
Logic Decomposition of
Speed-Independent Circuits

ALEX KONDRATYEV, SENIOR MEMBER, IEEE,JORDI CORTADELLA, MEMBER, IEEE,

MICHAEL KISHINEVSKY, SENIOR MEMBER, IEEE,LUCIANO LAVAGNO, MEMBER, IEEE,

AND ALEXANDRE YAKOVLEV

Invited Paper

Logic decomposition is a well-known problem in logic synthesis,
but it poses new challenges when targeted to speed-independent
circuits. The decomposition of a gate into smaller gates must
preserve not only the functional correctness of a circuit but also
speed independence, i.e., hazard freedom under unbounded gate
delays. This paper presents a new method for logic decompo-
sition of speed-independent circuits that solves the problem in
two major steps: 1) logic decomposition of complex gates and
2) insertion of new signals that preserve hazard freedom. The
method is shown to be more general than previous approaches
and its effectiveness is evaluated by experiments on a set of
benchmarks.

Keywords—Asynchronous circuits, hazards, logic decomposi-
tion, speed indepedence, technology mapping.

I. INTRODUCTION

Asynchronous-circuit design has traditionally been con-
sidered as a sort of “black magic” that could be tack-
led only by hand and at great cost. On the other hand,
asynchronous circuits offer a few advantages over their
synchronous counterparts that explain a recent revival of in-
terest in asynchronous design techniques. The ultimate goal
of asynchronous computer-aided design (CAD) research is
to create a design flow that is as easy to use by designers
as the standard synchronous synthesis-based flow.

Unfortunately the separation between function and tim-
ing, which is the key to the success of synchronous design

Manuscript received November 30, 1997; revised September 1, 1998.
This work was supported in part by ACiD-WG (ESPRIT21949) and
CICYT TIC 95-0419.

A. Kondratyev is with University of Aizu, Aizu-Wakamatsu 965 Japan.
J. Cortadella is with the Department of Software, Universitat Politècnica

de Catalunya, Barcelona 08034 Spain.
M. Kishinevsky is with Intel Corporation, Hillsboro, OR 97124-5961

USA.
L. Lavagno is with the Dipartimento di Elettronica, Politecnico di

Torino, Torino 10129 Italy.
A. Yakovlev is with the Department of Computing Science, University

of Newcastle upon Tyne, Newcastle upon Tyne U.K.
Publisher Item Identifier S 0018-9219(99)00888-9.

techniques, is much more problematic in the asynchronous
case. Hazards, i.e., unexpected transitions on gate outputs,
are not filtered out by letting the combinational logic
stabilize before clocking registers, but they must be avoided
by a careful design of the logic and of its timing.

Three main classes of asynchronous circuits avoid haz-
ards purely by simple timing assumptions and by logical
means, thus preserving as much as possible the above
mentioned separation.

1) Fundamental mode circuits [1], [2], [3] assume that
the environment of a circuit is so slow that the
logic has time to stabilize before inputs can change
again. Intuitively a fundamental mode circuit behaves
similar to a synchronous one with a clock rate defined
by the arrival of input patterns. Therefore the problem
of avoiding hazards has a much simpler solution that
allows one to apply conventional design methods
known from the synchronous world. In particular the
decomposition of gates using algebraic techniques
does not lead to any circuit malfunctions as long as
the fundamental mode assumption remains valid [4].
However, despite being simple and convenient, this
assumption reduces the amount of concurrent activity
that can take place in a circuit with potentially loosely
coupled interfaces.

2) Delay-insensitive circuits [5] make no assumptions on
the delays of logic blocks and wires. Such circuits are
often synthesized by syntax-directed methods, using
nonstandard libraries of relatively large control blocks
[6], [7], followed by limited peephole optimizations
[8].

3) Speed-independent circuits [9], which can be built
by using conventional logic gates, assume that the
skew in the delays of fanout branches is smaller
than the delays of the logic gates. For this class of

0018–9219/99$10.00 1999 IEEE

PROCEEDINGS OF THE IEEE, VOL. 87, NO. 2, FEBRUARY 1999 347

circuits recent research has developed a variety of
logic synthesis techniques that allow one to trade off
synthesis speed (as in the case of the fast heuristics
developed by [10], [11], and [12]) and optimality
(as in the case of the more powerful and expensive
techniques developed by [13] and [14]).
Even though the underlying assumption may seem at
the same time pessimistic (about gates) and optimistic
(about wires), recent results [15] suggest that delay-
aware postoptimizations may further improve the
quality of the synthesized results. Moreover, delay
tuning [16] and low-skew routing [17] may help
satisfy the hypothesis about the low wire skew.

The main problem of logic synthesis for speed-
independent circuits is that they assume nonstandard
implementation libraries, such as arbitrarily complex
Boolean gates [18] or arbitrary faninAND gates [13], [14].
Standard logic decomposition followed by technology map-
ping is not applicable here, because arbitrary decomposition
of a large gate may introduce hazards [1], [4].

This paper is aimed exactly at solving that problem by
defining speed-independence-preserving decomposition of
large logic gates into smaller ones, carried down to two-
input NAND or NOR gates, on which standard technology
mapping techniques operate [19]. The proposed decompo-
sition method guarantees that every transition of a new
signal resulting from decomposition is acknowledged by
some other signal in the circuit, in order to avoid hazards.
This is achieved in two major steps:

1) finding a logic decomposition of the complex gate
circuit based on algebraic factorization originally
proposed for combinational logic [19];

2) inserting new signals whilst preserving overall hazard
freedom, based on an idea proposed in [20] and on
the efficient implementation techniques described in
[21].

Both these parts are provided with an appropriate progress
condition check and cost function evaluation, so as to
achieve global optimization.

The method has been embedded into the overall synthe-
sis procedure implemented in the software tool “petrify”
[22]. This publicly available tool1 can perform various
Petri net manipulations [23], as well as solve the state
encoding problem [21] and derive a speed-independent
technology-mapped implementation of asynchronous cir-
cuits. It contains about 50 000 lines of C code and runs
on different UNIX platforms and MS-Windows. Most of
the implemented algorithms use symbolic BDD-based rep-
resentations of the state space [24]. Currently, “petrify”
is being used by different universities and industries for
their research in asynchronous circuits. Few projects have
also been developed with the assistance of “petrify” for
the design of control logic. Among them, it is worthwhile

1[Online.] Available WWW: http://www.lsi.upc.es/˜jordic/petrify.

to mention the AMULET asynchronous implementation of
the ARM microprocessor.

A. Comparison With Previous Work

The approaches described in [25] and [26] work only
under the fundamental mode assumption, which is often
too restrictive as discussed above.

The method to perform technology mapping for speed-
independent circuits described in [27] decomposes existing
gates (e.g., a three-inputAND into two two-input AND’s),
without any further search of the implementation space. It
does not explore complex decompositions, which could use
multicube divisors, or decompose several gates simultane-
ously.

The work of [28] treated the decomposition problem for
speed-independent circuits in a manner that is similar to the
method presented in this paper, by inserting new signals
that implement subfunctions of complex gates. However,
explicit insertion of new signals is, as we will discuss
later, too expensive in the core of an optimization loop.
Moreover, efficient filters are required to limit the originally
huge search space.

The approach of [29] allows almost any Boolean logic
optimization available from the synchronous world and
assumes the use of the hazard-absorbing MHS-flops. These
special-purpose flip-flops need to be designed very carefully
by hand, with extensive failure-analysis tests, before they
can be reliably used in practice. Moreover, their correct
operation relies on the assumption thatNOT gate delays are
negligible with respect toAND gate delays (in contrast, most
other work in the area assumes that they are smaller than
AND gate delays).

Finally, Burns [30] analyzes the correctness conditions
for a decomposition of a sequential element that is part of
a speed-independent circuit into two sequential elements (or
a sequential and a combinational element). Notably, these
conditions are analyzed using the original (unexpanded)
behavioral model, thus helping the efficiency of the method.
Burns’ work is, in our opinion, a significant step in the right
direction, but it addresses mainly correctness issues. It does
not describe how to use the efficient correctness checks in
an automated optimization loop, and it does not allow the
sharing of a decomposed gate by commondivisor extraction.

The method presented in this paper, on the other hand:

1) allows one to automatically search for a solution
aimed at a given library (e.g., with specific maximum
gate fanin restrictions);

2) exploits logic sharing based on multiway acknowl-
edgment;

3) performs global optimization via resynthesis (rather
than sequential decomposition).

The rest of the paper is organized as follows. Section II
contains a theoretical background to facilitate subsequent
understanding of the method. Section III presents an
overview of the method and a simple example. Section IV
provides a more detailed view of the logic decomposi-
tion and speed-independent signal insertion algorithms.

348 PROCEEDINGS OF THE IEEE, VOL. 87, NO. 2, FEBRUARY 1999

Fig. 1. VME bus controller.

Section V presents results of experiments on a set of
benchmarks, obtained from various recent publications
on asynchronous circuit synthesis. Section VI concludes
the work.

II. THEORETICAL BACKGROUND

In this section, an overview of the synthesis flow for
speed-independent circuits is presented and illustrated with
a design example. Throughout the paper we assume that the
reader is familiar with multilevel logic synthesis [19], [31].

A. Circuit Specification

Signal transition graphs (STG’s) [18], [32] are a class of
interpreted Petri Nets [33], [34] that allow the designer to
comfortably capture the behavior of an asynchronous circuit
in a manner that is quite similar to timing diagrams.

As an example,consider Fig. 1, which depicts the inter-
face of a device with a VME bus. The behavior of the
controller is as follows: a request to read from or write
into the device is received by one of the signals,DSr or
DSw, respectively. In a read cycle, a request to read is
done through signalLDS. When the device has the data
ready (LDTACK), the controller must open the transceiver
to transfer data to the bus (signal). In the write cycle,
data are first transferred to the device . Next, a request
to write is done (LDS). Once the device acknowledges the
reception of the data (LDTACK), the transceiver must be
closed to isolate the device from the bus. Each transaction
must be completed by a return-to-zero of all interface
signals, seeking for a maximum parallelism between the
bus and the device operations.

Fig. 2 shows a timing diagram of the read cycle and
Fig. 3 the corresponding STG. All events in this STG are
interpreted as signal transitions: rising and falling edges are
labeled with “ ” and “ ” respectively.2

An STG has two types of vertices: transitions (denoted
by boxes) and places (circles). Places can be marked with
tokens (black dots). The set of all places currently marked
is called a marking. A transition is enabled if all its input

2We also use the notationa� if we are not specific about the direction
of the signal transition.

Fig. 2. Waveforms for the READ cycle.

Fig. 3. STG for the READ cycle.

places contain a token. In the initial marking of the STG
in Fig. 3 only one transition,DSr , is enabled; LDS is
not enabled because its input place does not have a
token. Every enabled transition can fire. Firing removes
one token from every input place of the transition and adds
one token to each of its output places. After the firing of
transition DSr , the net moves to a new marking
and then becomes enabled, while other transitions
(none in this case) sharing the same input place(s) may be
disabled due to the lack of input tokens. Transitions are
called concurrent if they both can fire from some marking
without disabling each other.

B. State Graphs

Playing the token game one can generate the reachability
graph (RG) with vertices corresponding to markings and
arcs to transitions between markings. Fig. 4 depicts the RG
for the READ cycle of the VME bus controller.

Each state of the RG can also be associated with a binary
code of signal values, which label the states in Fig. 4.

KONDRATYEV et al.: LOGIC DECOMPOSITION OF SPEED-INDEPENDENT CIRCUITS 349

Fig. 4. RG and SG for the READ cycle.

Enabled signals in each state are marked with a prime3.
An RG with binary encoding is called a state graph (SG)
of an STG. State graphs are of primary importance since
they form the basis of logic synthesis for asynchronous
circuits [18].

C. Implementability Properties

The following properties must hold in an SG to be
implementable as a speed-independent circuit [9].

1) Consistencyholds when rising and falling transitions
alternate for each signal.

2) Completeness of state encodingensures that any two
states with the same binary code have the same set
of enabled noninput signals, i.e., have the same post-
behavior.

3) Speed independence4 holds when a) no noninput
signal transition can be disabled by another signal
transition and b) no input signal transition can be
disabled by a noninput signal transition. The former
ensures that no short glitches, known as hazards, can
appear at the gate outputs, while the latter ensures
that no hazards can occur at inputs of the device.

The speed-independence property is often associated with
the notion of acknowledgment. Informally, we say that
transition acknowledges transition if the fact that

fires after has been enabled indicates that has
already fired. We say that is acknowledged if any firing
sequence starting from enabled is acknowledged by
some transition.

3Previous work, following [9] used a “*” for the same purpose, but this
may cause ambiguity with the notationa�.

4This property does not correspond exactly to Muller’s original def-
inition [9], and it should be more properly called output persistency.
However, the term “persistency” has been used with several different
meanings in the asynchronous circuit literature, and we prefer to use speed
independence here.

Table 1
Examples of Next-State Function Values for
Signal LDS in the SG of Fig. 5

Fig. 5. SG for the READ cycle with complete state coding.

D. Logic Synthesis

The goal of logic synthesis is to derive a gate netlist
that implements the behavior defined by the specification.
For the sake of simplicity, this step will be illustrated by
synthesizing a speed-independent circuit for the read cycle
of the VME bus (see Fig. 3).

The main steps in logic synthesis assume that the SG is
consistent and speed independent and are as follows:

1) encode the SG in such a way that the complete state
coding property holds; this may require the addition
of internal signals;

2) derive the next-state functions for each output and
internal signal of the circuit;

3) map the functions onto a netlist of gates.

1) Next-State Functions:The next-state function for a
signal is defined as follows. It maps the binary code of
each SG state into:

1) 1 if the signal has value 0or 1 in the binary code of
(it is either excited to go to 1, or stable at 1);

2) 0 if the signal has value 1or 0 in the binary code
of ;

3) —(don’t care) for all binary codes that do not corre-
spond to any reachable SG state.

Table 1 presents several examples of values for the next-
state function of signal in Fig. 5.

2) Complete State Coding (CSC):The previous defini-
tion, however, has a problem, shown by the two underlined
states in the SG of Fig. 4. They correspond to different
markings, and , but their binary codes are

350 PROCEEDINGS OF THE IEEE, VOL. 87, NO. 2, FEBRUARY 1999

Fig. 6. Implementation with a C-latch.

equal, 10 110. Moreover, enabling conditions in these two
states for output signalLDS are different. Therefore, the
value of the next state boolean function for signalLDS for
vector 10110 should be 1 (for the first state) and 0 (for the
second state). A similar problem holds for signal.

This is a conflict in the definition of the function. A
possible method to solve this problem is to insert new
state signals that disambiguate the encoding conflicts. Fig. 5
depicts a new SG in which a new signal,csc0, has been
inserted. Now the next-state functions for signalsLDS and

can be uniquely defined. The insertion of new signals
must be done in such a way that the resulting SG satisfies
consistency and speed-independence, as discussed in [20]
and [21].

3) Next-State Function Implementation:Once the next-
state function has been derived, Boolean minimization can
be performed to obtain a logic equation that implements the
behavior of the signal. In this step it is crucial to make an
efficient use of the don’t care conditions. For the example
of Fig. 5, the following equations can be obtained:

D LDTACK csc

LDS csc

DT ACK

csc DSr LDTACK csc DSr LDTACK

The properties of the SG described in Section II-C ensure
that any circuit implementing the next-state function of
each signal with only one atomic complex gate is speed
independent [9] (by atomic gate we mean a gate without
internal hazardous behavior). A possible hazard-free gate
implementation for the next-state function of the READ
cycle example is shown in Fig. 6, where the gate shown
as a circle with “C” is a so-called C-element [9] with next
state function .

However, this design flow has an essential problem,
because logic functions for signals might be too complex to
be mapped into single gates available in the library. Hence
the need for decomposition arises.

E. Gate-Level Implementability Without Hazards

In this paper, we develop a decomposition method based
on the use of standard architectures. In particular, we con-
centrate on the standard-C architecture, which is described
in Fig. 7(a) (multiple AND-OR gates can exist for both
setting and resetting the output). A synthesis method based
on this architecture was first suggested in [13] and [35].
This method defines an implementation condition that is

equivalent to the monotonic cover (MC) conditions [14]
that we use, but only for the case of decomposition into
simple gates. In our work we use the more general MC
conditions because they allow one to: 1) consider a wider
class of specifications (allowing bothAND andOR causality)
and 2) extend the basic theory to support more aggressive
optimizations detailed in [36].

In the rest of this paper we will show how to use only
implementable gates, that is gates which exist in the chosen
library, instead of the unbounded fanin gates assumed by
the above methods.

1) Excitation and Quiescent Regions:Given a signal ,
we can classify the states of the SG into the following sets:

1) positive and negative excitation regions (ER’s);
2) positive and negative quiescent regions (QR’s).

A set of states is called an ER for event (denoted by
ER) if it is a maximal connected set of states in which

is enabled. Since any event can have several separated
ER’s, an index is used for the distinction between different
connected occurrences of in the SG.

The QR (denoted byQR) of a transition , with
excitation regionER , is a maximal set of states
reachable fromER such that is stable (not enabled)
in and is not reachable from any otherER
without going throughER . Examples of ER and QR
for signal LDS are shown in Fig. 5.

2) MC Conditions: Let denote one of the first-
level AND-OR gates in the standard-C architecture.
is a correct monotonic poly-term cover for the excita-
tion region ER if the following three conditions are
satisfied.

1) Cover condition: covers all states ofER
(i.e., evaluates to 1 in all states ofER).

2) One-hot condition: does not cover any state
outsideER QR .

3) Monotonicity condition: can fall at most once
along any state sequence withinQR .

The meaning of the MC conditions can be understood by
considering the operation of a speed-independent circuit.
Suppose, for example, that at some point during circuit
operation we enter a state belonging toER . The
cover condition ensures that the gate implementing function

should go from 0 to 1 in that state. The second
condition guarantees that no other gates in the
signal network of and no gates in the signal
network of can be at 1 at that moment. Therefore

is the only gate in the network of signal with
the output value 1 and the propagation of this value to the
output of (through theOR gate and the C-element) gives
a complete information on (acknowledges) the switchings
in the network. When signal changes its value from 0
to 1, the circuit moves from the ERER into the QR
QR . In this region, according to MC, gate
will be reset and this switching (the only one possible
in QR) will be implicitly acknowledged when
will go low.

KONDRATYEV et al.: LOGIC DECOMPOSITION OF SPEED-INDEPENDENT CIRCUITS 351

Fig. 7. The standard-C architecture extended for (a) complex gates and (b), (c) its possible
optimizations.

Since under these conditions the outputs of the first-level
AND gates are one-hot encoded, any valid Boolean decom-
position of the second-levelOR gates is speed independent.

The standard-C architecture also permits a combinational
implementation of a signal. If the set and reset networks
are the complements of each other, then a C-element with
identical inputs can be simplified to a wire [see Fig. 7(b)
and (c)]5.

III. D ECOMPOSITIONMETHOD

As described in Section II, any speed-independent (i.e.,
output-persistent) SG satisfying the CSC condition can
be implemented using the standard-C architecture. This
guarantees that a correct boolean equation can be obtained
for each cover . However it does not guarantee that

can be implemented by one of the gates in the
library.

To perform technology mapping, complex gates must
be decomposed until all their fragments are mappable
onto library gates. The problem of decomposition of com-
binational circuits is well known, but the methods are
not directly applicable to speed-independent circuits. The
decomposition of a gate into smaller gates implicitly in-
troduces new internal signals (with delays associated with
these new gates) that may cause hazards.

The approach proposed in this work splits the problem
of logic decomposition of a gate into two subproblems:

1) combinational decomposition;
2) insertion of a new hazard-free signal.

5More precise condition for such an optimization can be formulated as:
the set network covers all states ofERj(a+) [QRj(a+) for all j, or
similarly the reset network covers all states ofERj(a�) [QRj(a�).

Fig. 8. Algebraic decomposition.

This process is iterated until all gates of the circuit can
be mapped onto library gates or no more progress can be
achieved, e.g., because no hazard-free decomposition can
be found for any of the complex gates. Each subproblem is
briefly described in the forthcoming sections.

A. Combinational Decomposition

As is traditionally done in multilevel combinational syn-
thesis, algebraic division has been chosen as the main
operation for logic decomposition. For each cover function

we look for algebraic divisors, aiming at decompo-
sitions of the following type: where
is the quotient , as shown in Fig. 8. In this figure,

on the left is an atomic complex gate with function
, while on the right it is an atomic complex

gate with (simpler) function . This decomposition
scheme reduces toAND-decomposition when and
OR-decomposition when . Different examples of
algebraic division are shown in Table 2.

1) Example: Fig. 9(a) and (b) depicts the STG and the
SG of the specification of a circuit. A complex gate
implementation of the circuit is shown in Fig. 10(a).

Let us assume that only two-input gates are available in
the library. Thus, signals and are not directly mappable
and must be decomposed. Contrary to synchronous circuits,

352 PROCEEDINGS OF THE IEEE, VOL. 87, NO. 2, FEBRUARY 1999

Fig. 9. Signal insertion.

(a) (b) (c)

Fig. 10. Implementations of the STG’s of Fig. 9.

Table 2
Examples of Algebraic Division

not every algebraic decomposition is valid. Some of them
may introduce unavoidable hazards and hence violate the
speed-independence requirements. To illustrate this, let us
decompose the gate in Fig. 10(a) by extracting the
algebraic divisor . The ON- and OFF-sets of the
function for are shown in Fig. 9(e) by shadowed areas.
When the circuit enters state 0000 [underlined in Fig. 9(e)],
two transitions may occur concurrently: and . Firing

first will enable gate to make a transition from
low to high, while pulls the output of the gate again to
low. In a speed-independent circuit, no assumptions can be
made about the relative speed of concurrent transitions, and
therefore the considered situation is a classical illustration
of hazardous behavior on the output of gate. Hence, the
decomposition is invalid.

B. Insertion of Hazard-Free Signal

Each divisor of is a candidate function to be im-
plemented as a new signalof the circuit. The new signal
will be hazard-free if all its transitions are acknowledged
by other signals of the circuit. In the technique presented
in this paper, transitions of may be acknowledged by
several signals. This is more general and powerful than

KONDRATYEV et al.: LOGIC DECOMPOSITION OF SPEED-INDEPENDENT CIRCUITS 353

[27] and [30] where transitions of must be acknowledged
locally, only by the same signal from whose cover was
extracted.

Multiple acknowledgment offers two advantages:

1) the same signal can be shared by several cover func-
tions (this corresponds to the extraction of common
divisors in classical multilevel decomposition);

2) correct speed-independent decomposition can be
found even if it does not exist for solutions with single
acknowledgments (as shown by the experimental
results).

Hazard freedom is guaranteed for the new signalas
follows. Two new events, namely and , are inserted
in the SG so that the properties for speed-independent im-
plementability are preserved. The new events are defined in
such a way that the implementation of signalcorresponds
to the selected divisor for decomposition. If and
can be inserted under such conditions,is hazard-free.
Now can be used as a new signal in the support of any
function cover and contribute to derive simpler equations.
Care must be taken not to increase the complexity of other
cover functions (Section IV-C).

1) Example (Continued):Let us consider again the ex-
ample of Fig. 9 and look for a hazard-free decomposition.
Among the different algebraic divisors forand , there is
one that looks especially interesting for a possible sharing
of logic: .

The insertion of the events and must be done
according to the implementation of the signal as .
The shadowed areas in Fig. 9(b) indicate the sets of states
in which the Boolean function is equal to 0 and 1,
respectively. must implement the transition from the
states in which is equal to 0 to the states in which
is equal to 1, i.e. must be a successor of , whereas

must implement the opposite transition and therefore
is inserted after .

Fig. 9(c) and (d) depicts two possible insertions of signal
at the STG level. Both insertions result in specifica-

tions that are implementable as different speed-independent
circuits (shown in Figs. 10(b) and (c) respectively). Inter-
estingly, both can be implemented with only 2-input gates.
However, the insertion of as a predecessor of and

[Fig. 9(c)] changes the implementation of signal,
because the fact that triggers forces to be in
the support of any realization of. A simpler circuit can be
obtained if is made concurrent with and thus only
trigger [Fig. 9(d)]. In the resulting circuit, signal is
only in the support of and , i.e., of those signals that
acknowledge the transitions of.

Therefore, the insertion of new signals for logic decom-
position can be done by exploring different degrees of
concurrency with regard to the behavior of the rest of the
signals. Finding the best tradeoff between concurrency and
logic optimization is one of the crucial problems in the
decomposition of speed-independent circuits that can be
explored by using our method and that makes it different
from previous work (e.g., [28]).

(a) (b)

Fig. 11. Event insertion scheme: (a) before insertion and (b) after
insertion.

IV. DECOMPOSITIONTECHNIQUES

The generation of divisors for decomposition should be
pruned to avoid an explosion of candidates for complex
functions.

Two conditions help in constructing an efficient filter
of solutions in the huge decomposition space. Only those,
decompositions are considered valid which:

1) do not introduce hazards (i.e., preserve speed-
independence);

2) heuristically guarantee progress in mapping the cir-
cuit to the given library.

The above conditions could be verified in a straight-
forward (and inefficient) way for every function used
for decomposition, as was proposed in [28]. We could
explicitly insert a new signal , with logic function ,
into the original SG and then check whether the modified
SG satisfies these conditions. However, there are several
reasons that make such a naive approach hardly acceptable.
It was already mentioned that for complex functions the
number of divisors can be huge. The situation is even
worse because another dimension of complexity arises
from the fact that for the same function a new signal

can be inserted in many different ways [see,
e.g., two different insertions for in Fig. 9(c) and
(d)]. Taking into account that the construction of a new
SG is computationally expensive, there is no way to get
an efficient implementation by the above straightforward
approach.

Better results can be obtained if one checks both
speed-independence (as proposed in [30] and discussed
in Sections IV-A and IV-B) and progress conditions (as
discussed in Section IV-C) directly in the original SG.

A. Property-Preserving Event Insertion

Event insertion is the operation on an SG which assigns a
subset of states to be an excitation region for a new event. A
new event can fire from any state of an excitation region
ER . Hence in the SG that is obtained after the insertion
of a new event each state ofER is split into two:
before and after the firing of event (see Fig. 11). This
operation was defined and implemented in [20], [21] in the
context of modifying an SG to satisfy the CSC property.

When a new signal is inserted into the SG the
value of its logic function defines a natural bipartition
over the set of SG states: and [see Fig. 12(a)].

Signal must change when going from the states
with to the states with and back. The sets of

354 PROCEEDINGS OF THE IEEE, VOL. 87, NO. 2, FEBRUARY 1999

(a) (b)

Fig. 12. Partition of states induced by a functionF .

states where changes are called input borders of
or (denoted by or IB , respectively).
Informally, IB is the subset of states by which we
enter from (and vice-versa forIB).
Input borders are always included into the corresponding
excitation regions of .

When a new signal is inserted in the SG, care should
be taken about preserving:

1) speed-independence;
2) consistency (in any sequence rising and falling transi-

tions of must alternate), CSC (next-state functions
must be well-defined for both old and new signals);

3) input–output (I/O) interface (signal must be an
internal signal of the circuit).

An insertion that satisfies all these conditions will be called
valid. Let us consider each requirement of valid insertion
separately.

1) Speed-Independence:If the insertion of preserves
the speed-independence of the SG the corresponding set
of statesER is called a speed-independence preserving
(SIP) set. The formal conditions for the set of statesER
to be a SIP set can be given in terms of intersections
betweenER and the so-called state diamonds of the
SG [21], which are quadruples of states obtained via the
interleaving of concurrent eventsand . These conditions
are illustrated by Fig. 13, where all possible cases of
the illegal intersections ofER with state diamonds
are shown. It has been shown in [21] that any illegal
intersection results in the insertion of a new signal with a
hazardous behavior. For example, in the case of Fig. 13(b)
it results in the invalid decomposition in Fig. 9(e).

It is easy to see that any illegal intersection can be
transformed into a legal one by adding states from the
relevant diamond intoER . For example, adding state

to ER in Fig. 13(b) transformsER into a SIP set
and the insertion of signalbecomes hazard-free. However,
such transformation may change the function for signal
and is not always possible if the function, as in the case of
decomposition considered in this paper, is fixed.

2) Consistency:The only consistent changing sequence
for is: Bearing in mind that
in any state ofIB is going to rise (i.e., these are states
in which), consistency is violated ifIB is entered
from a state in which (similar considerations
apply to IB and). The simplest way to avoid
this problem is to expandIB by including state into

(a) (b) (c)

Fig. 13. Possible violations of SIP conditions.

it. This will make transitions from stateinternal toIB ,
that is no longer dangerous for consistency.

3) CSC: CSC is guaranteed for the newly inserted signal
, since its excitation and quiescent regions are defined

based on a Boolean function , that is the next-state
function of . It is also easy to show that CSC is not
changed for old signals, since:

1) any signal whose transitions are not delayed byis
obviously unaffected;

2) any signal whose transitions are delayed bycan
have CSC conflicts only due to the states which have
been split by the insertion of, but these states have
different binary labels in signal .

4) I/O Interface: When signal is inserted into the SG
using ER , the events with whichER is exited
are delayed until fires (see, e.g., event in Fig. 11).
If such an exit event is associated with an input signal,
the environment is forced to wait before it can change
this input until is observed. Signal thus becomes a
primary output of the circuit. This is against the idea of
keeping the I/O interface intact during the decomposition.
To preserve the I/O interface we can use the same remedy
as for consistency violations: whenever input signals exit
ER , the latter must be expanded until all the exit signals
are noninputs.

B. Finding a Valid Excitation Region

An efficient procedure that finds a valid setER [and
similarly for ER] given a function for can be
organized as follows (see [21] for more details).ER is
initialized to be the input borderIB of . If the initial
ER is consistent, preserves I/O interface and is an SIP
set, then a valid insertion has been found. If one of the
validity conditions does not hold, theER is expanded
toward the states with .

The expansion is done in such a way that the insertion of
the new signal preserves speed independence for all signals.
As an example, let us considerER in Fig. 13(b). The
insertion of would not preserve speed independence
for . There are two ways of locally expandingER
to overcome this problem: 1) by including , thus
delaying and being concurrent with and 2) by including

, thus being delayed by and concurrent with .
In the proposed approach only forward expansions are
considered and, therefore, the latter would be applied.
The expansion is iteratively performed until a satisfactory
solution is found.

KONDRATYEV et al.: LOGIC DECOMPOSITION OF SPEED-INDEPENDENT CIRCUITS 355

Fig. 14. Selection of valid excitation regions.

As shown in Fig. 12(b), by expandingER we can:

1) either obtain a set which is SIP, consistent, and pre-
serving I/O interface (which gives the valid insertion
we are looking for);

2) or reach the boundaries of the set of states with
with some remaining violations.

The latter implies that there exists no valid insertion of
signal with the partition implied by logic function , and
the decomposition based on must be rejected.

Note that the solution found in the expansion ofER
(if any) produces a unique validER which has the
minimum size, as shown in [21]. This solution, however,
may not be optimal, and further expansion can be applied,
e.g., to increase the amount of concurrency for, while
preserving the above conditions.

1) Example (Continued):Fig. 9 shows the decomposi-
tion based on the insertion of a new signalwith function

. Let us explore different ways to select the excita-
tion regions of . The set of states with is entered
through state 1001, while the set with is entered
through 0111. HenceIB while IB .
Both input borders are SIP sets, satisfy consistency, and
their exit events correspond to output signals. Therefore
IB and IB give valid excitation regions for the
insertion of signal , and these regions have the minimum
size among all valid insertions. The corresponding STG and
implementation of signal were shown in Figs. 9(c) and
10(b), respectively. The implementation ofrequires the
acknowledgment of transitions of by gates , and .
This makes the function of more complex than in the
original SG.

To simplify the implementation let us consider the ex-
pansion ofER within the set of states .

The first case of expansion is shown in Fig. 14(b), where
by including the state 1000ER becomes .

is an exit transition fromER and is an input
signal. HenceER is an invalid selection because it
does not preserve I/O interface for the original circuit. The
violation can be fixed by adding state 1010 toER . This
gives a valid selection ofER with the corresponding

STG and implementation of signal shown in Figs. 9(d)
and 10(c). This circuit is simpler than that of Fig. 10(b).

ER can be expanded further, e.g., by including
state 0001 as shown in Fig. 14(c). This, however,
leads to an illegal intersection with the state diamond

, which violates speed inde-
pendence. To solve this problem state 0000 must also
be included intoER . After that, ER illegally
intersects the state diamond ,
which in its own turn can be fixed by adding 0010 to
ER . The latter gives a valid selection ofER with
the corresponding STG and circuit shown in Fig. 14(d) and
(e). This example shows how, starting fromIB , the
excitation region for transition is expanded to satisfy
the conditions of Section IV-A. It results in a successful
decomposition because in the procedure of expansion no
states in which were required to be included in
ER .

We have thus identified a way of finding a correct position
in the state graph to insert a new signal for a given Boolean
decomposition. In the Section IV-C we shall look at the
conditions that heuristically guarantee progress toward the
overall goal of decomposing all gates that do not belong
to the target library.

C. Progress Analysis

This section investigates a heuristic procedure that ex-
plores the huge optimization space by quasi-greedy opti-
mization of a two-level cost function. The cost function is
split into two levels in order to make sure that:

1) the newly inserted signal allows a correct speed-
independent factorization of the complex gate; as we
will see below, this is not always the case, even ifis
speed independent, since excitation region expansion
may cause the factored gate to be more complex than
expected;

2) other signals do not increase in cost “too much” due
to the need to acknowledge the transitions of; al-
lowing some increase in cost is sometimes necessary
in order to escape from local minima.

Both cost estimations must be performed on the original
SG, without explicitly adding the new signal, in order to
keep the execution time of the decomposition algorithm
within reasonable limits. We will call a reduction of the
former local progress and a reduction of the latter global
progress, and examine each one in turn after a motivating
example.

Let the target cover function be , in
which is the candidate for extraction. At first we should
find valid excitation regions for the new signal . If
such ER and ER , can be derived, as discussed
in Section IV-B, then there is a speed-independent imple-
mentation of the SG with a new signal. The purpose of
the insertion of signal is to simplify the cover function

by substituting with .

356 PROCEEDINGS OF THE IEEE, VOL. 87, NO. 2, FEBRUARY 1999

Fig. 15. Solution with no progress.

This purely algebraic simplification is, however, not
always possible in the asynchronous case, since in order
to preserve speed independence, may now require
more fanin signals. Let us illustrate this by considering our
example.

1) Example (Continued):Fig. 15 shows one of the
speed-independent insertions of signalbased on ex-
tracting function out of the functions for signals
and for the initial specification given in Fig. 9. This
insertion corresponds to selecting excitation regions as
follows [see Fig. 15(a)]:ER and
ER . The STG with the new signal inserted,
the new state graph, and the new circuit are shown in
Fig. 15(b), (d), and (c), respectively.

Although function has been extracted, it does not help
to reduce the literal count for the target cover of signal
. It still has three literals: , because must be

an input to both gates for and . To avoid confusion,
note that the circuit with a two input gate implementation
for signal shown in Fig. 10(b) does not correspond to the
selectedER , as can be seen by comparing STG’s from
Fig. 9(c) and Fig. 15(d). In the former, precedes ,
while in the latter, is concurrent with .

The most natural implementation (based on algebraic
factoring) is unfortunately incorrect, as shown in
Fig. 15(d), because function covers four states of the
new state graph, while there are only two states in which
signal has an implied value equal to one. Hence function

does not provide a correct cover for signal.
2) Local Progress Conditions:The local progress con-

dition has the purpose of verifying that the algebraic
decomposition is indeed a valid speed-independent decom-
position. Thus we must check that
satisfies in the new SG all three MC conditions defined

in Section II-C. This is true, informally, if and only if the
following apply.

1) Cover [effectively, set ER] completely
covers the intersection ofER and . This
guarantees that no transition is insideER and
thus ensures the Cover Condition for .

2) Cover does not evaluate to 1 outside the union
of ER and QR . This ensures the one-hot
condition for .

3) a) Cover does not change its value from 0 to 1
in the intersection ofQR and . This
guarantees the absence of nonmonotonic “1-0-1”
transitions along any path inER QR
in .

b) No transition of cover from 1 to 0 can occur
inside QR , unless already evaluates to 1.
This ensures the absence of nonmonotonic “0-1-
0” transitions along any path inER QR
in .

In the above example function, is not a correct cover
for because the chosenER contains transition .
Due to this cannot trigger (similarly, transitions of

cannot trigger). Hence function cannot implement
a trigger signal for and signal should be added for a
proper implementation of gate. Hence no local progress
is achieved for the target of the decomposition, gate.

A more precise formulation of the local progress condi-
tions requires the notion of state image.

A state from the expanded SG, , is said to be an
image of a state from the original SG, , if the values
of all the signals except are the same in and in .
Correspondingly, state is called the inverse image of.
The inverse image for any state in is unique, but the
converse is not true. Each state ER from SG
has two images in , since we use a signal insertion
scheme such that . All the other states in have
one image. The image relation is naturally extended to sets
of states. If is a set of states in , then its inverse
image is denoted by . To avoid confusion, we will add
subscript or to identify the objects in SG’s and
if necessary.

The validity of substituting a new signal in a cover
function is checked by considering the inverse
images of ER and QR . By construction,
ER is the inverse image ofER . The inverse
image for QR’s can include additional states because
some original signal transitions are delayed by.
For example, QR [see
Fig. 15(a)] while in the expanded SGQR

[see
Fig. 15(d)] with an inverse imageQR

. In general, computing
inverse imagesQR is easy by starting withQR
and expanding it forward inside the next excitation region
of signal , if it has nonempty intersection withER
or ER .

KONDRATYEV et al.: LOGIC DECOMPOSITION OF SPEED-INDEPENDENT CIRCUITS 357

Table 3
Experimental Results

We will now formulate the local progress condition
by presenting conditions for preserving monotonic cover
conditions for substituting function with one literal in
the cover function . If these conditions, formulated
in terms of the original state graph, are satisfied, then
simplification for gate implementing signalis guaranteed
to be possible.

For a given event and a set of states we define the
set of states following immediately after as follows:

after

We can now more formally state our local progress
conditions. Let be an MC ofER
in SG . Let ER andER be selected for inserting
a signal . The function satisfies the
three MC conditions in the new SG , if and only if, as
informally explained above6:

1) Cover condition: after ER
ER ;

6In the formulas we useF; G andH to denote the sets of states in which
these functions evaluate to one, and hence we liberally apply Boolean
operations, such as�;+, and set operations, such as\;[, interchangeably.

Fig. 16. Example of global acknowledgment: a) STG, b)
three-AND gate implementation, c) two-AND gate implementation
and d), e) invalid “local” decompositions.

358 PROCEEDINGS OF THE IEEE, VOL. 87, NO. 2, FEBRUARY 1999

Fig. 17. mr1 before and after logic decomposition into 2-literal
gates.

2) One-hot condition: for all : if ER
QR , then ER ;

3) Monotonicity conditions:

a) QR ER ;
b) QR ER

Pred .

3) Global Progress Conditions:The local progress con-
ditions (if satisfied) guarantee that the implementation of
cover function will be simplified as a result of
decomposition. However, to accept a decomposition we
need to ensure that it does not significantly increase the
complexity of logic for other signals. The solutions in
Figs. 10(b) and 15(c) increase the size of the cover for
. This may or may not be considered acceptable. In this

work, we use a conservative estimate of the increase of

logic complexity, based on the calculation of the number
of trigger signals before and after the insertion of a new
signal. This is based on the facts that:

1) trigger signals of a signal (signals whose transitions
are immediate predecessors of transitions of) area
always in the support of the function implementing;

2) the function implementing a signal with no new
trigger signals after the insertion will never be more
complex than the original one.

The reader is referred to [37] for more details and more
sophisticated methods for global progress estimation.

V. EXPERIMENTAL RESULTS

The strategy for algebraic decomposition presented above
has been implemented in the CAD tool “petrify.” Algebraic

KONDRATYEV et al.: LOGIC DECOMPOSITION OF SPEED-INDEPENDENT CIRCUITS 359

decomposition has been applied to a set of benchmarks, and
the results are shown in Table 3.

We measured the complexity of each gate as the number
of literals required to implement it as a sum-of-product gate,
ignoring the cost of input and output inversions. Thus both
a two-inputEXOR gate and a gate implementing
function are is considered to
be four-literal gates.

The improvements obtained by allowing global acknowl-
edgment of signals are illustrated in Fig. 16. For the STG of
Fig. 16a), output signals and are implemented by three-
input AND gates. Global acknowledgment makes it possible
to find a decomposition into two-inputAND gates, in which
both outputs and are used to acknowledge the transitions
of a new signal . No valid decomposition preserving
speed-independence exists whenis acknowledged by
only one output (either or). Methods which consider
only local acknowledgment (i.e., within a single signal
network), such as [6] would fail to find such decompo-
sitions.

The first set of columns in Table 3 indicates the com-
plexity of the circuit before decomposition. The second
set of columns reports the number of signals inserted for
decomposition using gates with at mostliterals

, and the CPU time required to find the decom-
position (in seconds, for a SparcStation 20). The number
of inserted signals shows also the number of iterations in
the decomposition algorithm (the circuit is re-synthesized
every time a new signal is inserted). The next column
summarizes the results presented by Siegel [27] about the
implementability of the circuit with only two-input gates.7

All decompositions have been independently verified to be
speed-independent.

Only five out of the 32 examples were not implementable
by our method (which, like all other known methods in
the literature, is only heuristic) with two-input gates (entry
“n.i.” in the table). Only one five-input gate in “pe-send-
ifc” and two five-input gates in “tsend-bm” could not be
decomposed when attempting to implement these circuits
with four-input gates. We significantly improve over the
results presented in [27], and only one circuit (pe-rcv-if)
could not be implemented with two-input gates from that
benchmark suite.

The global-acknowledgment allows the method to ef-
fectively decompose complex gates with high fan-in (six
or seven literals). This is shown by circuits like mr1 and
vbe10b that are implemented with two-input gates. Fig. 17
illustrates this fact, depicting the circuit mr1 before and
after logic decomposition into two-input gates.

The final columns present a rough estimation of
the cost of speed-independence-preserving logic de-
composition. The cost is evaluated by comparing the
area (after technology mapping) in the case of logic
decomposition that preserves (SI) and does not preserve
(non-SI) speed independence respectively. The former

7A more direct comparison with more recent work [6] is difficult
because the complexity of implementation is measured in [6] in terms
of inputs to FPGA lookup tables, but not in terms of simple gates.

is performed by decomposing the circuits into three-
literal gates and then mapping onto a gate library.
During mapping, small gates can be collapsed to match
larger gates in the library without introducing hazardous
behavior. The non-SI mapping is performed by SIS
by using the following script:astg to f; source
script.rugged; map; phase . In some cases,
such as vbe6a, the area of the SI implementation is
smaller than the non-SI one, because even non-SI
decomposition is just a heuristic technique, and hence
our algorithm happens to find a better solution. In most
cases, on the other hand, a relatively low area cost
(generally less than 15%) is required in order to preserve
speed independence.

VI. CONCLUSION

This paper has presented a solution to the problem of
logic decomposition of asynchronous speed-independent
circuits. The method, implemented in the tool “petrify,”
is based on a two-step approach. The first step chooses
a candidate for decomposition from the set of algebraic
divisors of the target function. The second step performs
the actual decomposition by implementing the candidate
function as a new signal that can be used to resynthe-
size the whole circuit. Multiple acknowledgments for
appear automatically at this function generation step and
help to guarantee the hazard-freedom of the decomposed
function.

REFERENCES

[1] S. H. Unger, Asynchronous Sequential Switching Circuits.
New York: Wiley Interscience, 1969.

[2] S. M. Nowick and D. L. Dill, “Exact two-level minimization
of hazard-free logic with multiple-input changes,” inProc. Int.
Conf. Computer-Aided Design, Nov. 1992, pp. 626–630.

[3] K. Y. Yun and D. L. Dill, “Automatic synthesis of 3D asyn-
chronous state machines,” inProc. Int. Conf. Computer-Aided
Design, Nov. 1992, pp. 576–580.

[4] D. Kung, “Hazard-nonincreasing gate-level optimization algo-
rithms,” in Proc. Int. Conf. Computer-Aided Design, Nov. 1992,
p.631.

[5] F. U. Rosenberger, C. E. Molnar, T. J. Chaney, and T.-P.
Fang, “ -modules: Internally clocked delay-insensitive mod-
ules,” IEEE Trans. Comput., vol. 37, pp. 1005–1018, 1988.

[6] J. C. Ebergen,Translating Programs into Delay-Insensitive Cir-
cuits. Amsterdam, The Netherlands: Centrum voor Wiskunde
en Informatica, 1989.

[7] K. van Berkel, “Handshake circuits: An intermediary between
communicating processes and VLSI,” Ph.D. dissertation, Tech-
nical Univ. Eindhoven, The Netherlands, 1992.

[8] K. van Berkel, R. Burgess, J. Kessels, A. Peeters, M. Roncken,
F. Schalij, and R. Wiel, “A single-rail re-implementation of a
DCC error detector using a generic standard-cell library,” in
Proc. 2nd Working Conf. Asynchronous Design Methodologies,
London, May 1995.

[9] D. E. Muller and W. C. Bartky, “A theory of asynchronous
circuits,” in Ann. Comput. Lab. Harvard Univ., pp. 204–243,
1959.

[10] P. Vanbekbergen, F. Catthoor, G. Goossens, and H. De Man,
“Optimized synthesis of asynchronous control circuits from
graph-theoretic specifications,”IEEE Trans. Computer-Aided
Design, vol. 12, pp. 1426–1438, Jan. 1993.

[11] K.-J. Lin, C.-W. Kuo, and C.-S. Lin, “Synthesis of hazard-
free asynchronous circuits based on characteristic graph,”IEEE
Trans. Comput., vol. 46, pp. 1246–1263, Nov. 1997.

360 PROCEEDINGS OF THE IEEE, VOL. 87, NO. 2, FEBRUARY 1999

[12] E. Pastor and J. Cortadella, “Polynomial algorithms for the
synthesis of hazard-free circuits from signal transition graphs,”
in Proc. Int. Conf. Computer-Aided Design, Nov. 1993, pp.
250–254.

[13] P. A. Beerel and T. H.-Y. Meng, “Automatic gate-level synthe-
sis of speed-independent circuits,” inProc. Int. Conf. Computer-
Aided Design, Nov. 1992, pp. 581–587.

[14] A. Kondratyev, M. Kishinevsky, B. Lin, P. Vanbekbergen, and
A. Yakovlev, “Basic gate implementation of speed-independent
circuits,” in Proc. Design Automation Conf., 1994, pp. 56–62.

[15] C. Myers, T. Rokicki, and T. H.-Y. Meng, “Automatic synthesis
of gate-level timed circuits with choice,” inAdv. Res. VLSI, pp.
42–58, Mar. 1995.

[16] L. Lavagno and A. Sangiovanni-Vincentelli,Algorithms for
Synthesis and Testing of Asynchronous Circuits. Norwell, MA:
Kluwer, 1993.

[17] R.-S. Tsay, “An exact zero-skew clock routing algorithm,”IEEE
Trans. Computer-Aided Design, vol. 12, pp. 242–249, Feb.
1993.

[18] T.-A. Chu, “Synthesis of self-timed VLSI circuits from graph-
theoretic specifications,” Ph.D. dissertation, Massachusetts Inst.
Technol., Cambridge, June 1987.

[19] G. De Micheli,Synthesis and Optimization of Digital Circuits.
New York: McGraw-Hill, 1994.

[20] P. Vanbekbergen, B. Lin, G. Goossens, and H. De Man, “A
generalized state assignment theory for transformations on
signal transition graphs,” inProc. Int. Conf. Computer-Aided
Design, Nov. 1992, pp. 112–117.

[21] J. Cortadella, M. Kishinevsky, A. Kondratyev, L. Lavagno,
and A. Yakovlev, “A region-based theory for state assignment
in speed-independent circuits,”IEEE Trans. Computer-Aided
Design, vol. 16, pp. 793–812, Aug. 1997.

[22] , “Petrify: a tool for manipulating concurrent specifica-
tions and synthesis of asynchronous controllers,”IEICE Trans.
Inform. Syst., vol. E80-D, no. 3, pp. 315–325, Mar. 1997.

[23] J. Cortadella, M. Kishinevsky, L. Lavagno, and A. Yakovlev,
“Deriving Petri nets from finite transition systems,”IEEE Trans.
Comput., vol. 47, pp. 859–882, Aug. 1998.

[24] E. Pastor, O. Roig, J. Cortadella, and R. Badia, “Petri net
analysis using boolean manipulation,” inProc. 15th Int. Conf.
Application and Theory of Petri Nets, Zaragoza, Spain, June
1994, pp. 416–435.

[25] P. Siegel, G. De Micheli, and D. Dill, “Automatic technol-
ogy mapping for generalized fundamental mode asynchronous
designs,” inProc. Design Automation Conf., June 1993, pp.
61–67.

[26] P. A. Beerel, K. Yun, and W. C. Chou, “Optimizing average-
case delay in technology mapping of burst-mode circuits,” in
Int. Symp. Advanced Research in Asynchronous Circuits and
Systems, Mar. 1996, pp. 244–260.

[27] P. Siegel and G. De Micheli, “Decomposition methods for
library binding of speed-independent asynchronous designs,”
in Proc. Int. Conf. Computer-Aided Design, Nov. 1994, pp.
558–565.

[28] P. Beerel, “CAD tools for the synthesis, verification, and
testability of robust asynchronous circuits,” Ph.D. dissertation,
Stanford Univ., Stanford, CA, 1994.

[29] M. Sawasaki, C. Ykman-Couvreur, and B. Lin, “Externally
hazard-free implementations of asynchronous circuits,” inProc.
Design Automation Conf., June 1995.

[30] S. Burns, “General conditions for the decomposition of state
holding elements,” inProc. Int. Symp. Advanced Research in
Asynchronous Circuits and Systems, Aizu, Japan, Mar. 1996.

[31] R. K. Brayton, G. D. Hatchel, and A. L. Sangiovanni-
Vincentelli, “Multilevel logic synthesis,”Proc. IEEE, vol. 78,
pp. 264–300, Feb. 1990.

[32] L. Y. Rosenblum and A. V. Yakovlev, “Signal graphs: From
self-timed to timed ones,” inProc. Int. Workshop Timed Petri
Nets, Torino, Italy, 1985, pp. 195–207.

[33] T. Murata, “Petri Nets: Properties, analysis and applications,”
Proc. IEEE, vol. 77, pp. 541–580, Apr. 1989.

[34] J. L. Peterson, “Petri nets,”ACM Comput. Surv., vol. 9, no. 3,
Sept. 1977.

[35] P. A. Beerel, Ch. Myers, and T. H.-Y. Meng, “Covering con-
ditions and algorithms for the synthesis of speed-independent
circuits,” IEEE Trans. Computer-Aided Design, vol. 17, pp.
205–219, Mar. 1998.

[36] A. Kondratyev, M. Kishinevsky, and A. Yakovlev, “Hazard-free

implementation of speed-independent circuits,”IEEE Trans.
Computer-Aided Design, vol. 17, pp. 749–771, Sept. 1998.

[37] A. Kondratyev, J. Cortadella, M. Kishinevsky, L. Lavagno,
and A. Yakovlev, “Technology mapping for speed-independent
circuits: Decomposition and resynthesis,” inProc. 3rd Int.
Symp. Advanced Research in Asynchronous Circuits and Sys-
tems, Eindhoven, The Netherlands, Apr. 1997, pp. 240–253.

Alex Kondratyev (Senior Member, IEEE) re-
ceived the M.Sc. and Ph.D. degrees in computer
science from the Electrotechnical University of
St. Petersburg, Russia, in 1983 and 1987, re-
spectively.

He is an Associate Professor in the Hardware
Department at the University of Aizu, Japan.
From 1988 to 1993, he was with the R&D Coop
TRASSA, St. Petersburg, where he was a Senior
Researcher. Previously, he was an Assistant
Professor at the Electrotechnical University of

St. Petesburg. He is a coauthor ofConcurrent Hardware: The Theory and
Practice of Self-Timed Design(Wiley, 1993). His research interests include
several aspects of computer-aided design, with particular emphasis on
asynchronous design and theory of concurrency.

Dr. Kondratyev was Co-Chair of the Async’96 Symposium, Co-Chair
of the CSD’98 Conference, and he has been a member of the program
committee of several conferences.

Jordi Cortadella (Member, IEEE) received the M.Sc. and Ph.D. de-
grees in computer science from the Universitat Politẽcnica de Catalunya,
Barcelona, Spain, in 1985 and 1987, respectively.

He is an Associate Professor in the Department of Software, Universitat
Politècnica de Catalunya. In 1988, he was a Visiting Scholar at the
University of California, Berkeley. His research interests include theory
of concurrent systems applied to computer-aided design, with special
emphasis on synthesis and formal verification of asynchronous systems
and hardware–software codesign. He is also doing research on computer
arithmetic and parallel architectures. He has coauthored over 80 research
papers in technical journals an conferences.

Dr. Cortadella served on the technical committees of several inter-
national conferences in the field of design automation and concurrent
systems.

Michael Kishinevsky (Senior Member, IEEE) received the M.Sc. and
Ph.D. degrees in computer science from the Electrotechnical University
of St. Petersburg, Russia.

He was a Researcher at the St. Petersburg Mathematical Economics In-
stitute Computer Department, Russian Academy of Science, in 1979–1982
and 1987–1989. From 1982 to 1987, he was with a software company.
From 1988 to 1992 he was a Senior Researcher at the R&D Coop
TRASSA. In 1992, he joined the Department of Computer Science, Tech-
nical University of Denmark, Lyngby, as a Visiting Associate Professor.
From 1994 to 1998, he was a Professor at the University of Aizu, Japan.
In 1998, he joined the Strategic CAD Labs Intel Corporation, Hillsboro,
OR. His current research interests include design of asynchronous and
reactive systems and theory of concurrency. He coauthored two books in
asynchronous design and has published over 50 journal and conference
papers.

KONDRATYEV et al.: LOGIC DECOMPOSITION OF SPEED-INDEPENDENT CIRCUITS 361

Luciano Lavagno (Member, IEEE) received
the Ph.D. degree in electrical engineering from
University of California, Berkeley, in 1992.

From 1984 to 1988 he was with CSELT Lab-
oratories, Torino, Italy, where he was involved
in an ESPRIT project that developed a com-
plete high-level synthesis system. In 1988, he
joined the Department of Electrical Engineering
and Computer Science, University of California,
Berkeley, where he worked on logic synthesis
and testing of synchronous and asynchronous

circuits. He has also been a consultant for various EDA companies, such
as Synopsys and Cadence. He is currently an Assistant Professor at the
Politecnico di Torino, Italy, and a Research Scientist at Cadence Berkeley
Laboratories. His research interests include the synthesis of asynchronous
and low-power circuits, the concurrent design of mixed hardware and
software systems, and the formal verification of digital systems. He is
the author of a book on asynchronous circuit design, the co-author of a
book on hardware/software co-design of embedded systems, and he has
published over 60 journal and conference papers.

Dr. Lavagno received the Best Paper award at the 28th Design Au-
tomation Conference in San Francisco, CA, in 1991. He has served on
the technical committees of several international conferences in his field,
namely the Design Automation Conference, the International Confer-
ence on Computer-Aided Design, and the European Design Automation
Conference.

Alexandre Yakovlev received the M.Sc. and
Ph.D. degrees in computing science from the
Electrotechnical University of St. Petersburg,
Russia.

From 1982 to 1990, he held positions of
Assistant and Associate Professor at the Com-
puting Science Department, University of St.
Petersburg, where he also worked in the area
of asynchronous and concurrent systems since
1980. He first visited Newcastle in 1984–1985
for research in VLSI and Design Automation.

After coming back to Britain in 1990, he worked for one year at the
Polytechnic of Wales (now University of Glamorgan). Since 1991, he
has been a Lecturer, and quite recently a Reader in Computing Systems
Design, at the Newcastle University Department of Computing Science,
Newcastle upon Tyne, U.K., where he is currently heading the VLSI
Design research group. His current interests and publications are in the
field of modeling and design of asynchronous, concurrent, and real-time
and dependable systems.

362 PROCEEDINGS OF THE IEEE, VOL. 87, NO. 2, FEBRUARY 1999

