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Abstract. This paper presents a novel approach to the problem of finding all subgraph isomorphisms
of a (pattern) graph into another (target) graph. A relational formulation of the problem, combined
with a representation of relations and graphs by Boolean functions, allows to handle the combinatorial
explosion in the case of small pattern graphs and large target graphs by using Binary Decision Diagrams
(BDDs), which are capable to represent large relations and graphs in small data structures. Examples
are presented that show how all subgraph isomorphisms (120 303) of a small graph into a large graph
can be efficiently computed and represented with a small BDD (57 980 nodes).

1 Introduction

Subgraph isomorphism is one of the most important techniques in pattern recognition. It has been studied
thoroughly for both theoretical and practical interests.

The subgraph isomorphism problem can be formulated as follows: given two graphs G1 and G2, find out
if G2 contains a subgraph that is isomorphic to G1, or find all such isomorphic subgraphs. The problem is
known to be NP-complete [8]. The best known algorithm for subgraph isomorphism is [21], which is based on
exhaustive search with backtracking and solves both formulations of the problem. As a matter of fact, most
of the research on subgraph isomorphism algorithms has been based either on heuristic search techniques [1,
7, 9, 21] or on constraint satisfaction techniques [14].

In this paper, a novel approach to the problem of finding all subgraph isomorphisms is presented. A
relational formulation of the problem, combined with a representation of relations and graphs by Boolean
functions, allows to handle the combinatorial explosion in the case of small pattern graphs and large target
graphs by using Binary Decision Diagrams (BDDs), which are capable to represent large relations and graphs
in small data structures.

The rest of the paper is organized as follows. Sections 2 and 3 present background material on relations
and functions and on BDDs, respectively. A bridge between graphs and BDDs is established in Section 4.
Section 5 presents the relational view of the problem of finding all subgraph isomorphisms. Experimental
results are summarized in Section 6. Finally, some conclusions and lines of future research are drawn in
Section 7.

2 Relations and Functions

Given two sets A and B, a binary relation R between A and B is a subset of A × B. Given a set of sets
A1, . . . , An, an n-ary relation R over A1, . . . , An is a subset of A1 × · · · × An. For a binary relation we say
that xRy if and only if (x, y) ∈ R.

A binary relation R can be represented by a |A| × |B| Boolean matrix MR in which MR[x, y] = xRy.
A binary relation R between a set A and itself is a subset of A2 and can also be represented by a directed
graph G = (V,E), where V = A and E = R.

A function f from A to B, f : A → B, is a relation that associates exactly one element of B to each
element of A. A function f is injective if x 6= y implies f(x) 6= f(y). A function f is surjective if for every
y ∈ B there exists an element x ∈ A such that f(x) = y. A function is bijective if it is injective and surjective.
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We will often talk about Boolean functions over the set B = {0, 1}. An n-variable Boolean function is
a function f : Bn → B. Typically we will represent Boolean functions with Boolean formulae in which the
operators + and · will denote the disjunction and conjunction respectively, · having higher precedence than
+. For simplicity, the operator · will be often omitted. For example, the 3-variable Boolean function

f(0, 0, 0) = f(0, 0, 1) = f(0, 1, 1) = f(1, 1, 1) = 1
f(0, 1, 0) = f(1, 0, 0) = f(1, 0, 1) = f(1, 1, 0) = 0

can be represented by the Boolean formula

f(x1, x2, x3) = x1x2 + x2x3

Each of the elementary product terms of an n-variable Boolean formula

x1 . . . xn−1xn, x1 . . . xn−1xn, . . . , x1 . . . xn−1xn

are called minterms. A Boolean formula represented as a sum of minterms is called a minterm canonical
form. For the previous example, the minterm canonical form is

f(x1, x2, x3) = x1x2x3 + x1x2x3 + x1x2x3 + x1x2x3

Given a set A, an encoding function of A is an injective function σ : A → B
n. A necessary condition for

σ to be injective is that |A| 6 2n. Given an encoding function σ of a set A, the characteristic function of A
is an n-variable function χA defined as follows:

χA(x) = 1 ⇔ ∃a ∈ A : σ(a) = x

where x is a vector of n Boolean variables, x = (x1, . . . , xn).
Given a binary relation R between two sets A and B and two encoding functions σA : A → B

n and
σB : B → B

m, the characteristic function of R is an (n + m)-variable Boolean function χR : Bn+m → B

defined as follows:

χR(x, y) = 1 ⇔ ∃(a, b) ∈ R : σ(a) = x ∧ σ(b) = y

where x = (x1, . . . , xn) and y = (y1, . . . , ym). Characteristic functions can be trivially extended to n-ary
relations. Henceforth, and for the sake of simplicity, we will use the symbols A and R to represent the
characteristic functions χA and χR respectively under some implicit encoding functions.

Now, Stone’s representation theorem [20] establishes the basis of the approach presented in this paper.

Theorem 1. Every finite Boolean algebra is isomorphic to the Boolean algebra of subsets of some finite set.

Stone’s representation theorem states that reasoning in terms of concepts such as union, intersection,
empty set, etc. in a finite set of elements, in particular in a finite set of relations, is isomorphic to performing
Boolean operations (+, ·) with Boolean functions. This means that all operations on relations can be applied
directly to their characteristic functions. For example, given two binary relations R and S,

χR∪S = χR + χS , χR∩S = χR · χS

When implemented with BDDs, characteristic functions provide, in general, compact and efficient repre-
sentations.

3 Binary Decision Diagrams

A Boolean function can be represented in many ways, such as truth tables, Karnaugh maps or minterm
canonical forms [3]. Another form that can be much more compact is the sum of products, where the Boolean
function is represented by means of an equation, that is,

f = bc+ abc+ ac (1)



These techniques are inefficient for fairly large functions. However, all these forms can be canonical [3]. A
form is canonical, if the representation of any function in that form is unique. Canonical forms are useful for
verification techniques, because an equivalence test between functions is easily computable.

Recently, Binary Decision Diagrams (BDDs) have emerged as an efficient canonical form to manipulate
large Boolean functions. The introduction of BDDs is relatively old [12], but only after the recent work of
Bryant [4] they transformed into a useful tool. For a good review on BDDs we refer to [5].

We will present BDDs by means of an example. Given (1), its BDD is shown in Fig. 1(a). A BDD is a
directed acyclic graph with one root and two leaf nodes (0 and 1). Each node has two outgoing arcs, labeled
1 and 0 and shown in the drawings as continuous and dotted lines, respectively, oriented from top to bottom.
To evaluate f for the assignment of variables a = 1, b = 0, and c = 1, we only have to follow the corresponding
directed arcs from the root node. The first node we encounter is labeled with variable a, whose value is 1.
Given this assignment, the 1-arc must be taken. Next, a node labeled with variable b is found. Since b = 0,
the 0-arc must be taken now. Finally, the 1-arc for variable c reaches the 0 leaf node, which is the value of f
for that assignment.
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Fig. 1. Examples of Binary Decision Diagrams (BDDs) for the Boolean function f = bc+ abc+ ac.

The representation of a function by means of a BDD is not unique. Figures 1(a), 1(b) and 1(c) depict
different BDDs representing (1). The BDD in 1(b) can be obtained from 1(a) by successively applying reduction
rules that eliminate isomorphic subgraphs from the representation [5]. The BDD in 1(c) has a different variable
ordering.

All BDDs shown in Fig. 1 are ordered BDDs. In an ordered BDD, all variables appear in the same order
along all paths from the root to the leaves. If a BDD is ordered and reduced (no further reductions can be
applied) then we have a Reduced Ordered BDD (ROBDD). Given a total ordering of variables, an ROBDD is
a canonical form [5]. Figures 1(b) and 1(c) are ROBDDs with variable ordering a < b < c and c < a < b
respectively. The shape and size of an ROBDD depend on the ordering of its variables.

Some important properties of ROBDDs are:

– The size of the BDD can be exponential in the number of variables [13]; however, BDDs are a compact
representation for many functions.

– Boolean binary operations can be calculated in polynomial time in the size of the BDDs.
– Given a Boolean function represented as a BDD, some interesting problems like satisfiability, tautology

and complementation are solved in constant time.

Henceforth, we will implicitly assume that BDDs are reduced and ordered. Note that each BDD node
represents at the same time a function whose root is the node itself. This property allows the implementation
of BDD packages managing all BDDs using the same set of variables in only one multi-rooted graph [5].

Most Boolean operations performed with BDDs are based on the recursive paradigm supported by Boole’s
expansion. Given a function f(x1, . . . , xn), the functions

fxi = f(x1, . . . , xi−1, 1, xi+1, . . . , xn) and fxi = f(x1, . . . , xi−1, 0, xi+1, . . . , xn)



are called the cofactor of f with respect to xi and xi respectively. The definition of cofactor can also be
extended to products of literals. If c = x1c1, x1 being a literal and c1 another product of literals, then
fc = (fx1)c1 .

Theorem 2 (Boole’s expansion). If f : Bn → B is a Boolean function, then for any variable xi:

f(x1, x2, . . . , xn) = xifxi + xifxi

Let us see, first, how to calculate the BDD for (1) given the ordering a < b < c. We will use (v, f1, f0) to
denote a BDD with a root node labeled with variable v, and f1 and f0 as the functions after the 1-arc and
0-arc, respectively. Applying Boole’s expansion theorem to expand f with variable a we have:

f = a fa + a fa

with fa = bc+ bc, and fa = bc+ c = c. Expanding variable b in fa and fa yields to

f = a (b fab + b fab) + a (b fab + b fab)

with fab = c, fab = c, fab = c, and fab = c. Thus the BDD for (1) is

f = (a, (b, c, c), (b, c, c))

Note that the Boolean functions fab = fab = fab = c are isomorphic and must be represented with the same
node if we want to preserve canonicity.

BDDs can be created by combining existing BDDs by means of Boolean operations like AND, OR, and
XOR. This approach is implemented using the if-then-else operator (ite), defined as follows:

ite(F,G,H) = F G+ F H

where F , G, H are Boolean functions represented by BDDs. The interesting property of the ITE operator is
that it can directly implement all binary Boolean functions. For example:

AND(F,G) = ite(F,G, 0) , XOR(F,G) = ite(F,G,G)

Let Z = ite(F,G,H), and let v be the top variable of F , G, H. Then the BDD for Z is recursively
computed as follows [4]:

Z = (v, ite(Fv, Gv,Hv), ite(Fv, Gv,Hv))

where the terminal cases are:

ite(1, F,G) = ite(0, G, F ) = ite(F, 1, 0) = ite(F , 0, 1) = ite(G,F, F ) = F

The code for the ITE algorithm is shown in Fig. 2. Note that the algorithm keeps the BDD reduced by
checking if T equals E, and checking in a unique-table if the produced node already exists in the graph. In
this way, all isomorphic subgraphs are always eliminated.

Unless there is a terminal case, every call to the procedure generates two other calls, so the total number
of ITE calls would be exponential in the number of variables. To avoid this exponentiality, ITE uses a table of
pre-computed operations (computed table). The computed table acts as a cache memory, in such a way that
the most recently used results are stored in this table. The effect of this computed table is to cause ITE to be
called at most once for each possible combination of the nodes in F , G, H. Therefore, the time complexity of
the algorithm, under the assumptions of infinite memory and constant access time (hash) tables, is reduced
to Θ(|F | · |G| · |H|).

An important consequence of representing all BDDs in the same graph is that checking the equivalence
between two BDDs can be done in constant time (two BDDs representing the same function have the same
root node). Counting the number of vertices represented by a BDD can be done in linear time in the size of
the BDD.



ite (F ,G,H) {
if ( terminal case ) return result for terminal case;
else if ( {F , G, H} is in computed-table )

return pre-computed result;
else {

let v be the top variable of { F , G, H };
T = ite (Fv,Gv,Hv);
E = ite (Fv′ ,Gv′ ,Hv′);
if T equals E return T ;
R = find or add unique table (v,T ,E);
insert computed table ({ F , G, H }, R);
return R;

} }

Fig. 2. The ITE algorithm

4 Representation of Directed Graphs

The approach to subgraph isomorphism presented in this paper is based on unlabeled, directed, simple graphs,
also called relational graphs [2, 17].

Definition 1. A graph G = (V,E) consists of a set V and a relation E ⊆ V × V . The elements of V are
called vertices, and E is called the (arc) relation associated to G. It is said that there is an arc from a node
u to a node v if (u, v) ∈ E. A graph G = (V,B) is finite if the order |V | of G is finite, and it is undirected if
E is symmetric.

We will deal only with finite graphs in the rest of the paper, without further mention. A graph G = (V,E)
can be represented by a Boolean adjacency matrix A, where an element ai,j = true (one) if (ai, aj) ∈ E, and
it is false (zero) otherwise. We shall usually denote the boolean matrix A and the relation E associated to a
graph G = (V,E) by the same name E.

Example 1. The graph G = (V,E) with V = {v1, v2, v3, v4} and

E = {(v1, v1), (v1, v2), (v3, v1), (v3, v2), (v4, v1), (v4, v2)}

can be represented by the following Boolean adjacency matrix:

/.-,()*+v1

��
// /.-,()*+v2

/.-,()*+v3

OO >>|||||||| /.-,()*+v4

`B̀BBBBBBB

OO

v1 v2 v3 v4

v1 1 1 0 0
v2 0 0 0 0
v3 1 1 0 0
v4 1 1 0 0

Given an encoding function σV for the set of vertices V of a graph G = (V,E), the set of arcs E can also
be represented by a characteristic function χσV .

Proposition 1. The set of vertices of a graph G = (V,E) with |V | = n can be encoded using dlog2 ne
variables.

Proof. Let k = dlog2 ne and let σV : V → B
k be a function mapping each vertex of V to a distinct k-bit

Boolean vector. Then σV is an encoding of V , and it has dlog2 ne variables. ut

Proposition 2. Given an encoding σV : V → B
k for the set of vertices of a graph G = (V,E), where |V | = n

and k = dlog2 ne, the set E of arcs of the graph can be represented by a characteristic function on 2dlog2 ne
variables.



Proof. Let σV : V → B
k be an encoding of the set of vertices V of a graph G = (V,E), where |V | = n and

k = dlog2 ne, and let x and y denote k-bit Boolean vectors, which will be used to represent the source and
target vertices of each arc in E. Then

χE(x,y) =
∑
u∈V

∑
v ∈ V
uEv

 ∏
16i6k

xi⊕σV i(u)

 ·
 ∏

16i6k

yi⊕σV i(v)



represents the set of arcs E, and it has 2dlog2 ne variables. ut

Example 2. Consider the graph of Example 1, where the encoding function σV : V → B
2 defined as

σV (v1) = (0, 0), σV (v2) = (0, 1), σV (v3) = (1, 0), σV (v4) = (1, 1)

has been chosen. The set of arcs can be represented by the characteristic function

χE(x,y) = y1(x1 + x2) ,

where the vectors x = (x1, x2) and y = (y1, y2) are used to represent the source and target vertices of each
arc. Note that the minterm canonical form of the function χE(x,y) has six minterms,

x1x2y1y2 + x1x2y1y2 + x1x2y1y2 + x1x2y1y2 + x1x2y1y2 + x1x2y1y2 ,

corresponding to the six arcs of the graph.

A graph can also be represented by a BDD.

Example 3. Given the variable ordering y1 < x1 < x2, the characteristic function χE(x,y) = y1(x1 + x2) for
the graph of Examples 1 and 2 is represented by the following BDD:

/.-,()*+y1

�������������

76540123x1

76540123x2

}}}}}

0 1

5 Subgraph Isomorphism

Subgraph isomorphism is the problem of finding an isomorphic image of a given graph, called the pattern, in
another graph, called the target. The name of this problem comes from the image of the pattern being then
a subgraph of the target.

Graph homomorphisms are structure-preserving relations over the relations associated to the graphs [17,
22, 23]. In particular, a structure-preserving relation between the sets of vertices of two graphs is a subgraph
isomorphism if it is injective. Let I denote the identity relation.

Definition 2. A relation φ ⊆ V ′ × V is an isomorphism of a graph G′ = (V ′, E′) to a subgraph of a graph
G = (V,E) if

φT φ ⊆ I, φ φT = I, E ⊆ φE′ φT ;

and it is also written φ : G′ → G.

While the first two conditions assure that φ is an injective function from V ′ to V , the third condition
guarantees that φ preserves the structure of G′, that is, that it maps all arcs of G′ to arcs of G. In other
words, an injective function φ : V ′ → V is a subgraph isomorphism of G′ = (V ′, E′) into G = (V,E) if it
satisfies the following condition: (u′, v′) ∈ E′ implies (φ(u′), φ(v′)) ∈ E for all u′, v′ ∈ V ′.



Example 4. Given the graphs

76540123v′2

��76540123v′1

??���������
// 76540123v′3

G′ = (V ′, E′)

/.-,()*+v1

��
// /.-,()*+v2

/.-,()*+v3

OO >>|||||||| /.-,()*+v4

`B̀BBBBBBB

OO

G = (V,E)

there are two subgraph isomorphisms of G′ into G:

φ1 = {(v′1, v3), (v′2, v1), (v′3, v2)}
φ2 = {(v′1, v4), (v′2, v1), (v′3, v2)}

The set of all subgraph isomorphisms of a graph G′ = (V ′, E′) into a graph G = (V,E) can be represented
by an n-ary relation I ⊆ V n, where |V ′| = n. The subgraph isomorphism relation I is defined as follows:

(v1, . . . , vn) ∈ I ⇔ ∃ a subgraph isomorphism φ : G′ → G such that φ(v′1) = v1, . . . , φ(v′n) = vn

Given two graphs G′ = (V ′, E′) and G = (V,E) with |V ′| = n, let Ei,j ⊆ V n denote the n-ary relation
on V containing exactly those (pairwise disjoint) vertices of V which are joined by some arc in G, that is,

Ei,j = {(x1, . . . , xi, . . . , xj , . . . , xn) ∈ V n | (xi, xj) ∈ E, xr 6= xs for all r 6= s}

The subgraph isomorphism relation I can be computed as follows.

Theorem 3. I = ∩(v′i,v
′
j)∈E′Ei,j.

Proof. Let (x1 . . . , xn) ∈ ∩(v′i,v
′
j)∈E′Ei,j . and let φ : V ′ → V be the function given by φ(v′1) = x1, . . . , φ(v′n) =

xn. Since every relation Ei,j consists of pairwise disjoint vertices, φ is injective. Furthermore, since (φ(v′1), . . . ,
φ(v′i), . . . , φ(v′j), . . . , φ(v′n)) ∈ ∩(v′i,v

′
j)∈E′Ei,j , for every arc (v′i, v

′
j) ∈ E′ there is some Ei,j such that (x1 . . . ,

xn) ∈ Ei,j . Then (xi, xj) ∈ E.
Conversely, let the function φ : V ′ → V given by φ(v′1) = x1, . . . , φ(v′n) = xn be a subgraph isomorphism

of G′ = (V ′, E′) into G = (V,E). For every arc (v′i, v
′
j) ∈ E′ it must be (φ(v′i), φ(v′j)) ∈ E, and then

(φ(v′1), . . . , φ(v′i), . . . , φ(v′j), . . . , φ(v′n)) ∈ Ei,j . Therefore, (x1 . . . , xn) ∈ ∩(v′i,v
′
j)∈E′Ei,j . ut

Table 1. Number of solutions, BDD size in number of nodes, and time in seconds taken to find all subgraph isomor-
phisms of a random graph with m vertices into a random graph with n vertices, both with 25% connectivity.

m n CPU time isomorphisms BDD size

3 25 0.01 575 253
4 25 0.08 234 779
5 25 0.06 672 1 045
6 25 0.63 6 334 10 216
7 25 4.22 4 102 15 013
8 25 48.21 125 1 015
9 25 137.30 520 5 744

3 50 0.01 6 816 1 173
4 50 0.92 4 544 7 860
5 50 0.62 52 210 27 048
6 50 35.42 552 076 400 954

m n CPU time isomorphisms BDD size

3 100 0.03 40 964 3 119
4 100 18.88 103 416 105 743
5 100 7.11 1 539 840 278 399

3 150 0.07 193 584 7 576
4 150 99.71 512 375 440 979
5 150 50.74 17 319 542 1 560 970

3 200 0.11 480 744 12 427
4 200 57.32 1 611 593 1 229 120
5 200 131.57 74 097 604 4 445 444



Example 5. Given the graphs of Example 4, the subgraph isomorphism relation

I = {(v3, v1, v2), (v4, v1, v2)}

can be computed as

E1,2 ∩ E1,3 ∩ E2,3 ={(v1, v2, ∗), (v3, v1, ∗), (v3, v2, ∗), (v4, v1, ∗), (v4, v2, ∗)} ∩
∩ {(v1, ∗, v2), (v3, ∗, v1), (v3, ∗, v2), (v4, ∗, v1), (v4, ∗, v2)} ∩
∩ {(∗, v1, v2), (∗, v3, v1), (∗, v3, v2), (∗, v4, v1), (∗, v4, v2)} =

={(v3, v1, v2), (v3, v2, v1), (v4, v1, v2), (v4, v2, v1)} ∩
∩ {(v1, ∗, v2), (v3, ∗, v1), (v3, ∗, v2), (v4, ∗, v1), (v4, ∗, v2)} =

={(v3, v1, v2), (v4, v1, v2)} ,

where an asterisc replaces all remaining variables. For instance, (v1, v2, ∗) abbreviates both (v1, v2, v3) and
(v1, v2, v4) together.

Under the encoding σV : V → B
2 of Example 2, and using 2-bit vectors x = x1x2, y = y1y2, z = z1z2

to encode vertices v′1, v′2, v′3, respectively, this corresponds to computing the BDD that represents χE(x,y) ·
χE(y,z) ·χE(x,z) ·D(x,y) ·D(y,z) ·D(x,z) = y1(x1 +x2)z1(y1 +y2)z1(x1 +x2) ·D(x,y) ·D(y,z) ·D(x,z),

76540123x1

{{{{{

/.-,()*+y1

/.-,()*+y2

/.-,()*+z1

/.-,()*+z2

1 0

where D(x,y) = (x1 ⊕ y1) + (x2 ⊕ y2) = x1y1 + x1y1 + x2y2 + x2y2 indicates that x 6= y, that is, x1 6= y1

or x2 6= y2, and traversing all paths (only one, in this example) from the root node to the 1 leaf node,
x1 y1 y2 z1 z2, which encode the desired solutions:

x1 x2 y1 y2 z1 z2 = [(1, 1) (0, 0) (0, 1)] = (v4, v1, v2)
x1 x2 y1 y2 z1 z2 = [(1, 0) (0, 0) (0, 1)] = (v3, v1, v2)

6 Experimental Results

The algorithm has been implemented in C using a public-domain BDD package [19]. A series of experiments
has been carried out on random pattern and target graphs, on a Sun Ultra E250 Enterprise running Solaris
7.0 at 400 MHz and with 256 MB of main memory.

Random graphs have been generated using the multiplicative linear congruential random number generator
algorithm [16] for different values of arc probability: 10%, 15%, 20%, and 25%. Matching experiments have
been carried out on random pattern graphs of order m and random target graphs of order n, for selected
values m and n such that m 6 n and for a fixed arc probability value.

A total of 384 experiments have been carried out, for different values of pattern arc probability (10%,
15%, 20%, and 25%), target arc probability (10%, 15%, 20%, and 25%), pattern size (3, 4, 5, and 6 vertices),
and target size (10, 25, 50, 100, 150, and 200 vertices). Table 1 shows statistics for the number of solutions,
the size of the BDD containing them, and the time (in seconds) taken to find all subgraph isomorphisms of
a random pattern graph into a random target graph, both with arc probability 25%.

In order to compare the BDD approach to the results reported in [21], where non-directed graphs are
dealt with and both random pattern and target graphs have edge probability 25%, additional experiments



Table 2. Number of solutions and time in seconds (Ullmann approach) and number of solutions, BDD size in number
of nodes, and time in seconds (BDD approach) taken to find all subgraph isomorphisms of a random graph with m
vertices into a random graph with n vertices, both with 25% connectivity.

Ullmann BDD approach
CPU time isomorphisms CPU time isomorphisms BDD size

m n mean std. dev. mean std. dev. mean std. dev. mean std. dev. mean std. dev.

6 12 14.5 13.11 960.8 140.4 0.17 0.08 1 097.16 1 138.35 2 227.96 1 570.29
8 12 44.5 55.40 1 223.0 142.8 2.70 2.53 2 674.18 5 393.08 6 604.84 8 230.56

10 12 124.0 90.40 949.1 121.2 40.19 51.42 2 601.78 12 153.53 10 233.32 27 336.64
7 14 97.6 118.70 4 769.9 88.9 1.32 1.14 5 266.56 7 163.19 9 353.70 9 707.76

3 32 0.02 0.01 1 794.96 429.65 1 469.28 227.22
3 64 0.10 0.02 14 899.12 3 754.98 9 036.98 1 476.83
3 128 0.73 0.14 120 302.84 26 395.13 57 980.12 8 640.77
3 256 7.60 1.48 960 418.00 232 712.75 373 710.02 60 903.30
4 32 0.21 0.04 12 527.96 5 743.39 9 595.38 3 064.30
4 64 3.99 0.90 180 141.20 95 310.55 99 254.34 37 755.45
4 128 65.26 15.33 2 984 971.80 1 535 435.34 1 237 726.68 461 343.37
5 32 2.43 0.87 71 608.80 49 433.82 52 159.20 25 246.12
5 64 73.02 21.72 2 452 451.40 1 521 057.92 1 130 156.86 540 273.34

have been carried out representing every edge by a pairs of counter-parallel arcs. For each generated pattern
and target random graphs, the Boolean matrix of the pattern has been added to the Boolean matrix of the
target and non-connected graphs have been discarded, as was already done in [21]. Table 2 shows statistics
for the approach by Ullmann (number of solutions and time in seconds) and the BDD approach (number of
solutions, size of the BDD containing them, and time in seconds) for finding all subgraph isomorphisms of
a random pattern graph into a random target graph, both with arc probability 25%. For each variable the
mean and the standard deviation, which have been estimated over a sample of 50 observations, are given.

7 Conclusion

The subgraph isomorphism problem is dealt with in this paper. A novel approach is presented to the problem
of finding all subgraph isomorphisms of a (pattern) graph into another (target) graph.

A relational formulation of the problem, combined with a representation of relations and graphs by
Boolean functions, allows to handle the combinatorial explosion in the case of small pattern graphs and large
target graphs by using Binary Decision Diagrams (BDDs), which are capable to represent large relations and
graphs in small data structures.

Experimental results have shown that finding all subgraph isomorphisms of a small pattern graph into a
large target graph becomes feasible for reasonably dense pattern graphs, for instance for random graphs with
arc probability between 10 % and 25%. Moreover, for small pattern and target graphs and for arc probability
of 25%, which corresponds to the subgraph isomorphism experiments reported in [21], the BDD approach
outperforms all the results therein.

For very large target graphs, the approach is limited in the size of the pattern graph because BDDs
representing all subgraph isomorphisms become too large. An open problem is therefore to find an optimal
encoding of the target graph and optimal variable orderings in order to obtain smaller BDDs. Notice that
these encoding problems can be solved off-line.

The approach can be extended in several directions. One the one hand, it can be extended in a straight-
forward way for finding all induced subgraph isomorphisms, that is, subgraph isomorphisms that not only
preserve but also reflect the structure of the pattern in the target. Notice that subgraphs and induced sub-
graphs are called partial subgraphs and subgraphs, respectively, in [17].

On the other hand, a problem of increasing interest in the area of pattern recognition is that of approxi-
mate matching [10, 15]. Many applications in the area of pattern recognition are based on attributed graphs
[6, 11, 18, 23], whereas vertex and arc attributes can be represented by MTBDDs (multi-terminal BDDs, a



straightforward extension of BDDs and their algorithms). The techniques used in this paper can also be
extended to MTBDDs in order to find all approximate subgraph isomorphisms, at varying edit distances.

Last, but not least, the relational formulation of the problem of finding all subgraph isomorphisms can
also be used for finding one subgraph isomorphism, for instance by using satisfiability techniques. This is
of interest to application areas such as image understanding, there is usually a small number of subgraph
isomorphisms.
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