
Lazy transition systems: application to timing optimization of asynchronous circuits �

Jordi Cortadella, Univ. Politècnica de Catalunya, Barcelona, Spain
Michael Kishinevsky, Intel Corp., Hillsboro, Oregon

Alex Kondratyev, The University of Aizu, Japan
Luciano Lavagno, Politecnico di Torino, Italy

Alexander Taubin, The University of Aizu, Japan
Alex Yakovlev, University of Newcastle upon Tyne, United Kingdom

Abstract

This paper introduces Lazy Transitions Systems (LzTSs). The
notion of laziness explicitly distinguishes between the enabling
and the firing of an event in a transition system.

LzTSs can be effectively used to model the behavior of asyn-
chronous circuits in which relative timing assumptions can be
made on the occurrence of events. These assumptions can be de-
rived from the information known a priori about the delay of the
environment and the timing characteristics of the gates that will
implement the circuit. The paper presents necessary conditions to
synthesize circuits with a correct behavior under the given timing
assumptions.

Preliminary results show that significant area and performance
improvements can be obtained by exploiting the extra “don’t care”
space implicitly provided by the laziness of the events.

1 Introduction

In the recent years, there has been significant progress in de-
veloping methods and tools for asynchronous circuit synthe-
sis [21, 17, 19, 25, 5]. The two chief directions in this work have
been following the two, traditionally competing, synthesis ap-
proaches,one based on the Huffman’s state machine model [7, 22],
the other deriving from Muller’s concept of a speed-independent
circuit [14]. The former, also known as fundamental mode cir-
cuit design, makes strong assumptions about the delay of the
environment compared to that of the circuit. It requires that the
environment be slow enough in applying the new input values
so as to allow the circuit to stabilize after responding to the pre-
vious input. The most well-known method associated with this
approach is the one called Burst-Mode (BM) circuit design, de-
veloped in [19, 26]. The second approach, on the contrary, makes
no assumptions about the delays in the environment, permitting it
to switch some of the inputs in response to changes in some of the
circuit’s outputs, without waiting for their complete stabilization.
This way of action is often called input-output (IO) mode. To
define the behavior of the circuit and the environment interacting
in the IO mode, one normally uses an event-based description
rather than a state-oriented one like in the BM approach. The
recently developed design methods and software based on Signal

�This work has been funded by ESPRIT ACiD-WG Nr. 214949,CICYT TIC 95-
0419, EPSRC grants GR/L24038 and GR/K70175, Spain-UK Acciones Integradas
Programme 1998/99, and MURST (project “VLSI Architectures”).

Transition Graphs (STGs) [10, 5] exemplify this approach, and
produce speed-independent circuits, whose behavior is invariant
to delays in gates but may be sensitive to wire delays.

Although the second approach looks more flexible on the sur-
face than the BM one, and promises higher performance and
modularity, in reality it does not always come as efficient as ex-
pected, both in speed and area concerns. This is especially true
with the advent of deep-submicron technologies, which radically
change the ratio between gate and wire delays. While being con-
servative to the former it is overly optimistic to the latter. Even
though the notion of (extended) isochronic forks [11, 23] can help
in guiding the technology mapping of speed-independent circuits
towards safer solutions, it does not resolve the fundamental prob-
lem of time dependence for wires. On the other hand, in order
to guarantee correct action regardless of the delays of both circuit
gates and the environment, the synthesis process often caters for
potential concurrency which will not exist in reality. This often
results in excessively redundant implementations, which lose to
their possible BM counterparts both in speed and area.

In order to battle the problems characteristic to both of the
above mentioned “extremes” a method, called timed circuits, has
been developed in [18, 17]. The main idea of this method is to re-
tain the flexibility of an event-based IO approach but make the cir-
cuit’s implementation more realistic and therefore more efficient.
The awareness of time, required for asynchronous controllers to
be on a par with synchronous ones in speed [6], is achieved by as-
sociating explicit timing information with the actions performed
by the environment and by the circuit, and utilizing it throughout
the design procedure to optimize the final logic. The major effect
of timing assumptions applied to circuit design is following. Such
constraints can reduce the state space effectively reachable by the
circuit. Hence, firstly, they can ‘eliminate’ some undesirable
states, e.g. where input events might disable some output signal
transitions, or ‘resolve’ state coding problems, e.g. the presence
of semantically different states with identical codes. Secondly,
they can help optimize logic by exploiting the additional “don’t
care” space. Thirdly, the timing information may assist in allow-
ing some, relatively slow, actions to be started earlier than they
would normally be allowed in the speed-independent case; their
actual firing with respect to other events will remain unchanged.
Finally, such timing information can be made global enough to
cover the BM designs; indeed, it can be shown (cf. Section 4)
that a BM design is just a special case of a timed circuit with si-
multaneity constraints, wherein all outputs are assumed to change
at once before any new input transition arrives. While work of
Myers et al. [18, 17] appears to be exploiting the first two of
the above-mentioned factors, it has not been able to provide an
adequate formal support for the latter two issues.

In this paper, we target all these potential gains, by developing
a behavioral model (Section 4) of a timed circuit, called Lazy
Transition System. The two crucial novel elements of this model
are:

� the concept of relative timing constraints, where the exact

timing information is abstracted away. Instead, we use only
difference (event a fires earlier than event b) or simultaneity
(events a and b fire at the same time with respect to event
c) assumptions. Such conditions can either be provided by
the designer (which is the case at present) or produced by a
hypothetical timing analysis tool 1.

� the notion of laziness that explicitly distinguishes between
the enabling and the firing of an event in a transition sys-
tem. This allows us not only exploit delays in reducing
concurrency to simplify designs on the basis of a priori tim-
ing conditions but also to increase concurrency using the
(backward) expansion of the set of enabling states. In the
latter case, we also expect the designer to be able to trade
off between speed and area increase.

The paper presents necessary conditions (Section 4) to synthe-
size circuits with a correct behavior under given timing assump-
tions and develops an algorithm (Section 5), implemented within
the synthesis tool petrify. The preliminary experiments (Sec-
tion 6) show significant area and performance improvements due
to exploiting the extra “don’t care” space implicitly provided by
the laziness of the events.

2 Basic notions

In this section we present basic definitions that will be used in the
paper. For brevity, we assume the reader to be familiar with Petri
nets, a formalism used to specify concurrent systems. We refer to
[15] for a general tutorial on Petri nets.

2.1 State Graphs

A State Graph (SG) is a labeled directed graph whose nodes are
called states. Each arc of an SG is labeled with an event, that is a
rising (a+) or falling (a�) transition of a signal a in the specified
circuit. We also allow the notation a� if we are not specific about
the direction of the signal transition. The set of signals of an SG
is called X = I [O, where I and O denote the set of input
and output signals respectively. The behavior of the input signals
is determined by the environment whereas the behavior of the
output signals must be implemented by the circuit. We write s

a
!

(s
a
! s

0) if there is an arc from state s (to state s0) labeled with a.
A labeling function v : S ! f0; 1gn assigns a vector of signal

values to each state (n = jXj). We will call va(s) the value of
signal a in state s. An SG is consistent if:

s
a+
�! s

0

=) va(s) = 0 ^ va(s
0

) = 1

s
a�
�! s

0

=) va(s) = 1 ^ va(s
0

) = 0

s
b�
�! s

0

^ a 6= b =) va(s) = va(s
0

)

2.2 Signal Transition Graph

A Signal Transition Graph (STG) is a Petri net in which transitions
are labeled with the same type of events we have defined for SGs,
i.e. rising and falling signal transitions [10].

An STG has an associated SG in which each reachable mark-
ing corresponds to a state and each transition between a pair of
markings to an arc labeled with the same event of the transition.

Although STGs with bounded reachability space and SGs
have the same descriptive power, STGs can usually express the
same behavior more succinctly. In this paper, STGs help to
illustrate timing assumptions in a more intuitive way.

Figure 1.a depicts an STG with three signals. For simplicity,
places with only one input and output transitions are omitted.
Figure 1.b shows the corresponding SG with states labeled with
the binary vectors of the signal values. The SG is consistent.

1We believe that the level of research in this area, although being quite significant
recently [3, 8, 16] is still insufficient to warrant practicality, especially in providing
adequate relative timing for realistic circuit designs.

2.3 Properties for implementability

Further to consistency, the following two properties are necessary
for an SG to be implemented by a speed-independent circuit [9].

The first property is speed-independence. It consists of three
parts: determinism, commutativity and output-persistence. An
SG is called deterministic if for each state s and each label a
there can be at most one state s0 such that s

a
! s

0. An SG is
called commutative if whenever two transitions can be executed
from some state in any order, then their execution always leads
to the same state, regardless of the order. An event a� is called
persistent in state s if it is enabled in s and remains enabled in any
other state reachable from s by firing another event b� . An SG is
called output-persistent if its output signal events are persistent in
all states and no output signal event can disable input events. In
Figure 1.b, event y+ is persistent in the state 100, since the firing
of z+ leads to the state 101 in which y+ is still enabled.

The second property, Complete State Coding (CSC), is neces-
sary and sufficient for the existence of a logic circuit implementa-
tion. A consistent SG satisfies the CSC property if for every pair
of states (s; s0) such that v(s) = v(s

0

), the set of output events
enabled in both states is the same.

The SG of Figure 1.b fulfils all the above properties.

2.4 Excitation and quiescent regions. Next-state func-
tion.

The excitation region of an event a�, denoted by ER(a�), is the

set of states such that s 2 ER(a�) , s
a�

!. The quiescent
region of a+, denoted by QR(a+), is the set of states such that
s 2 QR(a+) , va(s) = 1 ^ s 62 ER(a�). Similarly,
s 2 QR(a�), va(s) = 0 ^ s 62 ER(a+).

In Figure 1.b, ER(x�) = f101;111g and QR(x�) =
f001;011;010g. The symbol 0� (1�) indicates that a rising
(falling) transition of the corresponding signal is enabled in that
state.

The implementation of an SG as a logic circuit is done through
the definition of the next-state function for each output signal and
binary vector. It is defined as follows:

fa(z) =

�
1 if 9s 2 ER(a+) [QR(a+) s.t. v(s) = z

0 if 9s 2 ER(a�) [QR(a�) s.t. v(s) = z

� otherwise

The next-state function fa is correctly defined when the SG
has the CSC property, i.e. when there is no pair of states (s; s0)
such that v(s) = v(s0) and s 2 ER(a+) [QR(a+) and s0 2
ER(a�) [QR(a�). Note that fa is an incompletely defined
function with a don’t care (DC) set corresponding to those binary
vectors without any associated state in the SG.

In the SG of Figure 1.b, the DC set is empty since all binary
vectors have a corresponding state in the SG. As an example,
f(101) = 011 since signals x and y are enabled in that state.
The Karnaugh maps for the next-state functions are depicted in
Figure 1.c.

2.5 Logic synthesis

From the next-state functions, a speed-independent circuit can
be derived by implementing the boolean equation of each output
signal as an atomic complex gate [14], as shown in Figure 1.d.

In general, the boolean equations may be too complex to be
implemented as an atomic gate in a specific technology. Methods
for logic decomposition and technology mapping that overcome
this limitation have been proposed recently (e.g. [2, 4]). In this
paper we do not address the problem of technology mapping.
However, the optimization methods we propose can be easily
combined with existing methods for logic decomposition that can
be targeted to technology mapping into given gate libraries.

x

y

z

yz
x 00 01 11 10

0

1

yz
x 00 01 11 10

0

1

0

1 1

1

11

1 01

1

0

10 0

0 0

x=y’z’+xz’ y=x+z

z=x+y’z

0

1 1

1

1

0 0

yz
x 00 01 11 10

0

1 1

x+

z+

x-

z-

y-

y+

xyz
0*00

10*0*

110*1*0*1

1*11

011*

00*1

01*0

x+

y+z+

y-

z-

x- y+

y+ x-

z+

a) b)
d)

c)

Figure 1: (a) STG, (b) SG, (c) next-state functions, (d) complex-gate implementation.

2.6 Monotonic covers

The following definition is related to hazards in the behavior of
asynchronous circuits. It will be used later in the paper.

Given two sets of statesS1 andS2 of an SG such that S2 � S1,
and a transition s

a
! s

0 , we will say that S1 is a monotonic cover
of S2 iff:

(s 2 S1 n S2 =) s
0

2 S1) ^ (s 2 S2 =) s
0

62 S1 n S2)

In the SG of Figure 1.b, the set f101;110;111g is a mono-
tonic cover of ER(x�). However, the set f100;101;111g is

not, since the transition 100
y+
�! 110 violates the conditions for

monotonicity.

3 Motivating example

This section gives an intuitive picture of the optimizations based
on timing assumptions. It is illustrated by an implementation of
the xyz specification shown in Figure 1,a. A starting point for
optimizations is given by a speed-independent implementation of
xyz STG (see Figure 1,d).

Speed-independence gives a rather conservative view on gate
delays: they are finite but arbitrary. However, when the gates of a
circuit are adjacent on a chip (which is most likely for the modular
style of implementation) one can expect from their delays to be
related. This relationship might be expressed by matching the
time for a signal propagation through different stages of logic.
For example, one can assume that a signal propagates through a
single gate faster than through k gates, where k is a technology
and/or implementation dependent parameter.2

Let us assume that in a circuit for the xyz example two gate
delays are always greater than a delay of a single gate. Under this
assumption, even though the transitions y+ andx� are potentially
concurrent in the STG, in an implementation y+ would always
occur before x�. This timing assumptioncan be expressed in the
STG by a special “timing arc” going from y+ to x� [24] (denoted
in Figure 2,a by a dashedline). Timing restricts possible behaviors
of implementation, in particular state 001 becomes unreachable
because it can be entered only when x� fires earlier than y+. At
unreachable states logic functions of output signals can be defined
arbitrarily. Therefore use of timing assumptions increases the
“don’t care” space for circuit gates, which gives extra room for
optimization.

For xyz example,putting 001 in the don’t care set ofz simplifies
its function from z = x+ yz to a buffer z = x (see Figure 2,c,d).

To get more aggressive optimizations let us consider concur-
rent transitions z+ and y+ closer. These transitions are trig-
gered by the same event x+ and due to the timing assumption
2 � gatemin > gatemax no gate can fire until both outputs y
and z are set to 1. Therefore for all other signals of the circuit
the difference in firing times of y+ and z+ is negligible. The
latter means that for the rest of the circuit transitions y+ and z+

2The latter can be formalized in terms of delay range for gates. If a delay range
is [gatemin; gatemax] then the assumption can be posed as k � gatemin >
gatemax .

are simultaneous and indistinguishable and they can replace each
other in causal relations with the other events.

In xyz example x� is the only transition that can “hear” z+
or y+. The dashed hyper-arc from z+; y+ to x� in Figure 3,a
graphically represents the simultaneity of y+ and z+with respect
tox�. Formally it means that for an enabling ofx�we can choose
any of the following conditions: 1) z+ 2) y+ 3) z+ _ y+. This
gives a set of states in which x� can be potentially enabled, i.e.
the so-called potentially enabling region of x� (PEnR(x�))
which is shadowed in Figure 3,b.

It is important to note that:
1) Even though x� might be enabled in any state of

PEnR(x�) its firing (due to timing assumptions) can occur only
when reaching state 111. This behavior will be called a lazy one,
because after its enabling a signal is not eager to fire immediately
but waits until certain states are entered.

2) A potentially enabling region gives an upper bound for the
set of states in which a signal might be enabled. For a “real”
enabling in an implementation we can choose a subset of the po-
tentially enabling region. Playing with different sets of “real”
enablings within a PEnR gives new opportunities for the opti-
mization of circuits.

Manipulations of signal enablings can be formalized by ad-
ditional don’t cares in the definition of a signal function. For
the enabling of x� in xyz example a subset of PEnR(x�) =
f101;110;111gmight be chosen. Transition x� fires at state 111
and therefore x� should be enabled in 111. Enabling of x� in
the other two states 101 and 110 can be chosen arbitrarily, i.e.
these states can be put in the don’t care set of a function for x
(see Figure 3),c. During minimization the function for x (which
becomes simply an inversion) is defined to be 0 in state 110 and
1 in 101, i.e. minimization puts 110 into the set of enabled states
of x�, while 101 is put into the set of states in which x is stable.
Back-annotating this result to the level of event interaction gives
an STG in Figure 3,e in which x� is triggered by y+ instead of
causal relation z+ ! x� in the original STG. This change of
causal dependencies is valid under the assumption that y+ and
z+ are simultaneous with respect to x�.

The timed circuit in Figure 3,d is much simpler than the speed-
independentone in Figure 1,d. Nevertheless if the timing assump-
tion "delay of y+ is less than sum of delays of z+ and x�" is
satisfied, then the optimized circuit is a correct implementation
for the original specification.

We can now conclude about two potential sources of gain in
optimization based on timing assumptions:

1) Unreachability of some states due to timing (timed unreach-
able states).

2) Simultaneity of transitions which gives freedom in choosing
enabling regions for signals (lazy behavior).

In both cases the don’t care space for the functions of circuit
signals increases which finally leads to simpler implementations.

The idea to use don’t cares coming from the timed unreachable
states is due to [18, 17] and was successfully exploited in the
ATACS tool for the design of timed circuits. To our knowledge
the observation about the additional don’t cares coming from lazy
behavior appears for the first time and is the main theoretical
contribution of the paper. This concept is developed in more
detail in the next section.

yz
x 00 01 11

0

1

10
0*00

10*0*

110*1*0*1

1*1100*1

011*

01*0

xyzx+

y+z+

x-

z-

y-

a) b) c)
d)

x z

y

1

1 10 0

0 0

x=y’z’+xz’ y=x+z

0

1 1 1

0 0

yz
x 00 01 11 10

0

1 1

x 0

1 1 11

1 0

yz
x 00 01 11 10

0

1

x

xx+

y+

y-

z-

z+

x-

Unreach.

z=x

Figure 2: xyz example. Optimization by timed unreachable states.

00*1

10*0*

0*00
xyz

011*

01*0

1*11

110*1*0*1

x+

y+z+

x-

z-

y-

z+=y+
wrt x-

x z

yUnreach

x+

y+z+

y-z-

x-

1

1 0

0 0

y=x+z

0

1 1 1

0 0

yz
x 00 01 11 10

0

1 1

x 0

1 1 11

1 0

yz
x 00 01 11 10

0

1

x

x

z=x

yz
x 00 01 11 10

0

1 x x

x=y’

z+=y+
wrt x-

x+

y+z+

z-

y-

x-

b)a) c)
d)

e)

PEnR(x-)

Figure 3: xyz example. Optimization by lazy behavior.

4 Lazy systems

This section introduces the basics for defining lazy systems which
were informally introduced in Section 3. The main distinctive
feature of a lazy system is that it considers a non-zero delay
between enabling of transition and its firing. Due to this, the
set of states in which a transition is enabled might be larger than
the set of states in which the transition fires; recall that for speed-
independent systems (cf. Section 2) these two sets always coincide
since every transition can have an arbitrary delay.

4.1 Lazy State Graphs

Definition 4.1 (Enabling and firing regions) A potentially en-
abling region, PEnR(a�), of a signal transition a� is a maximal
connected set of states such that in all states ofPEnR(a�) signal
a has the same current value and might be enabled.

An enabling region EnR(a�), of a signal transition a� is
a maximal connected subset of states of PEnR(a�) in which
transition a� is enabled.

A firing region, FR(a�), of a signal transition a� is a maximal
connected set of states such that a� can fire from any state of
FR(a�), i.e. s 2 FR(a�)) s

a�
!.

The difference between the notions of firing and enabling re-
gions comes from the observation of a non-zero delay in firing
a lazy transition. The need to introduce a potentially enabling
region together with enabling region simply was illustrated by the
optimization loop on the example of timed implementation of xyz
STG. A potentially enabling region gives an upper bound for a
set of states in which a transition can be enabled. The freedom in
choosing the enabling region within the PEnR gives additional
possibilities for logic optimization. Note that at the specification
level it is sufficient to consider firing and potentially enabling
regions.

It is easy to see the following correspondence between the
introduced regions: FR(a�) � EnR(a�) � PEnR(a�).

Examples of potentially enabling and firing regions are
illustrated by Figure 3,c, where FR(x�) = f111g and

PEnR(x�) = f101; 110;111g. The implementation of a signal
x as an inverter (x = y) uses only a subset of PEnR(x�) for
enabling of x�: EnR(x�) = f110; 111g.

Definition 4.2 (Lazy transition, lazy state graph) A transition
a� is called lazy if PEnR(a�) 6= FR(a�).

A state graph is called lazy (LzSG) iff:
1. for every transition a� of SG the potentially enabling

(PEnR(a�)) and firing (FR(a�)) regions are defined, and
2. at least one transition is lazy.3

The correctness properties of SGs can be easily transferred
onto lazy state graphs. An LzSG will be called consistent, deter-
ministic and commutative if the underlying SG has these prop-
erties. For persistency property the distinction between the fir-
ing and enabling regions requires to generalize its definition for
LzSGs. Persistency captures the absence of hazards in an im-
plementation derived by LzSG, therefore we will formulate it in
terms of enabling regions rather than by PEnRs.

Definition 4.3 (Persistency) A signal transition a� is persistent
in LzSG if two conditions are satisfied:

� in EnR(a�) � PEnR(a�) no disabling of a� is possible,

i.e. 8s 2 EnR(a�), s
b�
! s1, a 6= b, a� is enabled in s1.

� no transitions from firing to the corresponding enabling

region is possible, i.e. for any b� there is no transition s1
b�
!

s2 such that s1 2 FR(a�) and s2 2 EnR(a�)�FR(a�).

The following property reveals the distinctive features of firing
and enabling regions of persistent transitions.

Property 4.1 For a persistent transition a� in LzSG every
EnR(a�) and FR(a�) can be exited only by the firing of a�.

3As we are targeted at optimization of signals that are synthesized by a circuit
we will not consider lazy behaviors of input signals.

The proof is trivial. For FR(a�) it follows directly from
Condition 2 of Definition 4.3, while for EnR(a�) exiting it by
any signal different from a means the disabling of a�, which
contradicts the persistency requirement.

Property 4.1 bridges up the conditions for hazard-free imple-
mentation of an LzSG with the similar ones for implementing an
SG. It can be shown that, if the timing assumptions for an ini-
tial specification are satisfied, then any LzSG in which transitions
of output signals are persistent has a hazard-free implementation
with complex gates. The implementation issues for an LzSG will
be discussed in detail in Section 5. Before that we should formal-
ize timing assumptions and determine what kind of assumptions
are really needed.

4.2 Timing assumptions

Timing assumptions could be defined in the form telling that one
event is happening before or after another. However, this form
is ambiguous for cyclic specifications because their transitions
can be instantiated many times and different instances may have
different ordering. More rigor in defining ordering relations can
be achieved at the unfolding level [13], i.e. when an original net
is unfolded into an equivalent acyclic description. The theory of
timed unfoldings is however restricted to simple structural classes
of STGs and the timing analysis algorithms are computationally
expensive [3, 8]. We will therefore rely on a more conservative
approximation of timing assumptions in LzSGs.

Di�erence constraints. A difference constraint b� < a�, in-
volving two potentially concurrent events a� and b�, assumes
that, due to certain timing characteristics, b� fires earlier than
a�. Formally, it can be defined through the maximum separation
Sepmax(b�; a�) between events b� and a� [12]. The maximum
separation gives an upper bound on the time difference between
firings of b� and a�. If Sepmax(b�; a�) < 0 then b� always fires
earlier than a�. In SG this assumption can be represented by the
concurrency reduction of a� with respect to b�.

Concurrency reduction can be performed in two steps:
1: Remove all arcs s

a
! such that s is backward reachable

from PEnR(a�) \ PEnR(b�) 4 (this delays a� until b� fires)
2. Remove unreachable states (due to delaying a� against b�)
Let us illustrate the application of a difference constraint b+ <

d+ on the example of STG in Figure 4,a. Concurrency reduction
of d+ with respect of b+ in the SG of Figure 4,b first removes the

arc 1010
d+
!, and then deletes states 1011 and 1001 which become

unreachable after the arc 1010
d+
! is removed. As the result we

obtain an LzSG in Figure 4,c with a lazy signal d (FR(d+) 6=
EnR(d+)).

Timing assumptions based on difference constraints are the
main source for the elimination of timed unreachable states [18,
17] but they cannot fully express the lazy behavior of signals.

Simultaneity constraints. Exploiting simultaneity in transi-
tion firings is a key factor in the burst-mode design methodol-
ogy [19]. Here, the environment is considered to be slow and
therefore the skew of delays for output signals is negligible, i.e.
output transitions are simultaneous from the point of view of en-
vironment (fundamental mode assumption). The weak point of
the fundamental mode is that it must be applied to a circuit as a
whole, which essentially relies on even distribution of propagation
delays within the circuit. To lift this restriction we consider si-
multaneity assumptions more locally, and hence introduce a local
fundamental mode with respect to particular groups of transitions.
The simultaneity assumption is a relative notion, which is defined
on a set of transitions T with respect to a reference transition a�.
From the point of view ofa� the skew of firings times of transitions
fromT is negligible. Formally this can be defined by the following

4PEnR(a�)\PEnR(b�) in SG gives a set of states wherea� and b�might
be concurrently enabled.

separation inequalities: 8b�; c� 2 T; Sepmax(b�; c�) < d(a�),
where d(a�) is a lower bound delay for transition a�.

Let us consider the simultaneity assumption between transi-
tions b+ and c+ with respect to a� in the LzSG from Figure 4,c.
This assumption influences the LzSG in two ways:

1) State 0100 which is entered when a� fires before c+ be-
comes unreachable. (Indeed from Sepmax(c+; b+) < d(a�)
(coming from simultaneity assumption) and Sepmax(b+; a�) <
0 (coming from causality between b+ and a�) follows the differ-
ence constraint Sepmax(c+; a�) < 0)

2) A potentially enabling region for a� is expanded in state
1010 (see Figure 4,d).

The above imples that optimization based on simultaneity as-
sumptions goes beyond the possibilities given by difference con-
straints only.

Early enabling. The simultaneity assumptions exploit “lazi-
ness” between concurrent transitions. This idea can be general-
ized for ordered transitions as well. Suppose that transition a�
triggers the firing of b� and we assume that in the implementation
a� is “faster” than b� (or more formally: D(a�) < d(b�), where
D(a�) and d(b�) are the maximal and minimal delays of tran-
sitions a� and b� respectively). Then the enabling of b� can be
started earlier (from the events triggering a� e.g.) and the proper
ordering of a� before b� will be ensured by the timing proper-
ties of implementation. In LzSG this results in the expansion of
PEnR(b�) into the enabling region for a�.

An early enabling of d� is illustrated in Figure 4,d.
Finally, all of the introduced timing assumptions are shown in

the STG of Figure 4,e, where dashed arc (b+; d+) corresponds
to the difference constraint b+ < d+, hyperarc (b + c+; a�)
corresponds to the simultaneity of b+; c+ with respect to a�,
and triggering of d� by a� and c� (instead of b�) shows the
early enabling of d� (timing arc (b�; d�) is needed to keep an
information about the original ordering between b� and d�).

5 Implementation

The method presented in the previous sections has been imple-
mented in the tool petrify, that can synthesize asynchronous
circuits from STG specifications.

The timing assumptions on the behavior of the circuit and
the environment are specified by the designer. Two types of
assumptions are accepted:

� t(a) < t(b), indicating that eventawill always occur before
event b, even they are potentially concurrent according to
the original STG.

� t(a) = t(b) wrt c indicating that the occurrence of a and b
can be considered simultaneous with regard to event c

In the example of Figure 3, the following assumptions have
been specified for optimization:

t(y+) < t(x�) and t(y+) = t(z+) wrt x�

The following procedure is executed to do logic synthesis of
each output signal x:

1. The set of unreachable states,PEnR(x+) andPEnR(x�)
are calculated according to the timing assumptions. DC
is defined as the set of binary vectors not corresponding to
any reachable state5.

2. Those states that may introduce CSC conflicts by a possible
change of the next-state function are removed from their
corresponding PEnR.

5DC must be only calculated once for all signals.

c+

a+

b+

a-

c-

b-

d-

a-

c-

d+

d+

d-
b-

0*000

10*0*0

0110*

1*110*

10*10*1*10*0

1*11*1

1*101011*1

01*01

0001*

a b c d

PEnR(a-)

FR(a-)

PEnR(d-)

FR(d-)

a+

b+ c+

a)
b) c) d) e)

0*000

10*0*0

0110*

1*110*

10*10*1*10*0

010*0 10*1*1

1*11*1 10*01

1*101011*1

01*01

0001*

d+

PEnR(d+)

a b c d
PEnR(b+) 0*000

10*0*0

0110*

1*110*

10*10*1*10*0

010*0

1*11*1

1*101011*1

01*01

0001*

FR(d+)

a b c d

PEnR(d+)

Figure 4: Application of difference c), simultaneity and early enabling d) timing assumptions

PEnR(x-)

FR(x+)

FR(x-)

QR(x+)

QR(x-)

QR(x-)

PEnR(x+)

PEnR(x-)

FR(x+)

FR(x-)

QR(x+)

QR(x-)

QR(x-)

DC

C(x)
PEnR(x+)

Figure 5: Reduction of PEnRs for non-monotonic covers

3. DefineON(x) = FR(x+)[(QR(x+)nPEnR(x�)) and
DC(x) = DC[(PEnR(x+)nFR(x+))[(PEnR(x�)n
FR(x�)).

4. C(x) = boolean minimization(ON(x);DC(x))

5. If C(x) is a hazard-free cover of ON(x), return C(x) as
the cover for signal x. ON(x) � C(x) is a hazard-free
cover if:

C(x) \PEnR(x+) is a monotonic cover of FR(x+)

and

C(x) \PEnR(x�) is a monotonic cover of FR(x�)

6. Otherwise, remove fromPEnR(x+) andPEnR(x�) those
states that violate the previous monotony conditions for
C(x) and C(x). This transformation is illustrated in Fig-
ure 5. Thus, the new PEnRs will be equal to or smaller
than the previous ones.

7. Go to step 3

In the worst case, the loop 3-7 will converge towards a config-
uration with PEnR(x+) = FR(x+), PEnR(x�) = FR(x�),
ON(x) = FR(x+)[QR(x+) andC(x) = ON(x)[d for some
d � DC. Note that the largest timing optimization is achieved
whenC(x) completely covers PEnR(x+) and does not intersect
PEnR(x�).

In practice, most covers C(x) are monotonic after the first
boolean minimization and no iteration is required. Only in some
rare cases, more than two iterations are executed.

Petrify includes a boolean minimizer that delivers several
covers with similar cost. Among them, a cost function selects
those that are monotonic and have the smallest literal count.

In the future we foresee to provide more freedom to the de-
signer to seek the best trade-off between area and performance.
This can be implemented by enabling the designer to tune some
parameters of the cost function.

6 Experimental results

In this section we report on the experimental setup, including a
discussion on how to derive timing assumptions from knowledge
about the environment and information about the circuit imple-
mentation, and we show preliminary experimental results.

6.1 Design
ow and assumption derivation

The timing-based optimizations described in this paper best fit
into a design flow that satisfies three requirements, in order of
importance:

1. some information is known about the delay of the environ-
ment in which the circuit will operate (or, alternatively, large
portions of the overall asynchronouscontrol are synthesized
and analyzed for timing properties simultaneously),

2. good control is possible over the delay of gates and wires
within the circuit portion on which timing-based optimiza-
tion is performed.

3. a good asynchronous timing analysis tool is available.

The first requirement is necessary in order to apply optimizations
in the style of Myers [17], as extended in this paper to use don’t
cares instead of pre-specified values.

The second requirement is necessary in order to take maxi-
mum advantage from the capabilities of lazy timing optimization.
Consider, for example, the decision to enable a slow signal early,
in order to speed it up. In that case, changing the logic due to
the addition of laziness to the SG may have the unwanted effect
of firing this signal too early. Without transistor sizing or delay
padding, there is little hope of closing the optimization loop in a
clean and easy way, since it is very difficult to determine a priori
which optimizations are safe and preserve the timing assumptions
on which they are based. On the other hand, with transistor sizing
or delay padding one can restore the correct ordering of transi-
tions and ensure the validity of almost any early enabling due to
separation assumptions between outputs.

The third requirement is, unfortunately, still far from re-
alizable. Although good progress in this direction has been
made [3, 12, 20, 1], we are still far from having an automated
tool that can handle realistic circuits in a reasonable time in the

presence of input non-determinism. Hence for now this step is
left to the designer’s intuition and ability.

For this paper, we have assumed that

1. All inputs to the circuit are slower than any single gate
inside the circuit. This is generally a realistic assumption
even if the “apparent” behavior of those inputs is just that of
a buffer or inverter, since this generally “hides” the control
of some other asynchronous pipeline stage, that behaves
like a simple handshake, but has actually large delays in
comparison with those of the gates composing the circuit
that is being designed.

2. No control over gate delays is possible. We actually used
a fairly small standard cell library, in order to test our ap-
proach in a sort of worst case.

3. Performance analysis, as well as part of timing analysis, is
done by logic simulation. We synthesized both the circuit
and the environment, and artificially slow down the envi-
ronment implementation by delay padding. Moreover, we
limited ourselves to circuits without input non-determinism
(since non-determinism is not synthesizable with standard
speed-independent techniques), or chose one specific oper-
ational cycle of circuits with input non-determinism.

The results of simulation were used both to derive internal timing
assumptions, for the purpose of early enabling, and in order to
check that those assumptions were satisfied after lazy resynthesis.
We manually verified that the result of simulation was consistent
with the STG specification. This is by no means a suggested
design flow choice, but it is just a temporary solution.

6.2 Experimental results

Table 1 shows the results of the application of our timing-based op-
timization procedure to a well-known set of asynchronous bench-
mark circuits. The experiment was organized as follows.

� We implemented all the circuits by using basic gates from
a small library (1 not, 4 and/nand/or/nor, 4 and-or-invert, 2
S/R flip-flop and 1 C-element) based on ES2 1 �m tech-
nology,

� We ran a logic simulation of the circuit twice, once with
1 ns delay on every input signal, and once with 2 ns on every
input signal. We identified the duration of a cycle in the
simulation, and used it as a measure of circuit performance
(in fact the simulation always converged to the critical cycle
in two iterations). We used the difference between the two
runs in order to isolate the contribution to the critical cycle
due to the circuit from that due to the environment. The
result of this first speed-independent synthesis run is pre-
sented in columns 2 and 3, by showing area (factored form
literals) and critical cycle contribution due to the circuit (in
picoseconds; the delay of an inverter is about 200 ps in this
technology).

� We added separation assumptions stating that input signals
are slower than any output or internal (state) signal, and
implemented all the circuits again.

� We ran the simulation again, with 1 ns delay on all inputs,
checking that the timing assumptions were satisfied. The
result of this second timed synthesis and simulation run
(again, factoring out the contribution to the period due to
the inputs) is presented in columns 4 and 5, both in absolute
terms and as a percentage.

� We added further separation assumptions between outputs,
based on relative delays of gates in the implementation.
The simulation done in the previous step was used in order
to derive firing times of internal and external signals, and
manual analysis was used in order to determine the exact
timed causal relations. We implemented the circuits again.

In some case, no improvement could be obtained while still
satisfying the assumptions. Otherwise, the improvement
with respect to timed synthesis was due both to a larger
don’t care space and to early enabling.

� We ran the simulation, checking the satisfaction of the as-
sumptions. The result of this third lazy synthesis step is
presented in columns 6 and 7.

From these preliminary experiments we can conclude that lazy
optimization is a very promising technique for aggressive timing
optimization of asynchronous control circuits, because

� it allows one to effectively achieve the same objective of
increasing throughput as pipelining in synchronouscircuits,
but

� avoids (or limits) the penalty due to pipeline latches in
terms of both area and performance (latency and ultimate
throughput limitation due to latch internal delays).

Moreover, the technique is applicable even without sophisti-
cated transistor sizing techniques, that would make it even more
effective, and without automated timing analysis tools, that would
make it easier and safer6.

7 Conclusions

We have proposed Lazy Transition Systems, a theoretical model
for timed circuit synthesis,where the notions of enabling and firing
are distinguished for a signal switching event. In this new frame-
work, we have also presented necessary conditions for synthesis
of circuits with correct behavior under given timing assumptions.

We can now summarize the main results of this paper by putting
our method into the overall taxonomy of issues involved in timed
circuit synthesis:

� Both types of relative timing assumptions, difference (one-
sided) and simultaneity (two-sided) constraints, are used.

� The objects on which timing information can be defined are
either individual transition delays (they are good for locally
related events; timing analysis is simple) or firing times
(more global; relate sequences of events).

� The way timing determines the don’t care space is either
due to unreachability (they are aimed at area; higher speed
is achieved as logic is simpler) or due to laziness, i.e. en-
abling region expansion (these are targeted for both area
and performance).

� The method currently solves a “direct” problem: given an
STG model with timing assumptions, obtain an optimized
circuit (it would be possible to consider the “inverse” one:
given an STG model, obtain an optimized circuit with tim-
ing constraints).

� Timing analysis is at present assumed to be the designer’s
responsibility (which is cheap and fast, local dependencies,
approximate). In the future an automatic tool (still expen-
sive, global dependencies, exact) can be used.

Preliminary experimental results confirm that significant area
and speed improvements can be achieved by exploiting the extra
don’t care space due to the lazinessof timed events. This approach
helps bridging two critical gaps existing in synthesis of control
circuits today. The first gap is between the two main approaches
for automated asynchronous controller synthesis, those based on
fundamental (global timing constraints) and input-output modes.
It also tackles the traditionally unreconcilable gap between asyn-
chronous and synchronous circuit synthesis [6]. Namely, the

6In this experiment we considered only a single delay number for each gate
when verifying the timing assumptions by simulation, instead of considering the
safer min-max delay intervals allowed by the above mentioned separation analysis
techniques.

name speed-indep. timed (slow env.) lazy (intern. del.)
area perf. area % perf. % area % perf. %

half 11 3042 7 64 2401 79 7 64 1845 61
vbe5c.2 14 4956 14 100 4956 100 13 93 4221 85
vbe5b.2 16 4113 15 94 3979 97 13 81 2885 70
chu133 16 6001 14 88 5147 86 13 81 3604 60
hazard.2 17 7612 17 100 7612 100 16 94 6359 84
converta 18 8671 14 61 6397 74 14 61 6397 74
rcv-setup 19 7257 18 95 7069 97 18 95 7026 97
ebergen.2 22 9647 21 95 9091 94 21 95 8971 93
nak-pa 27 7642 27 100 7642 100 24 89 7222 94
nowick 29 10123 29 100 10123 100 27 93 8698 86
mp-forward-pkt 33 9839 33 100 9839 100 30 91 8795 89
ram-read-sbuf 36 10507 35 97 10437 99 30 83 8935 85
seq4.2 37 9195 35 95 7725 84 34 92 7530 82
wrdatab 39 8403 37 94 7829 93 35 89 11688 94
sbuf-ram-write 39 13805 39 100 13805 100 34 87 10323 75
mmu 40 7141 35 88 6902 97 33 82 6509 91
mr1 45 7747 44 98 6974 90 41 91 6536 84
master-read 47 6413 42 89 5250 82 40 85 4997 78
mr0 59 9869 55 93 9080 92 52 88 7249 73
pe-send-ifc 71 20119 62 87 18634 93 57 80 19150 95
total 619 172102 593 96 160822 93 552 89 148940 87

Table 1: Experimental results of lazy optimization

proposed lazy optimization technique is in many ways comple-
mentary to the techniques used for synchronous circuits for the
same objective (higher throughput). Our approach thus identi-
fies ways in which synthesis of asynchronouscircuits can achieve
greater practicality and wider acceptance due to its more active
dealing with time information. To this end, we feel urgent need for
more research in the area of mechanizing the feedback between
timing optimization and timing analysis.

References

[1] T. Amon, H. Hulgaard, G. Borriello, and S. Burns. Timing analy-
sis of concurrent systems. Technical Report UW-CS-TR-92-11-01,
University of Washington, 1992.

[2] S. Burns. General conditions for the decomposition of state holding
elements. In International Symposium on Advanced Research in
Asynchronous Circuits and Systems, Aizu, Japan, March 1996.

[3] Steven M. Burns. Performance Analysis and Optimization of Asyn-
chronous Circuits. PhD thesis, California Institute of Technology,
1991.

[4] J. Cortadella, M. Kishinevsky, A. Kondratyev, L. Lavagno, E. Pastor,
and A. Yakovlev. Decomposition and technology mapping of speed-
independent circuits using boolean relations. In IEEE/ACM Int.
Conference on Computer Aided Design, pages 220–227, San Jose,
USA, November 1997.

[5] J. Cortadella, M. Kishinevsky, A. Kondratyev, L. Lavagno, and
A. Yakovlev. Petrify: a tool for manipulating concurrent specifi-
cations and synthesis of asynchronouscontrollers. IEICE Trans. Inf.
and Syst., E80-D(3):315–325, March 1997.

[6] M. Horowitz. Clocking for high performance processors. (Invited
talk at Async’98), March-April 1998.

[7] D. A. Huffman. The synthesis of sequential switching circuits. J.
Franklin Institute, 257:161–190,275–303, March 1954.

[8] Henrik Hulgaard and Steven M. Burns. Bounded delay timing anal-
ysis of a class of CSP programs with choice. In Proc. International
Symposium on Advanced Research in Asynchronous Circuits and
Systems, pages 2–11, November 1994.

[9] M. Kishinevsky, A. Kondratyev, A. Taubin, and V. Varshavsky. Con-
current Hardware: The Theory and Practice of Self-Timed Design.
John Wiley and Sons, London, 1993.

[10] L. Lavagno and A. Sangiovanni-Vincentelli. Algorithms for synthesis
and testing of asynchronous circuits. Kluwer Academic Publishers,
1993.

[11] A. Martin. Programming in VLSI: From communicating processes
to delay-insensitive circuits. In C. A. R. Hoare, editor, Developments
in Concurrencyand Communications, The UT Year of Programming
Series. Addison-Wesley, 1990.

[12] K. McMillan and D. Dill. Algorithms for interface timing verifica-
tion. In Proceedings of the International Conference on Computer
Design, October 1992.

[13] Kenneth McMillan. Using unfoldings to avoid the state explo-
sion problem in the verification of asynchronous circuits. In
G. v. Bochman and D. K. Probst, editors, Proc. International Work-
shop on Computer Aided Verification, volume 663 of Lecture Notes
in Computer Science, pages 164–177, 1992.

[14] D. E. Muller and W. C. Bartky. A theory of asynchronous circuits.
In Annals of Computing Laboratory of Harvard University, pages
204–243, 1959.

[15] T. Murata. Petri Nets: Properties, analysis and applications. Pro-
ceedings of the IEEE, pages 541–580, April 1989.

[16] C. J. Myers, T. G. Rokicki, and T. H.-Y. Meng. Automatic synthesis
and verification of gate-level timed circuits. Technical Report CSL-
TR-94-652, Stanford University, January 1995.

[17] Chris J. Myers. Computer-Aided Synthesis and Verification of Gate-
Level Timed Circuits. PhD thesis, Dept. of Elec. Eng., Stanford
University, October 1995.

[18] Chris J. Myers and Teresa H.-Y. Meng. Synthesis of timed asyn-
chronous circuits. IEEE Transactions on VLSI Systems, 1(2):106–
119, June 1993.

[19] Steven M. Nowick. Automatic Synthesis of Burst-Mode Asyn-
chronous Controllers. PhD thesis, Stanford University, Department
of Computer Science, 1993.

[20] T. G. Rokicki and C. J. Myers. Automatic verification of timed
circuits. In Proc. International Workshop on Computer Aided Veri-
fication, pages 468–480. Springer-Verlag, 1994.

[21] E. M. Sentovich, K. J. Singh, L. Lavagno, C. Moon, R. Mur-
gai, A. Saldanha, H. Savoj, P. R. Stephan, R. K. Brayton, and
A. Sangiovanni-Vincentelli. SIS: A system for sequential circuit
synthesis. Technical Report UCB/ERL M92/41, U.C. Berkeley,
May 1992.

[22] S. H. Unger. Asynchronous Sequential Switching Circuits. Wiley
Interscience, 1969.

[23] K. van Berkel. Beware the isochronic fork. Integration, the VLSI
journal, 13(2):103–128, June 1992.

[24] Peter Vanbekbergen, Gert Goossens, and Bill Lin. Modeling and
synthesis of timed asynchronous circuits. In Proceedings of the
European Design Automation Conference (EURO-DAC), pages 460–
465. IEEE Computer Society Press, September 1994.

[25] Chantal Ykman-Couvreur, Bill Lin, and Hugo de Man. Assassin: A
synthesis system for asynchronouscontrol circuits. Technical report,
IMEC, September 1994. User and Tutorial manual.

[26] Kenneth Yi Yun. Synthesis of Asynchronous Controllers for Hetero-
geneous Systems. PhD thesis, Stanford University, August 1994.

	CDROM Home Page
	ICCAD98
	Front Matter
	Table of Contents
	Session Index
	Author Index

