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ABSTRACT
Speculation is a well-known technique for increasing parallelism of
the microprocessor pipelines and hence their performance. While
implementing speculation in modern design practice is error-prone
and mostly ad-hoc, this paper proposes a correct-by-construction
method for implementing speculation in Elastic Systems. The tech-
nique is based on applying provably correct transformations. The
benefits of speculation are illustrated with two examples in which
these transformations are systematically applied. The method pro-
posed in this paper is amenable for automation in a synthesis flow.

Categories and Subject Descriptors: B.5.2 [Register-transfer-
level implementation]: Design Aids.
General Terms: Design, Theory, Verification.
Keywords: Elastic designs, speculation, protocols, synthesis.

1. INTRODUCTION
Speculation is a well-known technique to increase the instruction

level parallelism in pipelined microprocessors. When the outcome
of an operation is unknown during some cycle, but is required to
perform another operation, two schemes can be considered for a
correct behavior: (1) stall the pipeline until the first operation has
completed, or (2) predict the outcome of the operation and continue
the computations without stalling the pipeline. In the second case,
the predicted result must be checked for correctness after the first
operation has completed and, in case of misprediction, the specu-
lated computations must be invalidated. If the predictions are suf-
ficiently accurate, speculation may potentially provide a tangible
performance improvement.

Elastic systems, either synchronous or asynchronous, are charac-
terized by their tolerance to the variability of communication and
computation latencies or delays [11, 4, 6]. This tolerance enables
the exploration of new micro-architectural trade-offs aimed at the
optimization for the average case rather that the worst case. Elastic
systems use distributed handshake controllers to control the flow of
data (tokens) along the datapath.

Recently, different schemes to handle early evaluation have
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been proposed [3, 9, 1, 5]. By relaxing the condition that requires
“all inputs to be valid”, certain operations can be initiated when
sufficient information is available to perform the computation. For
example, multiplexors only need the select signal and the selected
data to be valid. In these cases, the dispensable data must be ig-
nored when arriving at the computational block. Anti-token [5] can
be used to nullify the dispensable data.

Contribution. This paper presents a novel method to add spec-
ulation into elastic systems. Speculative designs are obtained by
applying a sequence of provably-correct-by-construction transfor-
mations to a non-speculative micro-architecture. Thus, it is guar-
anteed that the speculative design is functionally equivalent to the
original one, regardless the prediction strategy used for specula-
tion. The study of prediction schemes for speculation are out of
the scope of this paper, even though they have a crucial impact on
the performance of the system. The framework presented can be
conceptually applied to any elastic system, either synchronous [4]
or asynchronous [11], and customized for any specific elastic pro-
tocol. In this paper, we will focus on one specific protocol for
synchronous elastic systems for which early evaluation has been
incorporated and formally proved to be correct [5].

The paper is structured as follows. Section 2 describes the specu-
lation method by means of a simple example. Section 3 introduces
synchronous elastic systems. Section 4 presents the implementa-
tion details and verification of the controllers for speculation. Sec-
tion 5 studies two examples that illustrate the benefits of specula-
tion. Finally, some conclusions are drawn in Section 6.

2. OVERVIEW
The need for speculation arises when there is a decision point

in the datapath in which some of the required data arrives late.
Fig. 1(a) shows a simple elastic circuit in which speculation can
boost up its performance. In this figure, the box is an Elastic Buffer
(EB), initially containing one valid data item (represented as a to-
ken). The circles represent functional blocks. The multiplexor can
handle early evaluation when data at the non-selected channel has
not arrived yet. Control details are not explicitly displayed, only
the data dependencies are drawn.

This scheme could actually be found in a real micro-architecture.
For example, the two inputs might be the next PC (Program
Counter) and the PC in case a branch instruction is taken. The
loop through F and G could represent the computation needed to
decide whether the branch is taken. Let us assume that there is a
critical path starting at the EB, going through G, the multiplexor,
F and arriving at the EB again.

In elastic systems, it is always possible to insert empty EBs.
Thus, a possible way to optimize the performance of this design
would be to insert an empty EB in the critical path, as shown in
Fig. 1(b). While this transformation would improve the cycle time
of the design, it would also decrease the throughput, and no real
gain would be achieved.
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Figure 1: Example of speculation in elastic systems
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Figure 2: EB controllers
Given a multiplexor with several inputs, it is possible to move

a functional block from the output of the multiplexor to its inputs
using Shannon decomposition (viewed also as a multiplexor retim-
ing) [10], as shown in Fig. 1(c). After moving F from the output of
the multiplexor to its inputs, F and G are executed in parallel rather
than sequentially, achieving a better cycle time. Furthermore, the
throughput of the system is optimal as there are no bubbles. How-
ever, this speed-up comes at a price: duplication of logic. Here
is where speculation can be effectively used. In order to reduce
area, all copies of F can be merged into a single one as shown in
Fig. 1(d). Thus, the system can now speculate which input channel
of the multiplexor should first use the shared functional module.

When the speculation is correct, the early evaluation multiplexor
receives the required data and computes its output. At the same
time, an anti-token is propagated backwards through the channel
that was not selected, invalidating the unneeded data. When it is
not correct, the multiplexor stalls. Then, the correct token must be
propagated through F .

The design in Fig. 1(c) is optimal in performance. However, if
the prediction strategy in Fig. 1(d) is sufficiently accurate, the cycle
clock penalty due to speculation will be rarely paid, thus achieving
a similar performance with smaller power and area. A manual im-
plementation of all the stalling/cancelling mechanisms for specula-
tion is complicated and error-prone. We use a set of verified control
primitives that can automatically take care of these mechanisms in
a distributed control fashion using local handshake protocols. Thus,
an automatable and scalable scheme for speculation is provided.

3. SYNCHRONOUS ELASTIC SYSTEMS
An elastic system can be defined as a collection of blocks and

FIFOs connected by channels. A channel is a set of data wires
with a tuple of control signals associated: (V +, S+, V −, S−).
Synchronous ELastic Flow (SELF) [6, 5] defines a formal protocol
and a set of control circuit primitives for creating an elastic sys-
tem. The valid (V +) and stop (S+) bits implement a handshake
protocol between the sender and the receiver of the channel. The
valid bit, going in the forward direction, is set by the sender when
some piece of data (a token) is being sent. The stop bit, going in
the backward direction, is used for stalling the sender by propagat-
ing back-pressure when the receiver is not ready. Analogously, V −

and S− bits implement the same protocol on the opposite direction.
This second pair of handshake bits is used to propagate anti-tokens.

Elastic buffers, EB, are the sequential elements in an elastic de-
sign. An EB is an unbounded FIFO which stores tokens (data
items) and anti-tokens, which cancel each other at the boundaries
of the EB. Figure 2(a) shows the interface of an EB with one input
channel and one output channel. Two important parameters of an

Cycle 0 1 2 3 4 5 6
Fin0 A - C - E F F
Fout0 A - C - E * F
Fin1 - B D D - G -
Fout1 - B * D - G -
Sel 0 1 1 1 0 0 0
Sched 0 1 0 1 0 1 0
EBin A B * D E * G

Table 1: Example trace from Figure 1(d). ’*’ = bubble in the
channel, ’-’ = anti-token in the channel, otherwise token

EB are the forward latency Lf , which is the number of clock cycles
needed to propagate tokens through the EB, and the backward la-
tency Lb, which is the number of clock cycles needed to propagate
anti-tokens and the stop bit backwards. It is known that the capacity
C of an EB must satisfy the following constraint : C ≥ Lf + Lb.
An EB similar to a flip-flop in conventional synchronous designs
(Lf = 1, Lb = 1, C = 2 initialized with one token) can be effi-
ciently implemented using transparent latches[6]. If anEB does not
initially contain any token, it is called a bubble. Other implementa-
tions can sometimes be useful, Figure 2(b) shows an EB controller
with Lb = 0, C = 1 for fast propagation of anti-tokens.

Design transformations known from conventional synchronous
systems, such as retiming or bypassing, can also be applied in elas-
tic systems. Furthermore, elastic systems support novel correct-
by-construction transformations enabling new micro-architectural
trade-offs. For example, a method to perform correct-by-
construction micro-architectural pipelining was presented in [8].

4. SPECULATION IN ELASTIC SYSTEMS
In this section we will present a method for introducing specula-

tion into an elastic design based on a sequence of provably-correct
transformations. This method can be completely automated. As
was discussed in section 2, speculation can be achieved following
these steps:

1. Find a critical cycle from an output of an early evaluation mul-
tiplexor to its select input. If such cycles exist, speculation is
the transformation of choice for increasing the performance.

2. Apply Shannon decomposition to move a logic block back-
ward, out of the critical cycle.

3. Apply early evaluation to the moved multiplexor

4. Share the duplicated logic, introducing the speculation control
that instantiates some prediction logic.

Table 1 shows a sample trace of the system from Figure 1(d).
Fin0 and Fout0 denote the input and output channel of the shared
module F that serve the first input of the multiplexor, while Fin1

and Fout1 correspond to second channel of the multiplexor. Sel
is the select input of the multiplexor connected to the output of
G functional block. Sched is the scheduling signal that carries
the channel prediction done for the shared unit F . Finally, EBin

is the data value at the input channel of the EB connected to the
output of the multiplexor. In cycles 0, 1, 3, 4, and 6, the correct
predictions are made (Sel = Sched). During these cycles the early
evaluation multiplexor propagates correct value from the selected
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Figure 3: Implementation of a shared module

channel, and the anti-token cancels the token waiting on the unused
input channel, since it is not needed. In cycles 2 and 5, however,
mispredictions are made (Sel �= Sched). The multiplexor is not
enabled, stalling and waiting for the correct token to arrive. The
next clock cycle, the scheduler corrects its prediction and selects
the other token, that will get propagated through the multiplexor.

4.1 Sharing of Elastic Modules
Speculation is performed for the shared logic that has been re-

timed out of the critical cycle. The scheduler selects out of the
valid input tokens which one to send for the execution.

Let us assume that sharing occurs between two copies of the
block like in the example we have considered so far 1. There are
two input data channels to the shared functional module. Let us as-
sume that elastic buffers are inserted into the channels between the
shared module and the multiplexor. Let us also assume that both
buffers have identical forward latency Lf and identical backward
latency Lb. A special case shown in the example in Figure 1(d) (no
buffers inserted), correspond to the case of Lf = 0 and Lb = 0.
Let us also assume (for simplicity of explanation) that there is an
EB at each input of the shared module that stores tokens waiting to
be served. For better understanding of the behavior of the specu-
lation unit let us trace the processing of the i-th token, Ti, arriving
at one of the input channels of the shared module. The processing
goes through 3 steps:
Propagating to the input of the shared module. Since token or-
der is preserved in elastic systems, for the i-th token, Ti, to be
available at the input in1 of the shared module, the (i − 1)-th to-
ken, Ti−1, in this channel must have been processed or canceled
by an anti-token. Let us assume that the speculation controller of
the shared module predicted channel 2 during the previous transfer.
The Ti−1 (if already arrived) is stalled at in1 input channel of the
shared module, because it needs to be used in case of misprediction.
If prediction of channel 2 was correct, an anti-token is generated by
the controller of the multiplexor into channel 1 (out1). This anti-
token propagates backwards reaching in1 in Lb cycles and cancels
Ti−1. The token Ti will remain stalled, until the previous token,
Ti−1, is canceled. Thus, the backward latency of EBs can affect
the overall system performance and become a bottleneck.

Prediction by the scheduler of the shared module. Once a to-
ken Ti gets to the input of the shared module, the scheduler may
predict its channel and then Ti will get propagated through the
shared module. Otherwise, the token will be stalled until either
the scheduler changes its prediction during one of the future cycles
or an anti-token generated by the multiplexor arrives and cancels it
out.

Early evaluation in the multiplexor. After a token Ti is selected
by the scheduler, it is transmitted through the shared module and
then, stored by the output EB, reaching the input of the multiplexor
in Lf cycles. If Ti was predicted correctly, once the select signal of
the multiplexor becomes available, the early evaluation multiplexor
will generate a new token at its output. Otherwise, the token will be
stalled at the input of the multiplexor, waiting for the correct token

1This consideration can be easily generalized to k blocks

to arrive in the other channel.

4.1.1 Scheduler
A scheduler predicts at each clock cycle which channel can use

the shared resource. The performance gain obtained by applying
speculation is based on the assumption that the prediction can be
done with a high probability of success. The scheduler can im-
plement prediction algorithms of different complexity, from always
predicting one of the channels to more advanced algorithms such as
the state-of-the-art branch prediction in modern micro-processors.

For better performance, the scheduler should take into account
the elastic protocol, since a channel that is not valid, or is stalled,
cannot use the shared unit even if selected. Besides, mispredictions
can be detected because of back-pressure on the predicted chan-
nel. For correctness of behavior a scheduler should avoid potential
scheduling deadlocks. To guarantee this, a scheduler should detect
and correct all mispredictions. In addition starvation of channels
must be avoided, every token that reaches the shared module must
eventually be scheduled unless it is cancelled by an anti-token. This
property can be formalized as a leads-to constraint: if tokens arrive
infinitely often, then they must eventually be served by the shared
unit or killed. Formally, for every user of the shared unit, i:

G (V +
ini

⇒ F (V −outi
∨ (sel = i ∧ S+

outi
))) (1)

4.1.2 Design
Figure 3(a) shows the datapath logic for a combinational block

shared by two channels, and Figure 3(b) shows its control logic.
Cini and Couti represent the handshake control bits of the elastic
channels; and Dini and Douti represent the datapath wires asso-
ciated with these control bits. The delay overhead on the datapath
is one multiplexor plus the delay in the scheduling decision. One
should make sure that the scheduler is out of the critical path.

The controller sets the valid signal of the selected channel as
long as its input is valid and keeps the valid signal of the other
channel at 0. It also stops the other channel (unless it is killed).
The implementation of the controller can be trivially extended to
handle more than two channels.

Figure 2(b) depicts a variant of an EB with Lb = 0 and Lf = 1.
This implementation of EB can be used to reduce latency overhead
of speculation since stalls and anti-tokens can be detected faster.
However, a care must be taken not to chain too many of such con-
trollers to avoid potentially long combinational delays in the con-
trol.

4.1.3 Verification
The absence of deadlocks has been verified for any scheduler

that complies with the leads-to property (1). In addition, it has been
verified that all controllers comply with the SELF protocol and the
interaction between the datapath and the controller is correct. More
details about the verification strategy can be found in [7].

5. EXAMPLES
In this section we demonstrate the use of speculation combined

with elastic systems on two interesting examples. For performing
these experiments we have developed a complete framework for
exploring elastic systems. Given an abstract netlist representing an
elastic system as a collection of modules and FIFOs connected by
elastic channels, our toolkit can apply all of the known correct-by-
construction transformations under the user guidance in the form
of command scripts within an interactive shell. Since all transfor-
mations are local they are very fast to compute.

This environment enables fast exploration of the design space.
The user can perform transformations, visualize the modified
graph, undo and redo the transformations. At any point, it is pos-
sible to generate a Verilog netlist of the elastic controller, a blif
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Figure 4: Speculation used for variable latency

model for logic synthesis with SIS or a NuSMV model for verifica-
tion. The elastic controller is built by assembling a set of predefined
parameterized control circuit primitives using Verific’s front-end
tools, and then it is connected to the datapath of the examples. The
cycle time is obtained by synthesis, using commercial tools with a
65nm technology library. Finally, the throughput is computed by
simulating the whole design.

5.1 Variable Latency Unit
Variable latency units, such as telescopic units [2], optimize the

frequent paths of design into a faster single clock cycle, and execute
infrequent critical paths in two clock cycles.

Variable latency in elastic systems can be handled in a natural
way thanks to the handshake protocols. Figure 4(a) shows a vari-
able latency unit which can take 1 or 2 clock cycles to compute.
Fapprox is an approximation of Fexact that can be obtained auto-
matically and it has a shorter critical path. Most of the computation
cycles, the approximation is correct (Fapprox = Fexact), and thus,
Ferr = 0. Therefore, the function can be computed within a single
clock cycle with no stalling. However, when the approximation is
incorrect, Ferr inserts a bubble into the receiver channel and stalls
the sender. The next cycle Fexact can be used to finish the compu-
tation. In Figure 4(a), Ferr is connected directly to the controller,
which handles the clock gating mechanism to govern the datapath.
Since Fexact belongs to the critical path of the original design, it
is possible that Fexact followed by a few gates of the controller is
delay critical.

An alternative implementation that takes the critical path out of
the controller can be based on using speculation with replay in case
of an error. The system in Figure 4(b) always speculates that the
approximate computation is always correct (in which case the com-
putation is finished in one clock cycle). If prediction is incorrect,
the next clock cycle, the speculation controller will use the result of
the exact computation while the early evaluation multiplexor stalls
waiting for the correct data. The shaded box G is shared between
the channel coming from Fapprox and the channel coming from
Fexact through the bubble.

We have implemented a variable latency ALU using a simple
pipeline with an 8-bit datapath. In this pipeline, Ferr has become
critical in the stalling unit like in Figure 4(a), but not in the spec-
ulative design. Moreover, the speculative design (Figure 4(b)) im-
proves the effective cycle time by 9% with a 12% area overhead.
The area overhead is due to extra EBs storing the results after the
shared unit.

5.2 Resilient Designs
Speculation can be used to add soft-error detection and correc-

tion in a pipeline without changing the performance of the sys-
tem in case of error-free behavior. As an example, we have used
the single error correction and double error detection mechanism
(SECDED)[12]. For each 64 bits of data, 8 extra bits allow to de-
tect and correct any single bit error. Besides, double bit errors are
detected as well. Some implementation details of SECDED can be
found in [13].

Figure 5(a) shows an adder where soft-error checking is done
on each input 2. SECDED needs a whole pipeline stage, and thus,
the pipeline is deeper compared to a design with no error checking.

2For simplicity, only one of the two inputs of the adder is drawn.
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Figure 5: Speculation used for error correction and detection

Speculation can be used to start the addition without waiting for
SECDED to finish, as shown if Figure 5(b), after applying Shan-
non decomposition and sharing. The system always predicts that
no errors will be found and the execution of the addition starts nor-
mally. At the same time, SECDED is computed on both inputs to
detect errors in the input data. Next cycle, if SECDED detected
an error, the mispredicted computation is stalled at the input of the
multiplexor, and the addition is restarted using the corrected values
coming from the SECDED unit.

This design has been synthesized using a 64-bit prefix-adder, and
it has been checked that there is no performance penalty during the
error-free behaviors. Whenever an error is detected, a single clock
cycle is lost in order to correct the data and repeat the computation.
This mechanism can also be used for error-protection of memories
and register files. The area overhead due to speculation in Figure
5(b) is 36%, caused mainly by the recoveryEBs necessary for spec-
ulation. Notice that this overhead is paid on a single pipeline stage,
and hence, it would be amortized across the whole system when
implemented on a real pipeline.

6. CONCLUSIONS
A novel method for applying speculation in elastic systems has

been proposed. It is performed by applying Shannon decom-
position and module sharing to a non-speculative design. Since
both transformations are correct-by-construction, functional equiv-
alence is preserved when applying speculation. It has been shown
that speculation can be used to enhance performance of two realis-
tic examples involving variable latency units and resilient designs.
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