela-
tions ∼0,∼1,∼2, . . . are progressively finer and have trivial
intersection. Thus, to prove two sequencesa andb are equal,
it suffices to showa ∼k b holds for everyk. Note also that
a ∼0 b holds for everya andb.

We will use the equivalence relations∼k to express prop-
erties of systems and machines viewed as multivariate stream
functions. All these properties will be derived from the fol-
lowing two basic properties of single-variable stream functions
f : A∞ → B∞.

causality: ∀a, b ∈ A∞. ∀k ≥ 0. a ∼k b⇒ f(a) ∼k f(b)
contraction:∀a, b ∈ A∞. ∀k ≥ 0. a ∼k b⇒ f(a) ∼k+1 f(b)

Informally, f is causal if (for everya) the firstk elements of
f(a) are determined by the firstk elements ofa, and f is
contractive if the firstk elements off(a) are determined by
the firstk − 1 elements ofa.

Lemma 1: If f : A∞ → A∞ is contractive, then it has a
unique fixpoint.

Remark.One can define thedistanced(a, b) between se-
quencesa and b to be 1/2k, where k is the length of the
largest common prefix ofa andb. This gives the setsA∞ and
Aω the structure of complete metric spaces and Lemma 1 is an
instance of Banach Fixed Point Theorem. See the review paper
[8] for more details and references about the metric semantics
of systems and [13] for “diadic arithmetic of circuits”. We
choose not to use the metric space terminology in this paper
since all “metric reasoning” we need can be as easily done
with equivalence relations∼k instead. See [11] for principles
of reasoning with such “converging equivalence relations” in
more general contexts.

B. Systems

SupposeW is a set of typedwires; all we know about
an individual wirew is a set type(w) associated to it. A
W -behavior is a functionσ that associates a streamσ.w ∈
type(w)∞ to each wirew ∈ W . The set of allW -behaviors
will be denotedJW K. Slightly abusing the notation, we will
also writeJwK for the settype(w)∞. Notice that the equiva-
lence relations∼k extend naturally from streams to behaviors:

σ ∼k σ
′ iff ∀w ∈W. σ.w ∼k σ

′.w

Notice also that aW -behaviorσ can be seen as a single
stream(σ[0], σ[1], . . .) of W -states, where a state is an as-
signment of a value intype(w) to each wirew.

Definition 1: A W -systemis a subset ofJW K.
Example.A circuit that at each clock cycle receives an

integer as input and returns the sum of all previously received
inputs is described by theW -systemS, whereW consists
of two wires u, v of type Z, and S consists of all stream
pairs (a, b) ∈ Z∞ × Z∞ such thatb[0] = 0 and b[n] =
a[0]+· · ·+a[n−1] for n > 0. Each stream pair(a, b) represents
a behaviorσ such thatσ.u = a andσ.v = b.

We will use wires as typed variables in formulas meant to
describe system properties. The formulas are built using ordi-
nary mathematical and logical notation, enhanced with tempo-
ral operatorsnext, always, andeventually, denoted respectively
by ()+,G,F. As an illustration, the systemS in the example
above is characterized by the propertyv = 0∧G (v+ = v+u).
Also, one hasS |= F G (u > 0) ⇒ F G (v > 1000), where|=
is used to denote that a formula is true of a system.

C. Operations on Systems

If W ′ ⊆ W , there is an obvious projection mapσ 7→
σ ↓W ′ : JW K → JW ′K. These projections are all one needs
for the definition of the following two basic operations on
systems.

Definition 2: (a) If S is a W -system andW ′ ⊆ W , then
hiding W ′ in S produces a(W − W ′)-systemhideW ′(S)
defined by

τ ∈ hideW ′(S) iff ∃σ ∈ S. τ = σ ↓ (W −W ′).

3

(b) The compositionof aW1-systemS1 and aW2-systemS2

is a (W1 ∪W2)-systemS1 t S2 defined by

σ ∈ S1 t S2 iff σ ↓W1 ∈ S1 ∧ σ ↓W2 ∈ S2.

If W andW ′ are disjoint wire sets,σ ∈ JW K, and τ ∈
JW ′K, then there is a unique behaviorϑ ∈ JW ∪W ′K such that
σ = ϑ ↓W andτ = ϑ ↓W ′. This “product” of behaviors will
be written asϑ = σ ∗ τ . (If W is the empty set, thenJW K has
one element—a “trivial behavior” that is also a multiplicative
unit for the product operation∗.) We will also use the notation
[u 7→ a, v 7→ b, . . .] for the {u, v, . . .}-behaviorσ such that
σ.u = a, σ.v = b, etc.

Hiding and composition suffice to define complex networks
of systems. To model identification of wires, we use simple
connection systems: by definition, Conn(u, v) is the {u, v}-
system consisting of all behaviorsσ such thatσ.u = σ.v.

Now if S1, . . . ,Sm are given systems andu1, . . . , un,
v1, . . . , vn are some of their wires, the network obtained
from these systems by identifying each wireui with the
corresponding wirevi (of equal type) is the system

〈S1, . . . ,Sm |u1 = v1, . . . , un = vn〉

defined ashide{u1,...,un,v1,...,vn}(S), where

S = S1 t · · · t Sm t Conn(u1, v1) t · · · t Conn(un, vn).

The simplest case (m = n = 1) of networks is the construction

〈S |u = v〉 = hide{u,v}(S t Conn(u, v)),

used for afeedbackdefinition in Section II-E. A behaviorσ
belongs to〈S |u = v〉 if and only if σ ∗ [u 7→ a, v 7→ a] ∈ S
for somea ∈ JuK.

D. Machines

SupposeI andO are disjoint sets of wires, calledinputs
andoutputs, correspondingly. By definition, an(I,O)-system
is just an(I ∪ O)-system. Consider the following properties
of an (I,O)-systemS.

deterministic:

∀ω, ω′ ∈ S. ω ↓ I = ω′ ↓ I ⇒ ω ↓O = ω′ ↓O
functional:

∀σ ∈ JIK.∃!τ ∈ JOK. σ ∗ τ ∈ S
causal:

∀ω, ω′ ∈ S.∀k ≥ 0. ω ↓ I ∼k ω
′ ↓ I ⇒ ω ↓O ∼k ω

′ ↓O

Clearly, functionality implies determinism. Conversely, a
deterministic system is functional if and only if it accepts
all inputs. Note also that causality implies determinism: if
ω ↓ I = ω′ ↓ I, then ω ↓ I ∼k ω′ ↓ I holds for everyk, so
ω ↓O ∼k ω

′ ↓O holds for everyk too, soω ↓O = ω′ ↓O.
Definition 3: An (I,O)-machineis an(I,O)-system that is

both functional and causal.
A functional systemS uniquely determines and is deter-

mined by the functionF : JIK → JOK such thatF (σ) = τ

holds if and only ifσ ∗ τ ∈ S. The causality condition for
suchS can be also written as follows:

∀σ, σ′ ∈ JIK.∀k ≥ 0. σ ∼k σ
′ ⇒ F (σ) ∼k F (σ′).

The system in the example in Section II-B is a machine if
we regardu as an input wire andv as an output wire. The
same is true of the systemConn(u, v): its associated function
F is the identity function.

E. Feedback on Machines

We will use the termfeedbackfor the system〈S |u = v〉
as mentioned in Section II-C whenS is a machine and the
wires u and v of the same type are an input and output of
S respectively. Our concern now is to understand under what
conditions the feedback produces a machine.

To fix the notation, assumeS is an (I,O)-machine given
by F : JIK → JOK, with wiresu ∈ I, v ∈ O of the same type
A. By the note at the end of Section II-C, we have that for
everyσ ∈ JI − {u}K andτ ∈ JO − {v}K,

σ ∗ τ ∈ 〈S |u = v〉

if and only if

∃a ∈ A∞. F (σ ∗ [u 7→ a]) = τ ∗ [v 7→ a]),

so 〈S |u = v〉 is functional when the functionFσ
uv : A∞ →

A∞ defined byFσ
uv(a) = F (σ ∗ [u 7→ a]).v has a unique

fixpoint. By Lemma 1, this is guaranteed ifFσ
uv is contractive.

The following definition introduces the key concept of
sequentiality that formalizes the intutive notion that there is
no combinational dependence of a given output wire on a
given input wire. Sequentiality of the pair(u, v) easily implies
contractivity ofFσ

uv for all σ.
Definition 4: The pair(u, v) is sequentialfor S if for every

σ, σ′ ∈ JIK and everyk ≥ 0

∧ σ.u ∼k−1 σ
′.u

∧ ∀x ∈ I − {u}. (σ.x ∼k σ
′.x)

⇒ F (σ).v ∼k F (σ′).v

Lemma 2 (Feedback):If (u, v) is a sequential input-output
pair for a machineS, then the feedback system〈S |u = v〉 is
a machine too.

Example.Consider the systemS with I = {u, v}, O =
{w, z}, specified by equations

w = u⊕ ((0)#v) z = v ⊕ v,

where all wires have typeZ, the symbol⊕ denotes the
componentwise sum of streams, and# denotes concatenation.
Sincez does not depend onu, the pair(u, z) is sequential.
The pair (v, w) is also sequential since to compute a prefix
of w it suffices to know (a prefix of the same size ofu and)
a prefix of smaller size ofv. The remaining two input-output
pairs (u,w) and (v, z) are not sequential.

To find the machine〈S | v = w〉, we need to solve the
equationv = u⊕((0)#v) for v. For eachu = (a0, a1, a2, . . .),
the equation has a unique solutionv = û = (a0, a0 +a1, a0 +
a1+a2, . . .). Substituting the solution intoz = v⊕v, we obtain

4

a description of〈S | v = w〉 by a single equation that relates its
input and output:z = û⊕ û. The other feedback〈S |u = z〉 is
easier to calculate; it is given by equationw = v⊕v⊕((0)#v).

F. Networks of Machines and the Combinational Loop Theo-
rem

Consider a networkN = 〈S1, . . . ,Sm |u1 = v1, . . . , un =
vn〉, whereS1, . . . ,Sm are machines with disjoint wire sets
and the pairs(u1, v1),. . . ,(un, vn) involve n distinct input
wiresui andn distinct output wiresvi. (There is no assump-
tion thatui, vi belong to the same machineSj .) Our goal is to
understand under what conditions the systemN is a machine.

Note thatN = 〈S |u1 = v2, . . . , un = vn〉, whereS =
S1 t · · · t Sm. It is easy to check that an input-output pair
(u, v) of S is sequential if either (1)(u, v) is sequential for
someSi, or (2) u and v belong to different machines. Thus,
the information about sequentiality of input-output pairs of the
“parallel composition” machineS is readily available from the
sequentiality information about the component machinesSi,
and our problem boils down to determining when a multiple
feedback operation performed on a single machine results in
a system that is itself a machine.

Simultaneous feedback specified by a set of two or more
input-output pairs of a machine does not necessarily produce
a machine even if all pairs involved are sequential. Indeed,
in the example in Section II-E, we had a systemS with
two sequential pairs(u, z) and (v, w), but (u, z) ceases to
be sequential for〈S | v = w〉. Indeed, ifz andu are related
by z = û⊕ û, then knowing a prefix of lengthk of z requires
knowing the prefix of the same length ofu; a shorter one
would not suffice.

To ensure that a multiple feedback construction produces a
machine, one needs to show that, in addition to the wire pairs
to be identified, sufficiently many other input-output pairs are
also sequential. A precise formulation for adouble feedback
is given by a version of the Bekić Lemma: for the system
〈S |u = w, v = z〉 to be a machine, it suffices thatthree
pairs of wires be sequential—(u,w), (v, z), and one of(u, z),
(v, w). This non-trivial auxiliary result is needed for the proof
of Theorem 1 below, and is a special case of it.

Given an(I,O)-machineS, let its dependency graph∆(S)
have the vertex setI ∪ O and directed edges that go fromu
to v for each pair(u, v) ∈ I × O that is not sequential. For
a network systemN = 〈S1, . . . ,Sm |u1 = v1, . . . , un = vn〉,
its graph∆(N) is then defined as the direct sum of graphs
∆(S1), . . . ,∆(Sm) with each vertexui (1 ≤ i ≤ n) identified
with the corresponding vertexvi (Figure 3).

Theorem 1 (Combinational Loop Theorem):The network
systemN is a machine if the graph∆(N) is acyclic.

III. E LASTIC MACHINES

In this section we give the definition of elastic machines.
Its four parts—input-output structure, persistence conditions,
liveness conditions, and the transfer determinism condition—
are covered by Definitions 5-8 below.

A. Input-output Structure, Channels, and Transfer

We assume that the set of wires is partitioned intodata,
valid, and stop wires, so that for each data wireX there
exist associated wiresvalidX and stopX of boolean type. (In
actual circuit implementations,validX andstopX need not be
physical wires; it suffices that they be appropriately encoded.)

Definition 5: Let I,O be disjoint sets of data wires. An
[I,O]-system is an (I ′, O′)-machine, whereI ′ = I ∪
{validX |X ∈ I} ∪ {stopY |Y ∈ O} and O′ = O ∪
{validY |Y ∈ O} ∪ {stopX |X ∈ I}.

The triples 〈X, validX , stopX〉 (for X ∈ I) and
〈Y, validY , stopY 〉 (for Y ∈ O) are to be thought of aselastic
input and output channelsof the system.

Let transferZ be a shorthand forvalidZ ∧ ¬stopZ and say
that transfer alongZ occurs in a states if s |= transferZ .
Given a behaviorσ = (σ[0], σ[1], σ[2], . . .) of an[I,O]-system
and Z ∈ I ∪ O, let σZ be the sequence (perhaps finite!)
obtained fromσ.Z = (σ[0].Z, σ[1].Z, σ[2].Z, . . .) by deleting
all entriesσ[i].Z such that transfer alongZ does not occur
in σ[i]. The transfer behaviorσᵀ associated withσ is then
defined byσᵀ.Z = σZ . If all sequencesσZ are infinite, then
σᵀ is an(I ∪O)-behavior; in general, however, we only have
σZ ∈ type(Z)ω.

For each wireZ of an [I,O]-system S we introduce
an auxiliary transfer counter variabletctZ of type Z. The
counters serve for expressing system properties related to
transfer. By definition,tctZ is equal to the number of states
that precede the current state and in which transfer alongZ
has occurred. That is, for every behaviorσ of S, we have
σ.tctZ = (t0, t1, . . .), where tk is the number of indicesi
such thati < k and transfer alongZ occurs inσ[i]. Note that
the sequenceσ.tctZ is non-decreasing and begins witht0 = 0.

The notationmin tctS , for any subsetS of I ∪ O will be
used to denote the smallest of the numberstctZ , whereZ ∈ S.

B. Definition of Elasticity

An elastic component, when ready to communicate over
an output channel must remain ready until the transfer takes
place.

Definition 6: The persistence conditionsfor an [I,O]-
systemS are given by

S |= G (validY ∧ stopY ⇒ (validY)+ ∧ Y + = Y) (1)

for everyY ∈ O.
The conjunctY + = Y can be removed from (1) without

affecting the definition of elastic machines (it follows from
other conditions). The most useful consequence of persistence
is the “handshake lemma”:

S |= GF validY ∧ GF¬stopY ⇒ GF transferY

Liveness of an elastic component is expressed in terms of to-
ken count: if all input channels have seenk transfers and there
is an output channel that has seen less, then the communication
on output channels with the minimum amount of transfer must
be eventually offered. The following definition formalizes this,

5

b

a

b

a

b

a

e
d
c

e
d
c

e
d
c2

1 1
0
1 2

1

2

2

1
1
1

1
1
1

Fig. 5. Liveness: Only the hungriest channels (shaded) are being served.
The numbers indicate the current token count at each channel.

together with a similar commitment to eventual readiness on
input channels. (See also Figure 5.)

Definition 7: The liveness conditionsfor an [I,O]-system
are given by

S |=G (min tctO = tctY ∧min tctI > tctY ⇒ F validY)(2)

S |=G (min tctI∪O = tctX ⇒ F¬stopX) (3)

for everyY ∈ O and everyX ∈ I.
In practice, elastic components will satisfy simpler (but

stronger) liveness properties; e.g. removemin tctO ≥ tctY
from (2) and replacemin tctI∪O ≥ tctX with min tctO ≥
tctX in (3). However, a composition of such components,
while satisfying (2) and (3), may not satify the stronger
versions of these conditions.

Consider single-channel[I,O]-systems satisfying the per-
sistence and liveness conditions: anelastic consumeris a
[{Z}, ∅]-systemC satisfying (4) below; similarly, anelastic
producer is a [∅, {Z}]-systemP satisfying (5) and (6).

C |= GF¬stopZ (4)

P |= G (validZ ∧ stopZ ⇒ (validZ)+) (5)

P |= GF validZ (6)

Let CZ be the{Z, validZ , stopZ}-system characterized by
condition (4)—the largest (in the sense of behavior inclusion)
of the systems satisfying this condition. Similarly, letPZ be
the {Z, validZ , stopZ}-system characterized by properties (5)
and (6). Finally, definethe [I,O]-elastic environmentto be the
system

EnvI,O =
⊔

X∈I PX t
⊔

Y ∈O CY .

Note thatEnvI,O is only a system; it is not functional and so
is not a machine.

When a system satisfying the persistence and liveness con-
ditions (1-3) is coupled with a matching elastic environment,
the transfer on all data wires never comes to a stall:

Lemma 3 (Liveness):If S satisfies (1-3), then for every
behaviorω of S t EnvI,O, all the component sequences of
the transfer behaviorωᵀ are infinite.
As an immediate consequence of Liveness Lemma, ifS
satisfies (1-3), then

Sᵀ = {ωᵀ |ω ∈ S t EnvI,O}

is a well-defined(I,O)-system.
Definition 8: An [I,O]-systemS is an [I,O]-elastic ma-

chine if it satisfies the properties (1-3) and the associated
systemSᵀ is deterministic.

The liveness conditions (2,3) are visibly related to causality
at the transfer level:k transfers on the input channels imply

k transfers on the output channels in the cooperating envi-
ronment. Thus, it is not surprising (even though the proof is
not obvious) that the determinism postulated in Definition 8
suffices to derive the causality ofSᵀ:

Theorem 2:If S is an[I,O]-elastic machine, thenSᵀ is an
(I,O)-machine.

In the situation of Definition 8, we say thatS is an ela-
sticizationof Sᵀ and thatSᵀ is the transfer machineof S.

IV. ELASTIC NETWORKS

An elastic networkN is given by a set of elastic machines
S1, . . . ,Sm with no shared wires, together with a set of chan-
nel pairs(X1, Y1), . . . , (Xn, Yn), where theXi aren distinct
input channels and theYi aren distinct output channels. As
a network of standard machines, the elastic networkN is
defined by

N = 〈S1, . . . ,Sm |Xi = Yi, validXi
= validYi

, AAAAAAi

stopXi
= stopYi

(1 ≤ i ≤ n)〉

for which we will use the shorter notation

N = 〈〈S1, . . . ,Sm []X1 = Y1, . . . , Xn = Yn〉〉.

We will define a graph that encodes the sequentiality infor-
mation about the networkN and prove in Theorem 4 that
acyclicity of that graph implies thatN is an elastic machine
and thatN ᵀ = 〈Sᵀ

1 , . . . ,Sᵀ
m |X1 = Y1, . . . , Xn = Yn〉.

A. Elastic Feedback

Elastic feedbackis a simple case of elastic network:

〈〈S []P = Q〉〉 = 〈S |P = Q, validP = validQ, stopP = stopQ〉.

Definition 9: SupposeS is an elastic machine. An input-
output channel pair(P,Q) will be calledsequentialfor S if

S |= G

(
∧ min tctI∪O = tctQ
∧ min tctI−{P} > tctQ

⇒ F validQ

)
. (7)

Condition (7) is a strengthening of the liveness condition
(2) for channelQ. It expresses a degree of independence of
the output channelQ from the input channelP ; e.g., the first
token atQ need not wait for the arrival of the first token
at P . This independence can be achieved in the system by
storing some tokens inside, between these two channels. Note
that (7) does not guarantee that connecting channelsP andQ
would not introduce ordinary combinational cycles. Therefore
the acyclicity condition in the following theorem is required
to ensure (by Theorem 1) that the elastic feedback, viewed as
an ordinary network, is a machine.

Theorem 3:Let S be an elastic machine andF the elastic
feedback system〈〈S []P = Q〉〉. If the channel pair(P,Q) is
sequential forS, then: (a) the wire pair(P,Q) is sequential for
Sᵀ. If, in addition,∆(F) is acyclic, then: (b)F is an elastic
machine, and (c)Fᵀ = 〈Sᵀ |P = Q〉.

6

B. Main Theorems

Sequentiality of two channel pairs(P,Q), (P ′, Q) of an
elastic machine does not imply their “simultaneous sequen-
tiality”

S |= G

(
∧ min tctI∪O = tctQ
∧ min tctI−{P,P ′} > tctQ

⇒ F validQ

)
.

This deviates from the situation with ordinary machines, where
the analogous property holds and is instrumental in the proof
of Combinational Loop Theorem.

To justify multiple feedback on elastic machines, we have
thus to postulate that simultaneous sequentiality is true where
required. Specifically, we demand that elastic machines come
with simultaneous sequentiality information: IfS is an[I,O]-
elastic machine, then for everyY ∈ O a setδ(Y) ⊆ I is given
so that

S |= G

(
∧ min tctI∪O = tctY
∧ min tctI−δ(Y) > tctY

⇒ F validY

)
. (8)

Note that ifP ∈ δ(Q), then the pair(P,Q) is sequential, but
the converse is not implied. A functionδ : O → 2I with the
property (8) will be called asequentiality interfacefor S.

For an [I,O]-elastic machineS with a sequentiality inter-
face δ, we define∆e(S, δ) to be the graph with the vertex
set I ∪ O and directed edges(X,Y) whereX /∈ δ(Y). By
Theorem 3(a),∆e(S, δ) contains∆(Sᵀ) as a subgraph.

Given an elastic networkN = 〈〈S1, . . . ,Sm []X1 =
Y1, . . . , Xn = Yn〉〉, where eachSi comes equipped with a
sequentiality interfaceδi, its graph∆e(N) is by definition the
direct sum of graphs∆e(S1, δ1), . . . ,∆e(Sm, δm) with each
vertexXi (1 ≤ i ≤ n) identified with the corresponding vertex
Yi.

Theorem 4:If the graphs∆(N) and∆e(N) are acyclic,
then the network systemN is an elastic machine, the cor-
responding non-elastic system̄N = 〈Sᵀ

1 , . . . ,Sᵀ
m |X1 =

Y1, . . . , Xn = Yn〉 is a machine, andN ᵀ = N̄ .
As in Theorem 3, acyclicity of∆(N) is needed to ensure

(by Theorem 1) thatN defines a machine. Elasticization
procedures (e.g. [4]) will typically produce elastic components
with enough sequential input-output wire pairs, so that∆(N)
will be acyclic as soon as∆e(N) is acyclic.

Note, however, that cycles in∆e(N) need not correspond
to combinational cycles inN seen as an ordinary network,
since empty buffers with sequential elements cutting the
combinational feedbacks may be inserted intoN . Even though
non-combinational in the ordinary sense, these cycles contain
no tokens and therefore no progress along them can be made.

Theorem 4 impies that insertion of empty elastic buffers
does not affect the basic functionality of an elastic network,
as illustrated in Figure 2(b).

Definition 10: An empty elastic bufferis an elastic machine
S such thatSᵀ = Conn(X,Y) for someX,Y .

Theorem 5 (Buffer Insertion Theorem):SupposeB is an
empty elastic buffer with channelsX,Y . Let N =
〈〈S1, . . . ,Sm []X1 = Y1, . . . , Xn = Yn〉〉 and M =
〈〈B,S1, . . . ,Sm []X = Y1, X1 = Y,X2 = Y2, . . . , Xn = Yn〉〉.

If ∆(N),∆(M), and∆e(N) are acyclic, thenM is an elastic
machine, andMᵀ = N ᵀ.

The precise relationship between graphs∆(M) and∆(N)
can be easily described. In practice they are at the same time
acyclic or not, as a consequence of sequentiality of sufficiently
many input-output wire pairs ofB.

V. ELASTIC VS. PATIENT SYSTEMS

Elastic machines andpatient processesof [2] provide two
formalizations of the intuitive concept of latency-insensitive
circuits. In this section we address their connections and differ-
ences. We begin with an overview of [2], using a minimalistic
approach and terminology that differs from the original. We
believe, however, that Definition 11 below matches the original
definion accurately in most important aspects.

A. Patient Systems

The notationA∗ is for the set of finite sequences overA. A
finitary W -system, by definition, is a set of behaviorsσ such
that σ.w is a finite sequence for everyw ∈W .

A stalling streamover A is a stream overA ∪ {@}. We
will refer to @ as thebubbleand to elements ofA as tokens.
We will consider only stalling streams that contain finitely
many tokens. Ifa is such a stream, leta ∈ A∗ denote the
sequence overA obtained by dropping all bubbles froma.
Clearly,a is determined bya and the sequence∂(a) ∈ N∗ of
lengths of bubble sequences between consecutive tokens ofa.
For example, if

a = (@,@, 7,@, 4, 5,@,@,@, 8, . . .) (9)

we havea = (7, 4, 5, 8, . . .) and ∂(a) = (2, 1, 0, 3, . . .). Two
stalling streamsa, b are latency equivalent, written a $ b,
whena = b. Note thata $ a.

By definition, a stalling W -systemis a set of behaviors
σ such that for everyw ∈ W , σ.w is a stalling stream over
type(w). Latency equivalence extends toW -behaviors andW -
systems:σ $ τ iff σ.w $ τ.w holds for everyw ∈W ; S $ S ′
iff for every σ ∈ S (σ ∈ S ′) there existsτ ∈ S ′ (τ ∈ S) such
that σ $ τ .

A stalling W -systemS determines a standard finitaryW -
systemSᵀ = {σ | σ ∈ S}, whereσ is given byσ.w = σ.w
(for all w ∈W). Clearly,Sᵀ $ S.

Stalling thek-th token ofa by d steps produces a latency
equivalent stream that will be denotedstall(a, k, d). Omitting
the easy definition, we give an example: ifa is as in (9), then

stall(a, 1, 3) = (@,@, 7,@,@,@,@, 4, 5,@,@,@, 8, . . .)

Definition 11: Let ≺ be a well-founded order1 on W and
let D > 0. A patientW -system(relative to≺ andD) is a

1Introduction of a well-founded ordering of wires is motivated in [2] with
the purpose of modeling combinational dependencies, but such dependencies
in patient systems are not discussed in any detail. Moreover, the ordering of
wires is implicitly assumed to betotal in [2], which is somewhat unnatural.
For instance, when constructing a patient adder with inputsu, v and output
w, one has two ordering choices:u ≺1 v ≺1 w andv ≺2 u ≺2 w. It is not
clear that a patient adder in the≺1-sense will be patient in the≺2-sense too.

7

stalling systemP such that for everyσ ∈ P, everyu ∈ W ,
and everyk ≥ 0 there existsσ′ ∈ P such that

(Pat-1) σ′.u = stall(σ.u, k, 1)
and for everyv 6= u there existsdv ≤ D such that

(Pat-2) σ′.v =
{

stall(σ.v, k, dv) if u ≺ v
stall(σ.v, k + 1, dv) otherwise

The main results of [2] can now be summarized:
1) a theorem saying that the composition of patient systems

(with the sameW , ≺, andD) is a patient system;
2) the definition and analysis ofpatient buffers, i.e. patient

systemsB such thatBᵀ = Connfin(u, v)—the finitary
connection system;

3) a general construction that, for a given finitary system
M without combinational dependencies (model of a
Moore machine), produces a patient systemP such that
P $M.

B. Comparison

The formalization given by patient systems is at a higher
level of abstraction. While elastic machines deal explicitly with
handshaking signals between communicating systems, patient
systems communicate purely in the token/bubble language.

Given an elastic (as defined in Section III)[I,O]-systemE ,
the corresponding stalling(I ∪ O)-systemE@ is obtained by
projecting the finite-transfer behaviors ofE to data wires and
replacing data items on each wire with@ at all cycles where
transfer along that wire does not occur. Precisely, letEF be
the subset ofE consisting of all behaviorsω such thatωᵀ.Z
is finite for all channelsZ.2 Then, givenω ∈ EF, we define a
stalling (I ∪O)-behaviorω@ by

(ω@.Z)[i] =
{

(ω.Z)[i] if (ω.validZ)[i] ∧ ¬(ω.stopZ)[i]
@ otherwise

and finally we define the stalling systemE@ as the set of all
such behaviorsω@. Clearly, the system(E@)ᵀ is the finitary
version of the standard machineEᵀ.

Now we can address some questions pertinent to the com-
parison of patient processes vs. elastic machines.
Are patient processes more general?The answer is “no”
because there exist elastic machinesE such thatE@ is not
patient. To see this, consider an elastic machineE that starts
offering new valid outputs on channelu only on even cycles.
(The existence of such elastic machines is obvious.) Observe
that σ.u = (@, 7, 9, . . .) is possible for some behaviorσ of
E@ (token 7, even though transmitted on cycle 1 was first
offered on cycle 0). Thenstall(σ.u, 0, 1) = (@,@, 7, 9, . . .)
must also be part of a behavior ofE@, by condition (Pat-1)
of Definition 11. This implies that token 9 is first offered on
cycle 3, contrary to our assumption.

The above example can be viewed as an indication that
the condition (Pat-1) is too restrictive. It would be interesting
to see if an appropriate modification of (Pat-1) results in a
definition of patient processes that captures elastic machines.

2One can prove thatE is the set of all limits of behaviors ofEF and soE
is determined byEF.

Are elastic machines more general?The answer is an easy
“no” since, for example, the set of all possible stallingW -
behaviors is a patient system in the sense of Definition 11.
However, if one adds to Definition 11 a reasonable require-
ment that a patient system be a machine, the answer is not
immediately clear.
Which formalization is easier to use? Without offering a
definitive answer, we would argue that verifying that a low-
level design (RTL, say) implements an elastic machine would
be easier than verifying that it implements a patient system.
The bottom line is that the conditions for a system to be
an elastic machine are expressible as temporal properties of
suitably constructed infinite-state models. This is not obvious
for the determinism condition forSᵀ in Definition 8, but
can be done by replacing determinism with causality and
introducing auxiliary variables for sequences of transferred
values over channels. Even though (e.g., because of infinite
counters involved) these conditions are not directly checkable
by the existing model checking technology, there are palpable
opportunities to find manageable stronger conditions that taken
together imply elasticity (e.g., postulating a limit on the token
count differences between channels eliminates the need for
infinite counters). On the other hand, the definition of a patient
system, being of the form “for every behaviorσ, there exists
a behaviorσ′ such that . . . ” appears to us to be intrinsically
more complex. Our only positive conclusion, however, is that
the mechanical checking of either of the definitions is an open
problem deserving further study.

VI. CONCLUSION

We have presented a theory of elastic machines that gives an
easy-to-check condition for the compositional theorem of the
form “an elasticization of a network of ordinary components
is equivalent to the network of components’ elasticizations”.
Verification of a particular implementation is reduced to prov-
ing that conditions of Definition 8 are satisfied for all elastic
components used, and that the graph∆e(N e) is acyclic for
every networkN to which the elasticization is applied. While
the definition of the graphs∆e may appear complex because
of the sequentiality interfaces involved, it should be noted that
the elasticization procedures, e.g. [4], are reasonably expected
to completely preserve sequentiality: a channelP belongs to
δ(Q) if the wire-pair(P,Q) is sequential in the original non-
elastic machine. This ensures∆e(N e) = ∆(N) and so testing
for sequentiality is done at the level of ordinary networks.

Future work will be focused on proving correctness of
particular elasticization methods, on techniques for mechanical
verification of elasticity, and on extending the theory to more
advanced protocols.

Acknowledgments:Luca Carloni clarified some details of [2].
Ken McMillan pointed out several inaccuracies in a previous
version of the paper and further clarified [2] for us. Gerard
Berry, Ching-Tsun Chou, John Harrison, and the anonymous
reviewers provided useful remarks. We are grateful for all the
help we received.

8

REFERENCES

[1] G. Berry. The Constructive Semantics of Pure Esterel. Draft book,
available at http://www.esterel.org, version 3, July 1999.

[2] L. P. Carloni, K. L. McMillan, and A. L. Sangiovanni-Vincentelli.
Theory of latency-insensitive design.IEEE Transactions on Computer-
Aided Design of Integrated Circuits, 20(9):1059–1076, September 2001.

[3] L. P. Carloni and A. L. Sangiovanni-Vincentelli. Coping with latency in
SoC design.IEEE Micro, Special Issue on Systems on Chip, 22(5):12,
October 2002.

[4] J. Cortadella, M. Kishinevsky, and B. Grundmann. Synthesis of syn-
chronous elastic architectures. InProc. Digital Automation Conference
(DAC), July 2006.

[5] S. A. Edwards and E. A. Lee. The semantics and execution of a
synchronous block-diagram language.Sci. Comput. Program., 48(1):21–
42, 2003.

[6] H. M. Jacobson et al. Synchronous interlocked pipelines. InProc. Int.
Symp. on Advanced Research in Asynchronous Circuits and Systems,
pages 3–12, 2002.

[7] S. Krstíc, J. Cortadella, M. Kishinevsky, and J. O’Leary. Syn-
chronous elastic networks. Available atwww.lsi.upc.edu/
˜jordicf/gavina/BIB/reports/fmcad06 ext.pdf , 2006.

[8] E. A. Lee and A. Sangiovanni-Vincentelli. A framework for comparing
models of computation.IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, 17(12):1217–1229, 1998.

[9] E. A. Lee, H. Zheng, and Y. Zhou. Causality interfaces
and compositional causality analysis. Invited paper in
Foundations of Interface Technologies (FIT 2005), available at
http://ptolemy.eecs.berkeley.edu/publications .

[10] R. Manohar and A. J. Martin. Slack elasticity in concurrent computing.
In Proc. 4th Int. Conf. on the Mathematics of Program Construction,
volume 1422 ofLecture Notes in Computer Science, pages 272–285,
1998.

[11] J. Matthews. Recursive function definition over coinductive types. In
TPHOLs ’99: Proc. the 12th Int. Conf. on Theorem Proving in Higher
Order Logics, pages 73–90, London, UK, 1999. Springer-Verlag.

[12] S. Suhaib, D. Berner, D. Mathaikutty, J.-P. Talpin, and S. Shukla.
Presentation and formal verification of a family of protocols for latency
insensitive design. Technical Report 2005-02, FERMAT, Virginia Tech,
2005.

[13] J. Vuillemin. On circuits and numbers.IEEE Transactions on Comput-
ers, 43(8):868–879, 1994.

9

APPENDIX

PROOFS ANDAUXILIARY RESULTS

Contents
xxx A Proof of Lemma 1
xxx B Proof of Lemma 2
xxx C Bekíc Lemma
xxx D Proof of Theorem 1
xxx E Handshake Lemma
xxx F Proof of Lemma 3
xxx G Preliminaries for Proof of Theorem 2
xxx H Proof of Theorem 2
xxx I Example: Strong Liveness Not Preserved
xxx by Feedback
xxx J Proof of Theorem 3 (a)
xxx K Proof of Theorem 3 (b)
xxx L Proof of Theorem 3 (c)
xxx M Sequentiality Interface for Elastic Feedback
xxx N Proof of Theorem 4
xxx O Proof of Theorem 5

A. Proof of Lemma 1

Remark.Lemma 1 and Lemma 4 below are well-known
facts. We give their proofs for the sake of completeness.

Supposea andb are both fixpoints off . By the contraction
property,a ∼k b⇒ a ∼k+1 b holds for everyk. Sincea ∼0 b,
it follows thata ∼k b holds for everyk, soa = b. This proves
the uniqueness part.

Supposep is any finite sequence of lengthk and letSp be
the set of all streamsa ∈ A∞ such thatp is a prefix ofa. It
follows from the contraction condition that all streams in the
set{f(a) | a ∈ Sp} have a common prefix of lengthk+1. We
will denote that common prefix byp†. Thus, for everyp ∈ A∗,
there existsp† ∈ A∗ such that|p†| = 1 + |p| and

∀a ∈ A∞. p � a⇒ p† � f(a), (10)

where� stands for the prefix relation. This implies

∀p, q ∈ A∗. p � q ⇒ p† � q†. (11)

Consider now the sequenceε, ε†, ε††, . . ., whereε is the empty
sequence. Sinceε � ε†, by repeated use of (11), we obtain
ε � ε† � ε†† � · · · . Since the sequences in this chain have
increasing length, there is a unique “limit”a ∈ A∞ satisfying
ε � ε† � ε†† � · · · � a. By (10), the relationsε � a, ε† �
a, ε†† � a, . . . imply ε† � f(a), ε†† � f(a), ε††† � f(a), . . .
Thus,ε � ε† � ε†† � · · · � f(a), which forcesa = f(a) (by
the uniqueness of the “limit” stream), proving the existence of
the fixpoint. This finishes the proof of Lemma 1.

The following fact will be used in the proof of Lemma 2.
To state it, we need a definition: A sequencean of elements of
A∞ (i.e. a sequence of streams overA) convergesto a ∈ A∞

if every prefix ofa is the prefix of all but finitely many of the
an. More formally,

lim an = a iff ∀n ≥ 0.∃k ≥ 0.∀m ≥ 0. m ≥ k ⇒ am ∼n a.

Lemma 4: If f : A∞ −→ A∞ is contractive and̄a is an
arbitrary element ofA∞ then the sequence of iterationsfn(ā)
(n ≥ 0) converges to the fixpoint off .

Proof. By Lemma 1,f has a unique fixpointa. We prove
that fm(ā) ∼n a holds for everym,n such thatm ≥ n.
(This clearly implies the lemma.) Our statement is obvious
for n = 0. Arguing by induction onn, for n ≥ 1 we have
fm−1(ā) ∼n−1 a (induction hypothesis), so applyingf to
both sides and using the contraction property andf(a) = a
we derivefm(ā) ∼n a.

B. Proof of Lemma 2

Sequentiality of the pair(u, v) implies that for everyσ ∈
JI − {u}K there exists a unique fixpointaσ of Fσ

uv. (We
continue with the notation from the paragraph preceding the
lemma.) Consequently,F (σ∗[u 7→ a]) has the formτ∗[v 7→ a]
for a uniqueτ ∈ JO−{v}K. LetG : JI−{u}K −→ JO−{v}K be
the function that associatesτ with σ in the way just described.
It is easy to verify (by definition ofG) that

σ ∗ τ ∈ 〈S |u = v〉 iff G(σ) = τ

holds for everyσ ∈ JI − {u}K, τ ∈ JO − {v}K, so it only
remains to prove thatG satisfies the causality condition. That
in turn is a simple consequence of the causality ofF and the
causality of the parametrized fixpoint operator that associates
aσ with σ. By the latter we mean thataσ ∼k aσ′ always
follows from σ ∼k σ′. This we state now and prove as a
separate lemma.

Lemma 5: If (u, v) is a sequential pair forF , σ ∼k σ
′, and

aσ andaσ′ are the fixpoints ofFσ
uv andFσ′

uv, thenaσ ∼k aσ′ .

Proof. Let A = JuK = JvK and letH : JI − {u}K× A −→ A
be given byH(σ, a) = F (σ ∗ [u 7→ a]).v. Our sequentiality
assumption reads as follows:

∀σ, σ′, a, a′. σ ∼k+1 σ
′∧a ∼k a

′ ⇒ H(σ, a) ∼k+1 H(σ′, a′)
(12)

Starting with an arbitrarȳa ∈ A, define

an =
{
ā if n = 0
H(σ, an−1) if n ≥ 1

a′n =
{
ā if n = 0
H(σ′, a′n−1) if n ≥ 1

Sinceaσ is the fixpoint of the functionFσ
uv : a 7→ H(σ, a),

we have (by Lemma 4) thataσ = lim an, and similarlyaσ′ =
lim a′n. By induction, it follows from (12) thataσ ∼n an and
aσ′ ∼n a

′
n hold for everyn. Also by induction, it follows from

(12) thatan ∼n a
′
n holds for alln ≤ k. Therefore,aσ ∼k aσ′ ,

as required.

C. Bekíc Lemma

[Bibliographical information. Bekić Lemma asserts that
the fixpoint of a two-variable function can be computed by
iterating the fixpoint operators along the two coordinates. It
holds in various contexts. The original result is in: Hans Bekić,
Definable operations in general algebras, and the theory of

10

automata and flowcharts, LNCS, vol. 177, pp. 3–35, Springer
1984.]

We begin with a generalization of the concept of sequen-
tiality.

Definition 12: Let S be an (I,O)-machine given by
F : JIK → JOK and letA ⊆ I, v ∈ O. The pair (A, v) is
sequentialfor S if for every k ≥ 0, everyσ, σ′ ∈ JI − AK,
and everyτ, τ ′ ∈ JAK one has

σ ∼k+1 σ ∧ τ ∼k τ
′ ⇒ F (σ ∗ τ).v ∼k+1 F (σ′ ∗ τ ′).v.

Lemma 6:(A, v) is sequential if and only if(u, v) is
sequential for everyu ∈ A.

Proof. The “only if” part is trivial. We prove the “if” part for
the case whenA has two elements. The general case is only
notationally more difficult.

Thus, supposeA = {x, y} and both(x, v) and (y, v) are
sequential. We need to prove

σ ∼k+1 σ ∧ a ∼k a
′ ∧ b ∼k b

′

⇒ F (σ ∗ [x 7→ a] ∗ [y 7→ b]).v
∼k+1 F (σ′ ∗ [x 7→ a′] ∗ [y 7→ b′]).v.

For the proof, just observe that bothF (σ∗[x 7→ a]∗[y 7→ b]).v
andF (σ′ ∗ [x 7→ a′] ∗ [y 7→ b′]).v are equivalent in the sense
of ∼k+1 with F (σ′ ∗ [x 7→ a′] ∗ [y 7→ b]).v as a consequence
of the assumed sequentiality of(x, v) and (y, v).

Lemma 7 (Bekić Lemma):Suppose(u,w) and (v, z) are
sequential pairs for a machineS and suppose that the four
wires involved are distinct. If one of the pairs(u, z), (v, w)
is also sequential, then(v, z) is sequential for〈S |u = w〉,
(u,w) is sequential for〈S | v = z〉, and (therefore) the system
〈S |u = w, v = z〉 is a machine.

Proof. In view of Lemma 6, it suffices to prove that(v, z) is
sequential for〈S |u = w〉 under either of the following two
assumptions:
(i) (u,w) and ({u, v}, z) are sequential;

(ii) (v, z) and ({u, v}, w) are sequential.
Thus, our goal is to prove

σ ∼k+1 σ
′ ∧ b ∼k b

′

⇒ G(σ ∗ [v 7→ b]).z ∼k+1 G(σ′ ∗ [v 7→ b′]).z,

where G is the function corresponding to the system
〈S |u = w〉. We can restate this in a more convenient form

σ ∼k+1 σ
′ ∧ b ∼k b

′

∧ G(σ ∗ [v 7→ b]) = τ ∗ [z 7→ c]
∧ G(σ′ ∗ [v 7→ b′]) = τ ∗ [z 7→ c′]
⇒ c ∼k+1 c

′

By definition ofG, this can be further restated as

σ ∼k+1 σ
′ ∧ b ∼k b

′ ∧ a ∼k a
′

∧ F (σ ∗ [v 7→ b] ∗ [u 7→ a]) = τ ∗ [z 7→ c] ∗ [w 7→ a]
∧ F (σ′ ∗ [v 7→ b′] ∗ [u 7→ a′]) = τ ∗ [z 7→ c′] ∗ [w 7→ a′]
⇒ c ∼k+1 c

′ (13)

(a) (b) (c)

1 2

3 4 5

1 2

3 4 5

uv

1 2

3 4 5

u v=

Fig. 6. (a)Γ, (b) Γ[u=v], (c) Γuv

where a and a′ are the unique fixpoints ofFσ
uw and Fσ′

uw

respectively. We also addeda ∼k a
′ to the assumptions; this is

justified becausea ∼k a
′ follows from the other assumptions

by Lemma 5.
We finish the proof now by deriving (13) from any of our

two assumptions (i),(ii). If (i) holds, then (13) immediately
follows. If (ii) holds, we first derivea ∼k+1 a′ from the
assumptions of (13) and sequentiality of({u, v}, w). Then
with a ∼k+1 a′ in place ofa ∼k a′ in the assumptions of
(13), the conclusionc ∼k+1 c′ follows by sequentiality of
(v, z).

D. Proof of Theorem 1

The notationΓ[u1=v1,...,un=vn] will stand for the quotient
graph obtained by identifying the verticesui and vi (i =
1, . . . , n) in Γ.

For a given directed graphΓ , a source vertex3 u of Γ , and
a sink vertexv of Γ , let Γuv denote the graph obtained from
Γ by:

(1) removingu, v and all edges incident with them;
(2) adding an edge(w, z) for all w, z such that(w, u) and

(v, z) are edges ofΓ .

(See Figure 6.)
Definition 13: If Γ and Γ′ are directed graphs such that

every vertex ofΓ is a vertex ofΓ′ and every two vertices
joined by an edge inΓ are joined by a path inΓ′, then we
say thatΓ is immersedin Γ′ and writeΓ ↪→ Γ′.

In the main text, we used the same notation∆ for de-
pendency graphs of machines and systems. This is slightly
ambiguous, however. For example, ifS is an(I,O)-machine,
thenN = 〈S | u = v〉 is a system, but at the same time an
(I−{u}, O−{v})-machine. WhenN is regarded as a network,
then ∆(N) is the quotient graph of∆(S)[u=v]. WhenN is
regarded as a machine, the vertex set of∆(N) is I∪O−{u, v}.
For the proof, we need to disambiguate this notation.

Definition 14: The dependency graphD(S) of an (I,O)-
machine S has I ∪ O as the vertex set, and{(u, v) ∈
I × O | (u, v) is not sequential forS} as its set of directed
edges. Thedependency graph∆(N) of a networkN =
〈S1, . . . ,Sm |u1 = v1, . . . , un = vn〉 is (D(S1) t · · · t
D(Sm))[u1=v1,...,un=vn].

Definition 15: We write N ∼ N ′ when the networksN
andN ′ describe the same system.

To appreciate Definition 15, note that networks are a form
of system descriptions, so that, strictly speaking, a network

3A source vertex is a vertex with no incoming edges; a sink vertex is a
vertex with no outgoing edges.

11

is not a system, although it uniquely determines one. The
equivalenceN ∼ N ′ implies D(N) = D(N ′) but it does
not imply ∆(N) = ∆(N ′).

Lemma 8: If u, v are vertices ofΓ and if Γ ↪→ Γ′, then
Γ[u=v] ↪→ Γ′[u=v].

Proof. Trivial.
Lemma 9: If u is a source ofΓ andv is a sink ofΓ, then

Γuv ↪→ Γ[u=v].

Proof. Easy. (Use Figure 6.)
Lemma 10:If (u, v) is sequential forS, thenD(〈S |u =

v〉) ↪→ D(S)[u=v].

Proof. The proof follows fromD(〈S |u = v〉) ↪→ D(S)uv

andD(S)uv ↪→ D(S)[u=v]. The second of these relations is an
instance of Lemma 9. For the first, we prove thatD(〈S |u =
v〉) is a subgraph ofD(S)uv. Notice that these graphs have
a common set of verticesI ∪ O − {u, v}. Suppose(w, z)
is an edge ofD(〈S |u = v〉), i.e., (w, z) is not sequential in
〈S |u = v〉. By Bekić Lemma, this implies that either(w, z) is
not sequential inS or that both(w, v), (u, z) are not sequential
in S. In both cases, it follows that(w, z) is an edge inD(S)uv.

We strenghten now Theorem 1 as follows:

If N = 〈S1, . . . ,Sm |u1 = v1, . . . , un = vn〉 and ∆(N)
is acyclic, thenN is a machine andD(N) ↪→ ∆(N).

We prove this strengthened theorem by induction onn. The
casen = 0 amounts to the fact mentioned in the main text:
if S1, . . . ,Sm are machines with disjoint wire sets, thenS =
S1 t · · · t Sm is a machine and an input-output pair(u, v) is
sequential forS if either (1) (u, v) is sequential for someSi,
or (2) u andv belong to different machinesSi,Sj .

For the induction step, letN ′ = 〈S1, . . . ,Sm |u1 =
v1, . . . , un−1 = vn−1〉. By induction hypothesis,N ′ is a
machine, so we can writeN ∼ 〈N ′ |un = vn〉. Note that
∆(N) = ∆(N ′)[un=vn]. It follows from this and the induction
hypothesisD(N ′) ↪→ ∆(N ′) that D(N ′)[un=vn] ↪→ ∆(N).
This in turn, together with acyclicity of∆(N), implies that
(un, vn) is a sequential pair forN ′. Thus, by Lemma 2,N is
a machine. Finally,

D(N) = D(〈N ′ |un = vn〉)
↪→ D(N ′)[un=vn]

↪→ ∆(N ′)[un=vn]

= ∆(N),

finishing the proof. The first immersion is justified by
Lemma 10 and the second by induction hypothesis together
with Lemma 8.

E. Handshake Lemma

Persistence conditions (1) will be used through the follow-
ing easily derived consequence.

Lemma 11 (Handshake):If S satisfies (1), then, for every
Y ∈ O,

S |= GF validY ∧ GF¬stopY ⇒ GF transferY .

Proof. From (1) we obtain

S |= G (validY ∧ F¬stopY ⇒ F transferY),

which implies the lemma.

F. Proof of Lemma 3

Assuming the contrary, letω be a behavior ofS t EnvI,O

and letZ be a wire such that the transfer sequenceωᵀ.Z is
finite and of shortest length. This assumption impliesω |=
F Gmin tctI∪O ≥ tctZ . If Z ∈ I, then from (3) we getω |=
GF¬stopZ . We also haveω |= GF validZ , by (6). Since elastic
producers satisfy the persistence condition, Handshake Lemma
impliesω |= GF transferZ , which is a contradiction.

There remains the caseZ ∈ O, where we can also assume
that there are noX ∈ I with ωᵀ.X of the same length
as ωᵀ.Z. From this additional assumption we haveω |=
F G (min tctI > tctZ ∧ min tctO ≥ tctZ), so from (2) we
get ω |= GF validZ . A call to consumer liveness (4) and
then to Handshake Lemma yields the contradictory conclusion
ω |= GF transferZ , as in the previous case.

G. Preliminaries for Proof of Theorem 2

Define anelastick-produceras a systemP that satisfies the
producer persistence condition (5) and the following weakened
form of the producer liveness condition (6):

P |= G (tctZ < k ⇒ F validZ). (14)

Thus, ak-producer promises to cooperate in creation of at
leastk transfers.

Similarly, we weaken the definition of the systemsPZ (for
any wireZ) and definePk

Z as the system defined by conditions
(5) and (14). Then we define thek-environment(a system, but
not a machine)

Envk
I,O =

⊔
X∈I Pk

X t
⊔

Y ∈O CY .

The following is a finite-transfer version of Lemma 3,
proved in much the same way. Note that sinceEnvI,O ⊆
Envk

I,O for everyk, Lemma 12 actually implies Lemma 3.
Lemma 12:Let S be an[I,O]-system satisfying the condi-

tions (1-3). Then for every behaviorω ∈ S t Envk
I,O, all the

component streams of the transfer behaviorωᵀ have length at
leastk.

Proof. The proof of Lemma 3 applies almost verbatim. The
only change is that, arguing by contraction, we can now
assume that, in addition to being finite, the sequenceωᵀ.Z
has length< k. Consequently, the intermediate resultω |=
GF validZ is derived from (14), (6), andω |= tctZ < k.

We will also need two easy lemmas about standard (non-
elastic) machines.

Lemma 13:Recall that every network

N = 〈S1, . . . ,Sm |u1 = v1, . . . , un = vn〉

is the system obtained by hiding the wiresui and vi in the
corresponding system

N] = S1 t · · · t Sm t Conn(u1, v1) t · · · t Conn(un, vn).

12

and thatW] = W ∪ {u1, v1, . . . , un, vn} is the relationship
between the wire sets of these systems. Suppose that the graph
∆(N) acyclic. Then the mapσ 7→ σ ↓W : N] → N is a
bijection. In particular, ifW = ∅, thenN] has exactly one
behavior.

Proof. Consider the casen = 1. For this case, our lemma
says that whenS, u, v are as in Lemma 2, then for every
behaviorσ ∈ 〈S |u = v〉 there is a uniquea ∈ JuK such that
σ ∗ [u 7→ a] ∗ [v 7→ a] ∈ S. This is clear from considerations
in Section II-E, notably Lemma 2.

The general case follows by induction.
Lemma 14:SupposeC is a machine with all input-output

wire pairs sequential. Suppose also that in the networkN =
〈C, C′ |X1 = Y1, . . . , Xn = Yn〉 exactly one wire of each pair
(Xi, Yi) is a wire of C and the other is a wire ofC′. Then
∆(N) is acyclic.

Proof. By assumption, the graphD(C) has no edges. Thus,
∆(N) is the union of a bipartite graphD(C′) and a set of
vertices, and so is acyclic.

H. Proof of Theorem 2

We will prove thatSᵀ = {ωᵀ |ω ∈ S t EnvI,O} is causal
and accepts every input stream.

By assumption, the transfer determinism condition holds for
S:

∀ζ, ϑ ∈ S t EnvI,O. ζ
ᵀ.I = ϑᵀ.I ⇒ ζᵀ.O = ϑᵀ.O. (15)

Let us define apartial W -behavior(for any given setW of
wires) as a functionθ that associates to every wirew ∈W a
(finite or infinite) sequenceθ.w ∈ type(w)ω. Note that every
behavior is a partial behavior as well. If all sequencesθ.w
(w ∈ W) have lengthk, we will say thatθ is a partial W -
behavior of lengthk . We allow k = ∞ in this definition, so
that a partial behavior of length∞ is just a behavior.

Our main goal—the causality ofSᵀ—will be proved when
we have established the following equivalent property: For
every partialI-behaviorθ of finite length k, there exists a
partialO-behaviorχ of lengthk such that

∀ϑ ∈ S t EnvI,O. θ � ϑᵀ.I ⇒ χ � ϑᵀ.O. (16)

To prove this, we will need to put our systemS in “eager”
environments that are themselves machines, defined next. The
eager environments will let us defineχ as a function ofθ; see
(18) below. In the remainder of the proof, we will check that
the so obtainedχ satisfies (16).

For any wireZ and a (finite or infinite) sequenceα of
elements oftype(Z), let Pα

Z be the “eager producer” machine
that offers transfer of elements ofα in order, and if it succeeds
in transferring them all, then it stops offering further transfer.
As a system, it is characterized by the following properties:

Pα
Z |= G (tctZ = m ∧m < |α| ⇒ validZ ∧ Z = α[m])

Pα
Z |= G (tctZ ≥ |α| ⇒ ¬validZ ∧ Z = ArbZ)

where |α| denotes the length ofα and ArbZ is an arbitrary
element oftype(Z). Note that whenα is infinite the second

condition is vacuously true and the conjunctm < |α| can be
removed from the first condition.

Lemma 15:For every behaviorσ ∈ Pα
Z , the transfer se-

quenceσᵀ.Z is a prefix ofα.
Define also the “eager consumer” machineC◦Z (for any wire

Z), characterized by the property

C◦Z |= G¬stopZ .

For any partialI-behaviorθ, define the system

Sθ = StPθt
⊔

Y ∈O C◦Y , where Pθ =
⊔

X∈I Pθ.X
X . (17)

Lemma 16:Let θ be a partialI-behavior of lengthk. The
systemSθ has exactly one behaviorω and it satisfiesωᵀ.I =
θ. Moreover,|ωᵀ.Y | ≥ k for everyY ∈ O.

Proof. It is easy to check that for finite sequencesα one
has Pα

Z ⊆ P |α|
Z , while for infinite α one hasPα

Z ⊆ PZ .
Consequently, ifθ is a partialI-behavior of lengthk, we have
thatSθ is a subsystem ofS t Envk

I,O, where we assume that
S t Env∞I,O is just S t EnvI,O. By Lemma 12,|ωᵀ.Z| ≥ k
holds for all behaviorsω of Sθ and all channelsZ.

The eager producer and eager consumer machines have the
property that their outputs depend sequentially on all their
inputs. Note thatSθ is of the form N] (see Lemma 13)
for a networkN whose one component isS and all other
components are eager producers or consumers. Repeated appli-
cation of Lemma 14 proves∆(Sθ) is acyclic. Then Lemma 13
implies thatSθ has a unique behaviorω. Sinceω is also a
behavior ofPθ, we obtain from Lemma 15 that for every
input channelX the sequenceωᵀ.X is a prefix ofθ.X. Since
|ωᵀ.X| ≥ k, this impliesωᵀ.X = θ.X for everyX, which is
to say thatωᵀ.I = θ.

Lemma 16 implies immediately that for everyθ ∈ JIK there
existsω ∈ S such thatωᵀ.I = θ. Thus,Sᵀ accepts all inputs
and it remains to prove that it satisfies the causality property
(16). For this proof, we fix a partialI-behaviorθ of finite
lengthk and letω be as provided by Lemma 16. The lemma
also implies the existence of a numbern such thatω[n] |=
tctZ ≥ k for all channelsZ. Thus, there exist a partialO-
behaviorχ of lengthk such thatχ � ωᵀ.O and

∀ζ. ζ ∼n ω ⇒ χ � ζᵀ.O (18)

Suppose nowϑ ∈ S t EnvI,O satisfiesθ � ϑᵀ.I. (This
is the assumption from the causality property (16).) To finish
the proof, we need to verify thatχ � ϑᵀ.O. We will do it by
exhibiting a behaviorζ ∈ S t EnvI,O such that

ζᵀ.I = ϑᵀ.I and ζ ∼n ω. (19)

In view of (15) and (18), these two properties indeed imply
χ � ϑᵀ.O.

We proceed to define a behaviorζ satisfying (19). (The
definition will take more effort than the proof that it satisfies
(19).)

13

Consider the variationPα,k,n
Z of the producer machinePα

Z ,
given by

Pα,k,n
Z |=G (ct ≤ n ∧ tctZ = m ∧m < k ⇒ validZ ∧ Z = α[m])

Pα,k,n
Z |=G (ct ≤ n ∧ tctZ ≥ k ⇒ ¬validZ ∧ Z = ArbZ)

Pα,k,n
Z |=G (ct > n ∧ tctZ = m ⇒ validZ ∧ Z = α[m])

where the variablect denotes the position in the stream, i.e.,
for everyσ ∈ S, we setσ[n] |= ct = n. The numbersk, n are
arbitrary in this definition, although we will use the producers
just defined with the values fork andn as defined in previous
paragraphs. The sequenceα is arbitrary but infinite. Intuitively,
Pα,k,n

Z eagerly offers the firstk elements ofα for transfer
while ct ≤ n. If all k get transfered, then the machine waits
until ct > n and then eagerly offers the rest ofα for transfer.

It is easy to see thatPα,k,n
Z is a subsystem ofPZ and that

it is an elastic machine with its two outputs,dataZ , validZ

depending sequentially on its input,stopZ . Moreover, for
every behaviorσ of this machine, one hasσᵀ.Z � α. In
particular,σᵀ.Z = α for every behaviorσ such thatσᵀ is
infinite.

Define the system

Sϑ = S t Pϑ t
⊔

Y ∈O C◦Y , where Pϑ =
⊔

X∈I P
ϑᵀ.X,k,n
X .

Arguing as in the proof of Lemma 16, we obtain thatSϑ has
exactly one behaviorζ and that it satisfiesζᵀ.I = ϑᵀ.I.

Finally, to deduceζ ∼n ω, note thatPϑ and Pθ are
machines with identical behaviors “up toct = n”; that is,
for every behavior ofPϑ there is a∼n-equivalent behavior of
Pθ and vice versa. Therefore, the systemsSϑ andSθ must be
in the same relationship. Sinceζ, ω are the only behavors of
Sϑ, Sθ respectively, it follows thatζ ∼n ω.

I. Example: Strong Liveness Not Preserved by Feedback

The forward and backwardstrong liveness conditionsfor an
[I,O]-system are given by

S |= G (min tctI > tctY ⇒ F validY) (20)

S |= G (min tctO ≥ tctX ⇒ F¬stopX) (21)

for everyX ∈ I and for everyY ∈ O.
In practice, elastic components satisfy these strong liveness

conditions. However, a composition of such components, while
satisfying weaker liveness conditions (2) and (3), may not
satisfy the stronger versions (20) and (21). The fundamental
difference between the liveness and the strong liveness is as
follows: while the strong liveness promises progress onall
under-servedoutput (20) or input (21) channels, the liveness
only guarantees progress on theleast served, so to speak the
“hungriest”, channels.

Figure 7 shows an example demonstrating that feedback
does not preserve the strong forward liveness. Figure 7(a)
depicts an elastic machineS with a sequential channel pair
(b, e) during a cycle when channela has seen 2 transfers,
channeld - 0 transfers, and all other channels - 1 transfer
each. For machineS: min tctI = min tct{a,b} = 1 > tctd,

ca

b e

ca

b e
d d

2

1 1

0
1 2 1

0

(b)(a)

1

Fig. 7. Example demonstrating that feedback does not preserve the strong
forward liveness.

ca

b e

ca

b e

2

1 1

2 2 2

(b)(a)

0 d 0 d

1

Fig. 8. Example demonstrating that feedback does not preserve the strong
backward liveness.

hence (20) implies future progress ford: F validd. No progress
on c can be guaranteed, sincemin tct{a,b} = tctc.

To prove the strong forward liveness forF(S) = 〈〈S [] b =
e〉〉 shown in Figure 7(b) one needs to prove progress for output
channelsd and c, since forF(S) channelb is not an input
anymore andmin tctI′ = min tct{a} = 2 > tctc. Progress
on d follows immediately from progress ond in machine
S. Progress onc does not. However, if we can show that
the second transfer would eventually occur on the feedback
channel(b, e), it would imply progress onc. By the definition
of transfer and the Handshake Lemma 11 it is necessary
and sufficient to demonstrate thatF valide andF¬stopb hold.
The former holds due to the sequentiality of the input-output
channel pair(b, e). The latter does not hold since the strong
backward liveness condition forS cannot be applied until the
first transfer on the output channeld occurs. Hence (20) does
not hold for F(S). Note that (2) is satisfied since it only
requires progress on the output channeld.

Figure 8 shows an example demonstrating that feedback
does not preserve the strong backward liveness either. The
counter-example for the strong backward liveness is (almost)
symmetric to the forward case. Figure 8(a) depicts an elastic
machineS with a sequential channel pair(b, e) during a cycle
when channela has seen 2 transfers, channeld (an input
channel in this example) - 0 transfers, and all other channels
- 1 transfer each. For machineS:

min tctO = min tct{c,e} = 1 ≥ tctd = 0

hence (21) implies future progress for inputd: F¬stopd. No
progress ona can be guaranteed, sincemin tct{c,e} < tcta.

To prove the strong backward liveness forF(S) = 〈〈S [] b =
e〉〉 shown in Figure 8(b) one needs to prove progress for input
channelsd anda, since forF(S) channele is not an output
anymore and

min tctO′ = min tct{c} = 2 ≥ tcta.

Progress ond follows immediately from progress ond in
machineS. If we can show that the second transfer would
eventually occur on the feedback channel(b, e), it would imply

14

progress ona. By the definition of transfer and the Handshake
Lemma 11 it is necessary and sufficient to show thatF valide

and F¬stopb. The latter holds due to the strong backward
liveness (21) of the original machineS. The former, however,
does not hold since the sequentiality of channel(b, e) cannot
be applied until the first transfer on the input channeld occurs.
Hence (21) does not hold forF(S), while (3) holds since it
only requires progress on the input channeld.

J. Proof of Theorem 3(a)

This proof will use results and arguments from the proof
of Theorem 2 above. Let us begin with the appropriate
strengthening of Lemma 12.

Lemma 17:Let

Envk
I,O,P = Pk−1

P t
⊔

X∈I−P Pk
X t

⊔
Y ∈O CY

and letS be an[I,O]-system satisfying the conditions (1-3)
and (7). Then for every behaviorω ∈ S t Envk

I,O,P one has
|ωᵀ.Q| ≥ k.

Proof. Let ω ∈ StEnvk
I,O,P . Clearly,Envk

I,O,P ⊆ Envk−1
I,O , so

by Lemma 12,ω |= F G tctZ ≥ k−1 holds for allZ ∈ I ∪O.
Assume|ωᵀ.Q| < k, the contrary of what we are to prove.
Thus,

ω |= F G (min tctI∪O ≥ k − 1 ∧ tctQ = k − 1). (22)

We claim now thatω |= F G tctX ≥ k for every X ∈
I − P . To prove this claim, assume it is not true. Then we
haveω |= F G (min tctO ≥ k − 1 ∧ tctX = k − 1) for some
X ∈ I − P . Thus,ω |= F Gmin tctI∪O ≥ tctX and since
ω ∈ S, the liveness ofS implies ω |= GF¬stopX . On the
other hand, sinceω.{X, validX , stopX} ∈ Pk

X , from ω |=
F G tctX = k − 1 and (14) we can deriveω |= GF validX .
SincePk

X satisfies the persistence condition (1), Lemma 11
impliesω |= GF transferX , which contradicts our assumption
ω |= F G tctX = k − 1. This finishes the proof of the claim.

From (22), the claim above, and the elastic sequentiality
condition (7), we obtainω |= GF validQ. On the other hand,
we haveω |= GF¬stopQ sinceCQ is a component of our sys-
tem. Invoking Lemma 11 again, we obtainω |= GF transferQ,
which contradicts our starting assumption|ωᵀ.Q| < k and so
finishes the proof.

Suppose nowθ is a partialI-behavior with|θ.P | = k − 1
and|θ.X| = k for all X ∈ I−P . Define the systemSθ in the
eager environment by the same equation (17) used in the proof
of Theorem 2. In the same way that we derived Lemma 16
from Lemma 12, Lemma 14, and Lemma 13, we can now use
Lemma 17 in place of Lemma 12 and prove the following:
The systemSθ has a unique behaviorω, and that behavior
satisfies the propertiesωᵀ.I = θ and |ωᵀ.Q| ≥ k.

Let χ be the prefix of lengthk of ωᵀ.Q. For the proof that
the pair(P,Q) is sequential forSᵀ, it suffices to prove

∀ϑ ∈ S t EnvI,O. θ � ϑᵀ.I ⇒ χ � ϑᵀ.Q.

This can indeed be derived in the same manner we derived
the similar condition (16) in the proof of Theorem 2. For the

numbern we choose now any integer such thatω[n] |= tctQ =
k, and for anyϑ such thatθ � ϑᵀ.I, we define

Sϑ = S t Pϑ t
⊔

Y ∈O C◦Y ,

where
Pϑ = Pϑᵀ.P,k−1,n

P t
⊔

X∈I−P

Pϑᵀ.X,k,n
X .

The remaining details of the derivation ofχ � ϑᵀ.Q are now
pure repetition of what is done in the proof of Theorem 2 and
are therefore omitted.

K. Proof of Theorem 3(b)

We will prove here that〈〈S []P = Q〉〉 satisfies the per-
sistence and liveness conditions. The transfer determinism
(even functionality) property follows from part (c), proved in
Section L below.

Let us start with notation:

S ′ = 〈〈S []P = Q〉〉 I ′ = I − {P} O′ = O − {Q}

µZ = min tctI∪O ≥ tctZ µ′Z = min tctI′∪O′ ≥ tctZ

Recall that for every behaviorω′ of S ′ there exists a unique
behaviorω of S such that

ω.(I ′ ∪O′) = ω′ ω.P = ω.Q (23)

ω.validP = ω.validQ ω.stopP = ω.stopQ

Just from the observation that for eachZ ∈ I ′ ∪ O′

the stream triples (ω′.Z, ω′.validZ , ω
′.stopZ) and

(ω.Z, ω.validZ , ω.stopZ) are equal, it follows that S ′
satisfies the persistence conditions (1).

Turning to the liveness conditions, we first prove an auxil-
iary result.

Lemma 18:Let φn = min tctI′ > n∧min tctO′ ≥ n. Then
for everyn ≥ 0 and every behaviorω ∈ S as in (23), one has
ω |= G (φn ⇒ F tctP > n).
Proof. The proof is by induction onn. We can assume

ω |= G (φn ⇒ F tctP ≥ n). (24)

Indeed, this is trivially true forn = 0, and forn > 0 it follows
from the induction hypothesisω |= G (φn−1 ⇒ F tctP >
n− 1) and the obvious factω |= φn ⇒ φn−1.

Arguing by contradiction, we can assume

ω |= F (φn ∧ G tctP ≤ n),

which, in view of (24), can be sharpened into

ω |= F (φn ∧ G tctP = n).

Sinceω |= G (φn ⇒ Gφn) (by monotonicity oftctZ), this
implies

ω |= F G (φn ∧ tctP = n). (25)

Clearly,
ω |= G (φn ∧ tctP = n⇒ µP),

which with (25) givesω |= F GµP , which in turn, combined
with (3), gives

ω |= F GF¬stopP . (26)

15

Sinceω |= G (tctP = tctQ), we have

ω |= G (φn ∧ tctP = n⇒ µQ ∧min tctI′ > tctQ),

which with (25) givesω |= F G (µQ ∧ min tctI′ > tctQ),
which in turn, combined with (7) gives

ω |= F GF validQ. (27)

From (26) and (27), we deriveω |= (GF¬stopP) ∧
(GF validP). Then by Lemma 11, we haveω |= GF transferP ,
which implies ω |= F tctP > n, contradicting (25). This
finishes the proof of Lemma 18.

The liveness conditions forS ′ amount to the following, to
be proved for everyω as in (23).

ω |= G (µ′Y ∧min tctI′ > tctY ⇒ F validY) (28)

ω |= G (µ′X ⇒ F¬stopX) (29)

for everyX ∈ I ′ and everyY ∈ O′.
We prove the simpler property (29) first. Relying on the

backward liveness ofS (3), it suffices to check

ω |= G ((µ′X ⇒ F¬stopX) ∨ FµX),

which is equivalent to

ω |= G (µ′X ∧ G stopX ⇒ FµX).

It is easy to verify that

ω |= G (G stopX ⇒ ∃n. G tctX = n),

so it suffices to prove

ω |= G (µ′X ∧ G tctX = n⇒ FµX).

Sinceω |= G (µX ⇔ (µ′X ∧ tctP ≥ tctX)), our goal can be
restated as

ω |= G (µ′X ∧ G tctX = n⇒ F (µ′X ∧ tctP ≥ tctX))

and then, in view ofω |= G (µ′X ∧ G tctX = n ⇒ Gµ′X),
reduced to

ω |= G (µ′X ∧ G tctX = n⇒ F tctP ≥ n).

Sinceω |= G (µ′X ∧ tctX = n ⇒ φn−1), Lemma 18 finishes
the proof.

For the proof of (28), notice first that, in view of (2), it
suffices to prove

ω |= G ((µ′Y ∧ ψ ⇒ F validY) ∨ F (µY ∧ tctP > tctY ∧ ψ)),

whereψ = min tctI′ > tctY . This is equivalent to

ω |= G ((µ′Y ∧ ψ ∧G¬validY) ⇒ F (µY ∧ tctP > tctY ∧ ψ)).

Since
ω |= G (G¬validY ⇒ ∃n. G tctY = n),

it suffices to prove

ω |= G (µ′Y ∧ ψ ∧ G tctY = n⇒ F (µY ∧ tctP > tctY ∧ ψ)).

Sinceω |= G (µ′Y ∧ tctP > tctY ⇒ µY), we can restate this
goal as

ω |= G (G tctY = n⇒ µ′Y ∧ ψ ⇒ F (µ′Y ∧ ψ ∧ tctP > n)).

Now we useω |= G (G tctY = n ⇒ G (µ′Y ∧ ψ ⇔ φn)) to
further rewrite our goal as

ω |= G (G tctY = n⇒ φn ⇒ F (φn ∧ tctP > n)).

This finally follows from the already seenω |= G (φn ⇒ Gφn)
(true by monotonicity oftct) and Lemma 18.

L. Proof of Theorem 3(c)

We continue with the notationI ′, O′,S ′ from the previous
section.

We need to prove that for everyω′ ∈ S ′ t EnvI′,O′ there
exists ω ∈ S t EnvI,O such thatωᵀ.(I ′ ∪ O′) = ω′ᵀ and
ωᵀ.P = ωᵀ.Q. Indeed, we have already seen that, givenω′ ∈
S ′, there existsω ∈ S such that

ω.(I ′ ∪O′) = ω′ ω.P = ω.Q

ω.validP = ω.validQ ω.stopP = ω.stopQ

(see (23) above), so it only remains to prove thatω ∈ EnvI,O

holds for thisω.
By Part (b) of the theorem (proved in the previous section)

and Lemma 3 we know thatωᵀ.Z is infinite for everyZ ∈
I ′ ∪ O′. It follows then from Lemma 18 that the sequences
ωᵀ.P and ωᵀ.Q are (equal and) infinite. This implies that
ω.{P, validP , stopP } ∈ PP and ω.{Q, validQ, stopQ} ∈ CQ.
(The persistence condition in the definition ofPP is equivalent
to the persistence condition for the wireQ for ω and is satisfied
becauseω ∈ S andQ is an output ofS.) SinceEnvI′,O′ =
EnvI,O t PP t CQ andω′ ∈ EnvI′,O′ , we finally obtain the
desiredω ∈ EnvI,O.

M. Sequentiality Interface for Elastic Feedback

Definition 16: Given a functionδ : O → 2I and M ∈
I,N ∈ O, the functionδ[M=N] : O − {N} → 2I−{M} is
defined by

δ[M=N](Y) =
{
δ(Y)− {M} if M ∈ δ(Y)
δ(Y) ∩ δ(N) otherwise

The following formula is another characterization of
δ[M=N].

Lemma 19:For everyX ∈ I − {M} andY ∈ O − {N},

X /∈ δ[M=N](Y) iff X /∈ δ(Y) ∨ (X /∈ δ(N) ∧M /∈ δ(Y)).
Proof. Easy.

Lemma 20:Supposeδ : O → 2I andP,M ∈ I andQ,N ∈
O, where P 6= M and Q 6= N . Then (δ[M=N])[P=Q] =
(δ[P=Q])[M=N].

Proof. Directly check that for bothδ′ = (δ[M=N])[P=Q] and
δ′ = (δ[P=Q])[M=N] one hasX /∈ δ′(Y) if and only if

X Y ∨ (X N ∧M Y) ∨ (X Q ∧ P Y)
∨ (X N ∧M Q ∧ P Y)
∨ (X Q ∧ P N ∧M Y),

16

where, to avoid clutter, we used the notationX Y for
X /∈ δ(Y).

Lemma 21:If δ is a sequentiality interface for an elastic
machineS and if M ∈ δ(N), thenδ[M=N] is a sequentiality
interface for〈〈S []M = N〉〉.
Proof. Let us start again with notation:

S ′ = 〈〈S []M = N〉〉 δ′ = δ[M=N]

I ′ = I−{M} O′ = O−{N} µ′Z = min tctI′∪O′ ≥ tctZ

For everyQ ∈ O′ we need to prove

ω |= G (µ′Q ∧min tctI′−δ′(Q) > tctQ ⇒ F validQ),

whereω is a behavior ofS that corresponds to a behavior of
S ′, i.e.

ω.M = ω.N ω.validM = ω.validN ω.stopM = ω.stopN

Consider first the case whenM ∈ δ(Q). By definition of
δ′, we haveI ′ − δ′(Q) = I − δ(Q) and accordingly restate
our goal:

ω |= G (µ′Q ∧min tctI−δ(Q) > tctQ ⇒ F validQ).

With the shorthand notationψ = min tctI−δ(Q) > tctQ, let
us assume the contrary:

ω |= F (µ′Q ∧ ψ ∧ G¬validQ). (30)

Sinceω |= G (G¬validQ ⇒ ∃n. G tctQ = n), we have

ω |= F (µ′Q ∧ ψ ∧ G tctQ = n)

for somen, and therefore

ω |= F G (µ′Q ∧ ψ ∧ tctQ = n). (31)

Note now that

σ |= G (µ′Q ∧ tctQ = n⇒ φn−1),

whereφ is as in Lemma 18. Lemma 18 is true in the current
context, so we have

ω |= G (µ′Q ∧ ψ ∧ tctQ = n⇒ F tctM ≥ n). (32)

From (31) and (32), we derive

ω |= F G (µ′Q ∧ ψ ∧ tctQ = n ∧ tctM ≥ n).

This implies
ω |= F G (µQ ∧ ψ)

and then, in view of (8),

ω |= F G (µQ ∧ ψ ∧ F validQ),

which directly contradicts (30), finishing the first branch of
the proof.

Suppose nowM /∈ δ(Q). By definition ofδ′, we haveI ′−
δ′(Q) = I ′ − δ(Q) ∩ δ(N) and our goal is

ω |= G (µ′Q∧min tctI′−δ(Q)∩δ(N) > tctQ ⇒ F validQ). (33)

Assuming the contrary, we obtain, in a similar fashion as
before,

ω |= F G (θ ∧ tctQ = n ∧ ¬validQ).

for somen, where θ stands for the antecedent part of the
implication in (33). Again by Lemma 18, we have

ω |= G (θ ∧ tctQ = n⇒ F tctM ≥ n),

which, combined with the previous formula, implies

ω |= F G (θ ∧ tctQ = n ∧ ¬validQ ∧ F tctM ≥ n).

This further implies (by monotonicity oftctM)

ω |= F G (θ ∧ tctQ = n ∧ ¬validQ ∧ tctM ≥ n).

Now, it is clear that one of the following must hold:

ω |= F G (θ ∧ tctQ = n ∧ ¬validQ ∧ tctM > n), (34)

ω |= F G (θ ∧ tctQ = n ∧ ¬validQ ∧ tctM = n). (35)

We proceed to prove that both (34) and (35) lead to
contradiction.

Suppose (34) is true. Notice that

ω |= G (µ′Q∧tctM > n∧tctQ = n⇒ µQ∧min tctI−δ(Q) > tctQ),

so by combining with (8) we obtain

ω |= G (µ′Q ∧ tctM > n ∧ tctQ = n⇒ F validQ),

which (sinceµ′Q is a conjunct ofθ) contradicts (34).
Suppose (35) is true. Sinceω |= tctM = tctN , we have

ω |= G (tctM = tctQ ∧ µ′Q ⇒ µN)

. SinceM ∈ δ(N), we haveI − δ(N) ⊆ I ′ − δ(Q) ∩ δ(N).
With these observations, we derive

ω |= G (θ∧tctQ = tctM = n⇒ µN∧min tctI−δ(N) > tctN).

In view of (8), this implies

ω |= G (θ ∧ tctQ = tctM = n⇒ F validN). (36)

Sinceω |= tctM = tctN and sinceθ hasµN as one of the
conjuncts, by liveness ofS (3) we also get

ω |= G (θ ∧ tctQ = tctM = n⇒ F¬stopM). (37)

Sinceω |= validN = validM , from (36), (37), and (35) we get

ω |= F G (F validN ∧ F¬stopM)

By Lemma 11 (andω |= validM = validN), we obtainω |=
F G transferM . Thus,ω |= F G tctM > n, contradicting (35).

17

N. Proof of Theorem 4

In Section D, we disambiguated the use of the dependency
symbol∆ and now we do the same for∆e.

Definition 17: The dependency graphDe(S, δ) of an elas-
tic [I,O]-machineS with a sequentiality interfaceδ has the
vertex setI ∪ O and a directed edge(X,Y) for everyX,Y
such thatX /∈ δ(Y). The dependency graph∆e(N) of an
elastic networkN = 〈〈S1, . . . ,Sm []X1 = Y1, . . . , Xn = Yn〉〉
is (De(S1, δ1) t · · · tDe(Sm, δm))[X1=Y1,...,Xn=Yn].

Following the analogy with ordinary networks, we will write
N ∼ N ′ when two elastic network determine the same elastic
system.

Lemma 22:Let S = S1 t · · · t Sm, where eachSi is an
[Ii, Oi]-elastic machine with a sequentiality interfaceδi. Let
I =

⋃m
i=1 Ii andO =

⋃m
i=1Oi, and assume that these unions

are disjoint. Defineδ : O → 2I by δ(Y) = δi(Y) ∪
⋃

j 6=i Ij
for Y ∈ Oi. ThenS is an [I,O]-machine,δ is a sequentiality
interface for it, andDe(S, δ) is the direct sum of graphs
De(Si, δi).
Proof. Straightforward checking.

Lemma 23:Under the assumptions of Lemma 22,Sᵀ =
Sᵀ

1 t · · · t Sᵀ
m.

Proof. Straightforward checking.
Definition 18: Given an elastic network N =

〈〈S1, . . . ,Sm []X1 = Y1, . . . , Xn = Yn〉〉 of elastic machines
with disjoint inputs and outputs, letδ be as in Lemma 22,
and defineδN = δ[X1=Y1]···[Xn=Yn].

Remark.By Lemma 20, the order of then operations that
lead fromδ to δN is irrelevant.

Lemma 24:If δ is a sequentiality interface ofS andX /∈
δ(Y), thenDe(〈S |X = Y 〉, δ[X=Y]) ↪→ De(S, δ)[u=v].

Proof. (Mutatis mutandis, the proof is the same as that of
Lemma 10.) The lemma follows fromDe(〈S |X = Y 〉) ↪→
De(S)XY ↪→ De(S)[X=Y], where the second immersion is
an instance of Lemma 9. For the first immersion, we prove
thatDe(〈〈S []X = Y 〉〉) is actually a subgraph ofDe(S)XY .
Notice that these graphs have a common set of verticesI ∪
O − {X,Y }. By Lemma 19,

W /∈ δ[X=Y](Z) iff W /∈ δ(Z) ∨ (W /∈ δ(Y) ∧X /∈ δ(Z))

The left-hand side of this relation says that(W,Z) is an edge
of De(〈S |X = Y 〉, δ[X=Y]), while the right-hand side implies
that (W,Z) is an edge ofDe(S, δ)XY .

Starting the proof of Theorem 4, consider the following
claim.

If N = 〈〈S1, . . . ,Sm []X1 = Y1, . . . , Xn = Yn〉〉 and
both graphs∆(N), ∆e(N) are acyclic, thenN is an
elastic machine,δN is a sequential interface for it, and
De(N , δN) ↪→ ∆e(N).

We prove this claim by induction onn. The casen = 0
follows immediately from Lemma 22.

For the induction step, letN ′ = 〈〈S1, . . . ,Sm []X1 =
Y1, . . . , Xn−1 = Yn−1〉〉. Note that∆e(N) = ∆e(N ′)[Xn=Yn]

and δN = (δN ′)[Xn=Yn]. Since∆(N ′) has the acyclic graph
∆(N) as a quotient, it must be acyclic too. Similarly,∆e(N ′)
must be acyclic as well. By induction hypothesis,N ′ is an
elastic machine with a sequentility interfaceδN ′ , so we can
write N ∼ 〈〈N ′ []Xn = Yn〉〉.

We would like to use Theorem 3(b) to conclude thatN is
an elastic machine, but there are two conditions to check: (1)
(Xn, Yn) is a sequential channel pair for (the elastic system
determined by)N ′, and (2)∆(〈〈N ′ []Xn = Yn〉〉) is acyclic.

For (1), it suffices to prove thatXn ∈ δN ′(Yn). If this were
not true, there would be a path fromXn to Yn in De(N ′, δN ′).
By induction hypothesis, this graph is immersed in∆e(N ′)
so there would be a path fromXn to Yn in ∆e(N ′), so
∆e(N) = ∆e(N ′)[Xn=Yn] would not be acyclic, which it is.
This contradiction proves (1).

For (2), we have the derivation

∆(〈〈N ′ []Xn = Yn〉〉)
= D(N ′)[Xn=Yn,validXn=validYn ,stopXn

=stopYn
]

↪→ ∆(N ′)[Xn=Yn,validXn=validYn ,stopXn
=stopYn

]

= ∆(N),

where the immersion holds because the networkN ′ is a
machine (induction hypothesis) and we found in the proof of
Theorem 1 thatD(M) ↪→ ∆(M) holds for every machine
M.

We have now completed the proof thatN is an elastic
machine. To finish the induction step, we need to check that
δN is a sequentiality interface forN and thatDe(N , δN) ↪→
∆e(N). The first of these statements follows from Lemma 21
and the factXn ∈ δN ′(Yn) (proved above). For the second,
we have the following derivation:

De(N , δN) = De(〈N ′ |Xn = Yn〉, (δN ′)[Xn=Yn])
↪→ De(N ′, δN ′)[Xn=Yn]

↪→ ∆e(N ′)[Xn=Yn]

= ∆e(N),

The first immersion here is justified by Lemma 24 and the
second is justified by the induction hypothesis together with
Lemma 8.

We have finished the inductive proof of the claim that
generalizes part of Theorem 4. It remains to prove that if
N = 〈〈S1, . . . ,Sm []X1 = Y1, . . . , Xn = Yn〉〉 and both graphs
∆(N), ∆e(N) are acyclic, thenN̄ = 〈Sᵀ

1 , . . . ,Sᵀ
m |X1 =

Y1, . . . , Xn = Yn〉 is a machine, andN ᵀ = N̄ .
Observe that Theorem 3(a) impliesD(Sᵀ) ↪→ De(S, δ) for

every elastic machineS and a sequentiality interfaceδ for it.
As a consequence,

∆(N̄)
= (D(Sᵀ

1) t · · · tD(Sᵀ
m))[X1=Y1,...,Xn=Yn]

↪→ (De(S1, δ1) t · · · tDe(Sm, δm))[X1=Y1,...,Xn=Yn]

= ∆e(N)

Since∆e(N) is acyclic, it follows that∆(N̄) is acyclic too,
and then by Theorem 1 that̄N is a machine.

18

X1

Y1

Y

X

X1

Y1

X1

Y1

Fig. 9. From left to right: the graphs∆e(N ′), ∆e(N), and∆e(M). Shaded
areas show pairs of vertices that need to be identified. The arc fromX to Y
should be absent ifδ0(Y) = {X}.

Finally, the equalityN ᵀ = N̄ is proved by induction onn.
The casen = 0 is Lemma 23. For the induction step, we have

N ᵀ = (〈〈N ′ []Xn = Yn〉〉)ᵀ

= 〈(N ′)ᵀ |Xn = Yn〉
= 〈N̄ ′ |Xn = Yn〉
= N̄ ,

where N̄ ′ = 〈Sᵀ
1 , . . . ,Sᵀ

m |X1 = Y1, . . . , Xn−1 = Yn−1〉.
The second equality here follows from Theorem 3(b), and the
third follows by induction hypothesis.

O. Proof of Theorem 5

We begin with an easy lemma about ordinary machines.
Lemma 25:If S is a machine with a sequential pair

(X1, Y1) then
〈S |X1 = Y1〉 = 〈S t Conn(X,Y) |X = Y1, X1 = Y 〉.
Let N ′ = 〈〈S1, . . . ,Sm []X2 = Y2, . . . , Xn = Yn〉〉. We

have

∆e(N) = ∆e(N ′)[X1=Y1]

∆e(M) = (∆e(N ′) tDe(B, δ0))[X=Y1,X1=Y]

whereδ0 is a sequentiality interface forB, which must be given
either by δ0(Y) = {X} or δ0(Y) = ∅. A simple analysis
shows that the existence of a cycle in∆e(M) implies the
existence of a cycle in∆e(N) (Figure 9).

Theorem 4 now implies

N ᵀ = 〈(N ′)ᵀ |X1 = Y1〉
Mᵀ = 〈(N ′)ᵀ,Bᵀ |X = Y1, X1 = Y 〉

SinceBᵀ = Conn(X,Y), Lemma 25 completes the proof of
Theorem 5.

19

