Retiming and Recycling for Elastic Systems with
Early Evaluation

Dmitry E. Bufistov
Universitat Politécnica de
Catalunya
Barcelona, Spain

Jorge Julvez
University of Zaragoza
Zaragoza, Spain

ABSTRACT

Retiming and recycling are two transformations used to optimize
the performance of latency-insensitive (a.k.a. synchronous elas-
tic) systems. This paper presents an approach that combines these
two transformations for performance optimization of elastic sys-
tems with early evaluation. The method is based on Mixed Integer
Linear Programming.

On a set of random benchmarks the proposed method achieves,
in average, 14.5% performance improvement over min-delay re-
timing configurations.

Categories and Subject Descriptors: B.5.2 [Register-transfer-level
implementation]: Design Aids.

General Terms: Design, Theory, Performance.

Keywords: Elastic systems, early evaluation, optimization.

1. INTRODUCTION

Latency-insensitive (a.k.a. synchronous elastic) systems tolerate
changes in communication and computation latencies [5, 8]. The
term “elastic system”, ES, will be used in this paper.

An ES can be viewed as a composition of combinational blocks
and elastic FIFOs connected by channels. A channel is comprised
of data wires and a pair of handshake control signals: (valid, stop).
The basic case of an elastic FIFO, called elastic buffer, EB, has
a latency of one clock cycle and a capacity to store two pieces of
information (tokens). An EB initially storing one token of infor-
mation is an elastic equivalent of a synchronous register. An empty
EB which contains no tokens is called a bubble.

The valid and stop bits in elastic channels implement a hand-
shake protocol between the sender and the receiver. The valid bit,
going in the forward direction, is used by the sender to indicate
when useful data is being sent. The stop bit, going in the back-
ward direction, is used for stalling the sender by propagating back-
pressure when the receiver is not ready.

Any synchronous circuit can be transformed into an equivalent
ES following a simple automatic flow [6, 8].

A key aspect of ESs is that they accept a set of valid transforma-

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
to republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.

DAC’09, July 26-31, 2009, San Francisco, California, USA

Copyright 2009 ACM 978-1-60558-497-3/09/07....10.00

Jordi Cortadella
Universitat Politécnica de
Catalunya
Barcelona, Spain

Marc Galceran-Oms
Universitat Politécnica de
Catalunya
Barcelona, Spain

Mike Kishinevsky

Strategic CAD Lab, Intel Corp.

288

Hillsboro, OR, USA

%H

1-o

(b) Optimal RR solution

Figure 1: Retiming and Recycling Graph

tions [10] that preserve the circuit behavior regardless the timing
characteristics of its components.

1.1 Retiming and Recycling Graph

Retiming [11] is a well-known technique for sequential opti-
mization. It moves registers across circuit blocks to minimize the
clock cycle or area. It preserves the sequential behavior of a circuit.
In ESs, retiming moves EBs instead of regular registers.

An ES is modeled by a Retiming and Recycling Graph (RRG).
Each node of the graph is a combinational block with an associated
combinational delay. Each edge represents a connection between
blocks labelled with EBs when needed. The RRG can be viewed
as an extension of the retiming graph [11].

Figure 1(a) shows an example of an RRG. Only the datapath of
the ES is drawn. Each box at the edges represents an EB. If the
box is empty, the EB contains no valid information. If the box is
marked with a dot, the EB contains one token. E.g., the top edge
between nodes f and m has three EBs each labelled with a token.
Multiplexors (such as node m) are drawn by using a different sym-
bol than other nodes. Later we will see why.

Assuming that nodes F1, F2, F3 have unit combinational delays
while other nodes have zero delays, the cycle time of the RRG in
Figure 1(a) is equal to three time units, determined by the critical
combinational path F'1, F2, F'3, f, m.

1.2 Retiming and Recycling (RR)

In ESs it is possible to insert an empty EB at any channel of the
system preserving sequential behavior with respect to valid tokens
of information. Empty buffer insertion is called recycling [6].

The directed cycle F'1, F'2, F3, f,m in Figure 1(a) with a bot-
tom edge f, m contains only one EB. Retiming preserves the total

18.3

@

1-o

[T

Figure 2: Optimal retiming&recycling with early evaluation

number of EBs at each directed cycle [11]. Thus, the moves of
retiming cannot reduce the cycle time in this example: 3 is the
minimal cycle time achievable by retiming. Despite, the RRG in
Figure 1(b) obtained by applying one retiming move and inserting
two bubbles has a smaller cycle time. It is equal to 1 time unit.

This reduction of cycle time is, however, useless, since the actual
performance of the ES has not been improved. Indeed, two inserted
bubbles reduce the throughput of the ES (defined as the amount of
useful work done per cycle) to % The multiplexor needs to wait for
both valid inputs before computing a new token. This is the reason
for throughput degradation.

To compare the performance of two ESs the effective cycle time
metrics is used. The effective cycle time is the ratio of the cycle
time to the throughput. Ignoring the delay overhead of inserting
extra EBs the effective cycle time of both ESs shown in Figures 1
is the same. It is equal to 3 time units. Minimizing the effective
cycle time of an ES by using RR is the main goal of this paper.

1.3 Early evaluation (EE)

Conventional ESs are based on late evaluation: the computation
is initiated only when all inputs are available. Sometimes this re-
quirement is too strict. For example, once a multiplexor received a
select signal, it is sufficient to wait for the selected data channel to
produce a token. The other data channel is a “don’t care”.

Early evaluation (EE) takes advantage of this flexibility to im-
prove the performance of the ES. Care must be taken of the late
arriving irrelevant tokens to avoid spurious enabling of functional
units. Recently, different schemes to handle EE have been pro-
posed [2, 13, 1, 7]. When EE occurs, a negative token, also called
anti-token, is generated in the late channels that were not using
for enabling the block. When an anti-token and a token meet in
the same channel, they cancel each other. Anti-tokens can be pas-
sive, waiting for the token to arrive, or active, traveling backwards
through the control until they meet a token. This paper considers
only passive anti-tokens.

1.4 Motivational Example

Let us show how RR applied together with EE can improve per-
formance of the RRG from Figure 1. Assume that the select chan-
nel of the multiplexor is always valid and it chooses the top data
channel with probability 0 < o < 1, and the bottom channel with
probability (1 — «).

The behavior of ESs with EE can be modeled using Markov
chains [9]. Although this approach does not scale in general, it
can be used for analysis of this small example to compute an ex-
act expression for the throughput. Recall that with late evaluation
the effective cycle time of the ES in Figure 1(b) is equal to 3. With
EE, the throughput is 0.491 for & = 0.5. Hence, the effective cycle
time is 1/0.491 & 2.037 time units. For & = 0.9 the throughput is
higher and is equal to 0.719 and the effective cycle time is approx-
imately 1.39 time units.

Using RR it is possible to further improve the performance in
the example. The obtained optimal solution is shown in Figure 2.
Resolving the Markov chain for the ES in Figure 2, the following
expression for the throughput is obtained: 1/(3—2«). Fora = 0.9,
the throughput is equal to % ~ (0.833 that is about 16% better than
the throughput for the ES from Figure 1(b) with an EE mux.

289

The bottom channel coming to the multiplexor contains two anti-
tokens (drawn in the rhombus). Note that the total sum of tokens is
an invariant and is equal to four for the top cycle and to one (3 — 2)
for the bottom cycle.

The contributions. The first contribution of this paper is the
demonstration, as shown in the introductory example, that allowing
anti-tokens in initial configurations may help to achieve a better
throughput. This is not the case for ESs without EE.

The second contribution is a precise marked graph model for
performance estimation of ESs with EE.

The last contribution is a method for minimization of the effec-
tive cycle time of ESs with EE. The work is an extension of the pa-
per about performance optimization of ESs with late evaluation [3].

2. BACKGROUND

This section formalizes basic concepts.

A Retiming and Recycling Graph (RRG) is a tuple (S, 3, Ro, R,),

where S = (N, E) is the underlying multi-graph of the ES, N is
the set of nodes and E is the set of edges. The set IV is partitioned
into N; and Na: N; includes the simple combinational nodes and
N the EE nodes. 8 : N — R™ assigns combinational delay to
each node. Ry : £ — Z is the number of the tokens on each
edge. If negative, Ry is the number of anti-tokens. To ensure live-
ness the sum of tokens on each directed cycle of .S must be posi-
tive. R : E — 7" is the number of EBs on each edge, condition
R > Ro must hold. v : E — RT\{0} is the branch selection
probability for input edges of EE nodes n € N3. The sum of the
probabilities for all inputs of an EE node n € N> is equal to one.

As an example, the values of Ry, R and y of the top (bottom)
edge (f,m) of the RRG in Figure 1(b) are 3, 3 and « (0, 1 and
1—a).

Given an RRG, a combinational path is a sequence of adjacent
edges e1, ..., ex such that R(e;) = 0,1 < i < k. The delay of the
combinational path is the sum of the delays of the corresponding
nodes. For example, the path formed by the nodes F'1, F'2, F'3 in
Figure 1(a) is combinational while the path f, m, F'1 is not.

The cycle time of an RRG, 7(RRG), is the maximum delay of
all combinational paths.

Let us assume that combinational delays of nodes F'1, F'2, F'3
are equal to 1 time unit while the delays of the rest of the nodes
are equal to 0. Then, the cycle time of the RRG in Figure 1(a) is
equal to 3. The combinational path F'1, F'2, F'3, f,m is critical.
Its delay is equal to the cycle time of the RRG.

The throughput, ©(n), of node n € N of a RRG is defined as:

”“’f“), where o7, (t) is the number of tokens produced

On) = Ji,
by n till time stamp ¢. The throughput of every node is the same [9],
ie., ©(n;) = O(n;) for every n;,n; € N. Thus, the throughput
of any node can be denoted by ©(RRG).

Notice that if an RRG has no bubbles (see Figure 1(a)), one
token is produced by each EB each cycle, then ©(RRG) = 1. The
effective cycle time of a RRG, £(RRQ), is the ratio of the cycle
time and the throughput.

A retiming vector v € Z/™! of a given RRG, is amap N — Z
that for every edge e (u,v) transforms Ry to Ry as follows:
Ri(e) = Ro(e) + r(v) — r(u).

In contrast to the classical definition in [11] this definition allows
negative values for Ro. This is because in ESs EBs can keep anti-
tokens [7].

Given an RRG, a RR configuration, RC, is a pair of vectors R, €

E . . .
7Pl R € 2+ that satisfies the following constraints:

Ro(e) = Ro(e) +r(v) — r(u),

1
R'(e) > R{(e), foreach edge e = (u,v), \

where r is a retiming vector.

An RRG has a lot of different RCs. For instance, the retim-
ing vector: r(m) = —2,r(F1) = =2,r(F2) = —1,r(f) =
r(F'3) = 0, transforms the RC in Figure 1(a) to the RC in Figure 2.

Combinational path constraints. In order for an RC to meet a
cycle time 7, the delay of every combinational path in the corre-
sponding RRG must be smaller than or equal to 7. There are a set
of linear constraints that guaranties this [3].

In the following, these constraints for a given RC and cycle time
7 will be refereed as Path_Constr(RC, 7).

3. THROUGHPUT OF RRG

The performance of an RRG can be estimated by using the result
from [9] on performance analysis of guarded marked graphs.

A Guarded Marked Graph (GMG) is a tuple (N, E, mo, G) where
N is the set of nodes which is partitioned into subsets /N1 and
Nz: Nj includes the simple nodes and N> - the EE nodes; E C
N x N is the set of edges; mo : £ — Z assigns an initial num-
ber of tokens (possibly negative), mo(e), to each edge e; G :

N — 22" assigns a set of guards to every node, such that the
following condition is satisfied. Let us denote the set of input and
output edges of a node n; as *n; = {(n;,n;)|(n;,n;) € E} and
n; = {(ni,n;)|(ni,n;) € E}, respectively. Then for n € N; the
guards set G(n) is one element set {{°n}}. This means that all
input edges of the node n are in the same guard. For n € N; the
guards set has |*n| elements, G(n) = {*n}.

The behavior of an GMG is determined by the following rules:
1. Guard selection. A guard g(n) € G(n) for the next firing of n
is selected nondeterministically. The guard selection is trivial for
simple nodes, since they only have one guard. For EE nodes any
guard in G(n) can be selected.

2. Enabling. If the guard g(n) has been selected for the next firing
of n, then the node n becomes enabled when corresponding input
edge has positive marking.

3. Firing. An enabled node n at marking m can fire leading to
another marking m’ by removing one token from each input edge
and adding one token to each output edge.

Timed guarded marked graphs. In order to carry out perfor-
mance analysis on GMGs a timing interpretation must be added to
it. Each guard must be assigned a probability of being selected.

A Timed Guarded Marked Graph (TGMG) is a tuple
(N, E,mo,G,3d,~) where (N, E,mo, G)isaGMG; 5 : N — R*
assigns a nonnegative delay to every node; v : G — RT\{0}
assigns a strictly positive probability to each guard of G(n). It
must hold that: >~ ~(e) = 1.

e€G(n)

For the time evolution of an TGMG it is assumed that the guard
selection process has zero duration and that it respects the proba-
bilities (vy) in any infinite execution.

The throughput, @(N), of an TGMG is defined as: @(N) =

M, where ¢ represents the time and o (t) is the firing count

lim =

t—oo
vector at time ¢, i.e., the j’s component of o (¢) corresponds to the
number of times node n; has fired till the time stamp ¢.

Notice, @(N) is defined as a vector. In [9] it is shown that all
nodes of an TGMG have the same throughput. The throughput is
upper bounded by the solution of the following LP problem:

Mazimize ¢ :
o(n) - ¢ < mfe),
6(n)- ¢ <32 e (e) - Mme),
m(e) =mo(e) +o(u) —o(v),

n € Nij,e € *n
n € Ny)

e = (u,v).

The vector o is real in the constraints.
RRG throughput constraints. There is a simple procedure that

290

(b) Refined TGMG

Figure 3: A TGMG throughput model

constructs a TGMG model for an RRG. Because of the lack of the
space the formal description is skipped. It can be found in [4]. For
illustration the initial TGMG model for the RRG in Figure 1(b) is
shown in Figure 3(a)'. Figure 3(b) shows the final version. Basi-
cally, a unit delay self loop for each EE node has been added and
then TGMG was transformed to preserve the guards set G(n) [4].
Applying (2) to the TGMG model of an RRG it can be guar-
anteed with the linear constraints that a given RC has throughput
upper bound 1/xz,z > 1 [4]. Let us denote the set of this con-
straints as Thr_Constr(RC, z). The throughput upper bound of
a given RC can be found as a minimum value of x subject to the
Thr_Constr(RC,z). Let us denote this upper bound as ©'7(RC)
and the corresponding effective cycle time as £'P(RC), i.e., £'P =
7(RC)/©'(RC), where T(RC) refers to the cycle time of the RC.

4. RETIMING AND RECYCLING

A method that combines the combinational path and throughput
constraints for minimizing the effective cycle time leads to the fol-
lowing non-convex mixed integer quadratic programming problem:

Minimize x-T,
Ri(e) = Ro(e) + r(v) — r(u),
R >Ro,R >0,
Path_Constr(RC,7),
Thr_Constr(RC,z),
R € INT,r ¢ INT.

3

The exact solution of (3) is not necessarily the one with the mini-
mum effective cycle time, RCynin, but it is a very good approxima-
tion. On the other hand, (3) represents a big challenge for existing
solvers. [4] provides a heuristics based on a MILP to solve (3).
This heuristics finds few non-dominated RCs and select one with
the minimal effective cycle time, RCP

min*®

5. EXPERIMENTAL RESULTS

A set of experiments was performed to verify the throughput
model and to demonstrate optimization power of the algorithm for
ESs with EE.

A set of random RRGs has been generated. The ISCAS89 cir-
cuits have been used to extract the underlying graph structures. All

"Backward arcs modeling backpressure can be eliminated by buffer
sizing [12]

parameters have been set randomly, based on simple criterions. For

Table 1: All non-dominated RCs for the test case s526
Name T o [S] err(%) £P 3 A(%)
5526 | 19.98 | 0.2500 | 0.2390 | 4.6025 | 79.9200 | 83.5983

24.10 | 0.3333 | 0.3050 | 9.2896 | 72.3000 | 79.0164
31.74 | 0.4936 | 0.4200 | 17.5219 | 64.3041 | 755714
56.54 | 0.8367 | 0.7910 | 5.7787 | 67.5742 | 71.4791
7452 | 1.0000 | 1.0000 | 0.0000 | 74.5200 | 74.5200 5.4

each test case the RC with the minimal effective cycle time, Rciﬁin,

was found. The Verilog representation of elastic controller was
generated for each non-dominated RC. The actual throughput was
calculated by performing intensive simulations.

Table 1 shows all non-dominated RCs for the test case s526.
Rows of the table correspond to different RCs. The column 7 pro-
vides the cycle time of the RC. The columns ©'7 and © provide the
throughput upper bound and the actual throughput of the RC (ob-
tained by simulation) respectively. The column err(%) provides
the relative difference between the throughput upper bound ©'7
and ©. The effective cycle times of RCZM and RCynin are marked
in bold in the columns £'P and € respectively. The last column
A(%) is the relative difference between &(RCymin) and £(RCZ,),
e.g., for 526 itis equal to (75.5714—71.4791)/71.4791-100% =~
5.4%. Tt can be seen that the RC'?, and RCymin are different con-

min
figurations in this case, however RC'?. has only 5.4% worse per-

formance. Also the second best configuration returned by the algo-
rithm does correspond to RCynin.

Table 2 shows the obtained results. The first column is the name
of the underlying ISCASS89 circuit. The next three columns are the
number of simple nodes, EE nodes and edges respectively. The
column £* provides the cycle time before the optimization (it is
equal to the effective cycle time because originally RRGs have no
bubbles). The column §,,., provides the minimal effective cycle
time of the RRG with all nodes being simple (late evaluation). It
often coincides with the min-delay retiming cycle time (see [3] for
details). In the experiments the £, .. was always provided by min-
delay retiming configuration. The columns dﬂm and €57 show
£(RCP,) and €(RCpmin), respectively. E.g., for s526 the corre-
sponding values are equal to 75.57 and 71.48. The last column
I1(%) provides the performance improvement obtained by the pro-
posed method with respect to ES without EE. It is calculated as
follows: I = ((gnee - gfri?’h)/é’nee) -100%.

CPLEX was used as an MILP solver. The timeout for integer op-
timization was set to 20 minutes in all experiments. For all MILPs
the optimal solutions were always found.

Table 2: Experimental results.

Name | [N1| [No| |B|| & &, &2, &m 1%
s641 206 15 270 183.15 109.62 93.72 89.98 17.9
s27 9 5 24 43.73 43.73 32.31 32.31 26.1
s444 45 13 82 174.88 106.75 92.50 92.50 13.3
s386 36 12 131 74.80 74.60 58.55 59.81 21.5
s344 122 13 176 130.63 114.19 90.79 82.89 27.4
s400 37 9 66 149.29 79.50 80.10 77.63 2.3
$526 43 7 71 144.47 74.52 75.57 71.48 4.1
s382 35 7 60 84.65 68.47 66.07 66.07 3.5
s420 7 1 9 76.70 76.70 59.78 59.78 22.1
$832 76 41 462 62.11 50.39 50.39 50.39 0.0
s1488 85 48 572 64.28 59.52 59.52 59.52 0.0
s510 63 40 407 116.63 116.63 73.26 73.26 37.2
$953 232 36 371 354.86 292.28 125.92 119.53 59.1
s713 229 27 341 119.15 96.63 99.13 95.96 0.7
s1494 88 48 572 61.97 55.80 55.80 55.80 0.0
$820 72 38 424 55.64 53.23 46.90 46.90 13.5

Observation 1: The average effective cycle time improvement
is equal to 14.5% (the average value of the column 1%). The im-

291

provement strongly depends from the position of EE nodes. The
&,.cc Was not improved for s832, s1488, s1494. This is because
some critical directed cycles (the cycles where bubbles have to be
inserted) have no early evaluation nodes. The EE does not affect
the performance of such ESs.

Observation 2: The RC', coincides with RC37 in more than
half of the examples. In s641,s386, s400,s526, s713, s953 the value
of A(%) is within 5%.

Observation 3: The average error err(%) of the throughput
estimation is equal to 12.5%. The error achieves 35% for some
configurations. Usually the error is proportional to the difference
between throughputs of an RRG with and without EE nodes.

6. CONCLUSIONS AND FUTURE WORK

A MILP based algorithm for retiming and recycling of elastic
systems with early evaluation has been presented. The proposed
MILPs are difficult to solve exactly for circuit graphs with more
than one thousand edges. However, there are simple and efficient
heuristics for solving MILP problems. Exploring such heuristics is
a part of the future work.

The proposed model can be extended to handle felescopic nodes
(i.e., nodes with variable combinational delays).

Acknowledgements. This research has been supported by FPU
grant AP2005-4866, FI grant B1 00063, Juan de la Cierva fellow-
ship from the Spanish Ministry of Education and Science, a grant
from Intel Corp. CICYT TIN 2004-07925 and research project CI-
CYT TIN2007-66523.

7[1] I\BErr]l?pgaléglMgrSgh Counterflow pipelining: Architectural

support for preemption in asynchronous systems using anti-tokens. In
Proc. International Conf. Computer-Aided Design (ICCAD), pages
611-618, 2006.

C. F. Brej. Early Output Logic and Anti-Tokens. PhD thesis,
University of Manchester, 2005.

D. Bufistov, J. Cortadella, M. Kishinevsky, and S. Sapatnekar. A
general model for performance optimization of sequential systems.
In Proc. Int. Conf. Computer-Aided Design (ICCAD), Nov. 2007.

D. E. Bufistov, J. Cortadella, M. Galceran-Oms, J. Jilvez, and

M. Kishinevsky. Retiming and recycling for elastic systems with
early evaluation. Technical Report LSI-09-11-R, 2009.
http://www.1si.upc.edu/ techreps/files/R09-11.zip.

L. P. Carloni, K. L. McMillan, and A. L. Sangiovanni-Vincentelli.
Theory of latency-insensitive design. IEEE Transactions on
Computer-Aided Design, 20(9):1059-1076, Sept. 2001.

L. P. Carloni and A. L. Sangiovanni-Vincentelli. Coping with latency
in SoC design. IEEE Micro, Special Issue on Systems on Chip,
22(5):12, October 2002.

J. Cortadella and M. Kishinevsky. Synchronous elastic circuits with
early evaluation and token counterflow. In Proc. ACM/IEEE Design
Automation Conference, pages 416-419, June 2007.

J. Cortadella, M. Kishinevsky, and B. Grundmann. Synthesis of
synchronous elastic architectures. In Proc. ACM/IEEE Design
Automation Conference, pages 657-662, July 2006.

J. Julvez, J. Cortadella, and M. Kishinevsky. Performance analysis of
concurrent systems with early evaluation. In Proc. Int. Conf.
Computer-Aided Design (ICCAD), Nov. 2006.

T. Kam, M. Kishinevsky, J. Cortadella, and M. Galceran-Om:s.
Correct-by-construction microarchitectural pipelining. In Proc. Int.
Conf. Computer-Aided Design (ICCAD), Nov. 2008.

C. E. Leiserson and J. B. Saxe. Retiming synchronous circuitry.
Algorithmica, 6(1):5-35, 1991.

R. Lu and C.-K. Koh. Performance optimization of latency
insensitive systems through buffer queue sizing of communication
channels. In Proc. Int. Conf. Computer-Aided Design (ICCAD),
pages 227-231, Nov. 2003.

R. Reese, M. Thornton, C. Traver, and D. Hemmendinger. Early
evaluation for performance enhancement in phased logic. /[EEE
Transactions on Computer-Aided Design, 24(4):532-550, Apr. 2005.

[2

—

(31

(4]

(5]

(6]

[7

—

[8

=

[9

—

[10]

[11]

[12]

[13]

