
PROMISE: Property Mining for Sequential Synthesis

Jiahui Xu∗, Jordi Cortadella†, and Lana Josipović∗
∗ETH Zurich, Department of Information Technology and Electrical Engineering, Zurich, Switzerland

†UPC Barcelona, Department of Computer Science, Barcelona, Spain

Abstract—Modularity—composing a large system using indi-
vidually designed units—is an essential practice in hardware
design. Yet, modularity might compromise quality: when indi-
vidually designed units are put together, some of their states
may become unreachable and, consequently, the logic that im-
plements them is redundant. Sequential synthesis aims to remove
redundant circuit logic by leveraging state unreachability. It
critically depends on invariants—relations between signals and
registers that hold in all reachable states—to prove the validity
of redundancies. Yet, existing invariant generation techniques are
mostly problem-specific (for a particular circuit or a property)
or reliant on localized reasoning. We propose PROMISE, a fast
circuit redundancy removal strategy. PROMISE exploits the rich
information from simulation traces and uses efficient polynomial-
time algorithms to infer global circuit invariants, optimizing
the circuit and aiding other sequential synthesis procedures.
Experiments show that PROMISE effectively optimizes circuits
produced by high-level synthesis tools. PROMISE is open-sourced
and available at github.com/ETHZ-DYNAMO/promise.

I. INTRODUCTION

FPGAs offer flexibility, energy efficiency, and high perfor-
mance; our goal is to make their programming as smooth as
traditional software development. The key to devising large
designs is modularity: a design is composed of small, man-
ageable pieces that can be easily integrated. Yet, composability
comes with a cost. It incurs substantial overhead [1] due to
the interface logic required to assemble the modules correctly:
when individually designed units are put together, some of
their states may become unreachable and, consequently, the
logic that implements them is redundant.

Sequential synthesis is a family of logic synthesis tech-
niques that remove redundant circuit logic leveraging state
unreachability. Its success critically depends on the available
invariants—relations between flip-flops (FFs) that hold in all
reachable states—to prove the validity of redundancies. How-
ever, useful invariants are hard to find: the space of possible
properties is enormous, so strategies often rely on localized
reasoning (e.g., a subgraph of adjacent circuit gates/FFs) or
produce property- or circuit-specific invariants.

We present PROMISE, an invariant generation framework for
sequential synthesis. PROMISE leverages the information avail-
able in circuit simulation traces and uses efficient polynomial-
time algorithms to generate a system of invariants commonly
found in circuits produced by high-level synthesis (HLS). The
invariants characterize the unreachable circuit states, which
we use to optimize the circuit’s encoding and enhance the
effectiveness of existing sequential synthesis approaches. Our
result shows that PROMISE-generated invariants bring tangible
and justifiable improvements to the circuit quality.

II. BACKGROUND

This section reviews the foundations in formal verification
and logic synthesis techniques that PROMISE relies on to
optimize redundant circuit logic.

A. Model Checking

In a finite-state machine (FSM), such as a sequential circuit,
an invariant is a property that holds in every reachable
state [2]. Model checking [3]–[5] is a formal verification tech-
nique that formally proves whether a certain property holds for
an FSM. If the property fails, it provides a counterexample. k-
induction [6], [7] is an important model checking algorithm for
invariant properties. k-induction verifies if the following two
conditions hold: (1) the property holds in any k steps starting
from the initial state; (2) for any k consecutive states where
the property holds, the property holds after any transition. In
practice, a very large bound k is needed for concluding non-
trivial properties: when k is not big enough, the induction
engine will return a counter-example, in which none of the
states is reachable. An invariant can act as a constraint during
model checking to rule out certain unreachable states (i.e., the
model checker ignores the states that violate the invariants),
thus it can speed up the verification of the k-induction proof
of another safety property [8]–[10].

Model checking algorithms like k-induction not only apply
to verifying the circuit’s correctness against a certain specifi-
cation, as we will see in the next section, but they also have
important applications in circuit optimization.

B. Sequential Synthesis

Sequential synthesis refers to circuit transformations that
preserve the circuit behavior on the reachable states and
allow arbitrary changes in the unreachable states [11], [12]. It
leverages state unreachability (i.e., some values never appear in
the input of the combinational circuit) to uncover optimizations
that are unattainable in combinational synthesis [7], [13]:
state reachability is formally verified before being applied
to reduce the circuit area. This principle can be generalized
into a suggest-guarantee-optimize procedure independent of
the circuit transformation and the property being verified. This
procedure is divided into these steps:
• Suggest: Candidate invariants—which indicate state

unreachability—are identified using a custom heuristic.
• Guarantee: The suggested invariants must be guaranteed by

formal verification. The surviving invariants are passed to
the optimize phase.

• Optimize: The circuit is optimized using the unreachable
state space generated by the proven invariants.

20
25

 IE
EE

/A
C

M
 In

te
rn

at
io

na
l C

on
fe

re
nc

e 
O

n 
C

om
pu

te
r A

id
ed

 D
es

ig
n 

(I
C

C
A

D
) |

 9
79

-8
-3

31
5-

15
60

-7
/2

5/
$3

1.
00

 ©
20

25
 IE

EE
 | 

D
O

I: 
10

.1
10

9/
IC

C
A

D
66

26
9.

20
25

.1
12

40
72

7

Authorized licensed use limited to: UNIVERSITAT POLITECNICA DE CATALUNYA. Downloaded on November 24,2025 at 09:24:57 UTC from IEEE Xplore.  Restrictions apply. 



f1 f2 f3 f4 f5

f6+ −=0?

pi1 po1

(a) The unoptimized circuit has a redundant encoding (the 5 FFs with
shaded background can be reduced to 3 as in Figure 1c).

Cycle f1 f2 f3 f4 f5 f6
C0 0 0 0 0 0 0
C1 1 0 0 0 0 1
C2 0 1 0 0 0 1
C3 0 0 1 0 0 1
C4 0 0 0 1 0 1
C5 0 0 0 0 1 1
C6 0 0 0 0 0 0

(b) A simulation trace of the circuit in Figure 1a, which is also the
same as the entire reachable set of states.

x1

x2

x3

Enc Dec
... ...

4-bit

(c) A circuit diagram (some details omitted) after our encoding
optimization (discussed in Section VII-A).

Fig. 1: Circuit with a redundant encoding. We identify opti-
mization opportunities and invariants from simulation traces.

However, current invariant generation methods (the “suggest”
phase) do not synergize well with the “optimize” phase: they
overlook encoding optimization opportunities and are unable
to find useful invariants for effective sequential synthesis, as
we will demonstrate next.

III. ARE WE GETTING THE MOST OUT OF OUR
INVARIANTS?

This section motivates new approaches for circuit encoding
optimizations and invariant generation.

A. Missed Encoding Optimization Opportunities

Figure 1a depicts a sequential circuit with six FFs (f1–f6),
all initialized to 0. The input to the start of the FF chain (f1–
f5) can be 1 only if the value of f6 is 0 in the current state;
f6 becomes one after the start of the chain receives a 1, and
becomes 0 after the start of the chain outputs a 1. Figure 1b
describes a simulation trace of 7 clock cycles (i.e., 7 circuit
states) with the values of the FFs. The circuit has simple
control logic, and this trace contains all of its reachable states.
Notice that, in any state, at most one FF in f1–f5 has an output
value equal to 1. In theory, it is possible to replace the chain
of 5 FFs with only 3 FFs as in Figure 1c.

f2
f1

f3 w1

<
+−

f4 f5 f6 f7
pi1

po1

5

(a) The shaded parts can be removed without compromising the
circuit’s functionality.

Cycle pi1 f1 f2 f3 f4 f5 f6 f7
C0 1 0 0 0 0 0 0 0
C1 1 1 0 0 1 0 0 0
C2 1 0 1 0 1 1 0 0
C3 1 1 1 0 1 1 1 0
C4 0 0 0 1 1 1 1 1
C5 0 1 1 0 0 1 1 1
C6 0 0 1 0 0 0 1 1

(b) Simulation trace with 7 states and 7 state variables.

Fig. 2: The invariant extracted from a simulation trace can
improve the effectiveness of sequential synthesis (see Sec-
tion III-B).

This redundancy appears in many circuits and is often
unintentional. However, state-of-the-art sequential synthesis
approaches [7], [13], [14] typically would not optimize away
this redundancy, since existing state encoding optimization ap-
proaches require complete reachability information [15] (e.g.,
state-transition graph, or a BDD of the set of reachable states)
that is impractical to obtain for large circuits. PROMISE detects
these redundancies in the form of a linear inequality1:

f1 + f2 + f3 + f4 + f5 ≤ 1. (1)

When this relation is true for all reachable states, we know
that there are only 6 reachable combinations of these 5 FFs,
and PROMISE can reencode the 5 FFs into 3 FFs.

B. Localized and Inexpressive Invariants

Consider the circuit in Figure 2a. All FFs are initialized to
0. A chain of FFs f4–f7 receives a 1 only when the 3-bit word
w1 (consisting of f3, f2, and f1; f3 is the MSB) has a value
less than 5. Counter w1 counts up when a 1 is loaded into
the FF chain f4–f7, and counts down as f7 outputs a 1. Since
the counter’s value directly corresponds to the number of 1’s
in f4–f7, the “<” gate always evaluates to 1. Theoretically,
we can remove or simplify all the shaded wires without
altering the functionality. Without the support of invariants,
sequential synthesis approaches (e.g., scorr in ABC) require
a large induction depth to simplify the circuit (as large as the

1We use “&”, “|”, and “∼” to denote logical and, or, and not. We use “+”
for arithmetic sum.

Authorized licensed use limited to: UNIVERSITAT POLITECNICA DE CATALUNYA. Downloaded on November 24,2025 at 09:24:57 UTC from IEEE Xplore.  Restrictions apply. 



maximum value of the counter). However, existing techniques
are unable generate useful invariants for optimizing this circuit,
as they are limited to Boolean clauses over a subgraph of
adjacent nodes (e.g., a clause f1|f2|f3) [16], simple implica-
tion or equality between signals [17], [18], are specialized to
particular circuits [8], [9], or specific to the invariants relavant
for proving one particular property [19].

On the other hand, PROMISE can detect and prove the
following invariant, which cannot be obtained using the afore-
mentioned circuit invariant generation techniques:

f1 + 21 · f2 + 22 · f3︸ ︷︷ ︸
=w1

= f4 + f5 + f6 + f7, (2)

which specifies the relation between the 3-bit word w1 and the
FF chain f4–f7. Once assisted with this invariant, sequential
synthesis can easily remove all the shaded logic.

IV. PROMISE: GENERATING CIRCUIT INVARIANTS FROM
SIMULATION

We propose PROMISE, an invariant generation framework to
enable more effective sequential synthesis. PROMISE leverages
polynomial-time algorithms to efficiently suggest candidate
linear invariants from the circuit’s simulation traces. PROMISE
guarantees the validity of the invariants using a model checker,
and uses the invariants to optimize the circuit’s encoding or
assist other sequential synthesis approaches [7], [20].

Suppose c1, . . . , cN+1 are coefficients and f1, . . . , fN are
the circuit’s FFs; PROMISE generates:
• Inequalities with coefficients c1, . . . , cN ∈ {0,−1,+1} and

an integer cN+1:

c1 · f1 + c2 · f2 + · · ·+ cN · fN + cN+1 ≤ 0; (3)

• Equalities with integer coefficients:

c1 · f1 + c2 · f2 + · · ·+ cN · fN + cN+1 = 0. (4)

Such linear relations frequently appear in the control logic
of HLS-produced circuits [9], since the control status of a
circuit is often realized using linearly evolving elements like
counters. PROMISE makes better suggestions and therefore,
enables better optimizations.

The rest of the paper is organized as follows: Section V
describes PROMISE’s suggest phase: two mathematical meth-
ods for inferring the candidate invariants. Section VI describes
the guarantee phase; a standard model checking algorithm
to verify the invariants. Section VII describes the optimize
phase: how to exploit the properties to optimize the circuit.
Section VIII evaluates the effectiveness of PROMISE.

V. THE SUGGEST PHASE:
MATHEMATICAL METHODS FOR PROPERTY MINING

This section describes the mathematical methods for identi-
fying properties in the form of linear equalities and inequalities
that we classified above.

Cycle f5 f6 ∼f5 ∼f6
C0 0 0 1 1

C1...5 0 1 1 0
C6 1 1 0 0

(a) f5 and f6 from Figure 1b and
their complemented values.

~f5~f6

f5f6

(b) Conflict graph for Figure 3a
colored using 3 colors.

Fig. 3: Coloring a conflict graph using the algorithm in
Section V-A.

A. Extracting Mutually Exclusive Sets of Signals by Coloring
a Conflict Graph

This subsection devises a systematic strategy for identifying
mutually exclusive signals from simulation traces. This enables
optimizations such as the one in Figure 1.

FFs f1, . . . , fN are mutually exclusive if they are never
simultaneously 1, i.e., f1 + · · · + fN ≤ 1 [21]. Mutual
exclusiveness translates to these relations: (1) One-hot: mu-
tually exclusive FFs are one-hot. (2) Implication: if f1 and
f2 are mutually exclusive, then ∼(f1&f2) = 1 must hold.
Now, suppose that f1 and ∼f2 are mutually exclusive, then
∼(f1&(∼f2)) = (f1 → f2) = 1.

PROMISE infers mutually exclusive sets of FFs by coloring
a conflict graph [12], [22]. PROMISE constructs the conflict
graph from simulation data as follows:
• For each FF output fi and its complement ∼fi, add a node

to the graph.
• For each simulation cycle, if the corresponding signals of

any two nodes are both 1, add an edge between those nodes.
• For each FF fi, add an edge between fi and its complement
∼fi (to avoid a trivial relation like: ∼fi + fi ≤ 1).

Graph coloring assigns different colors to nodes connected by
an edge. For scalability, we apply a greedy coloring which
runs in linear time [22]; this heuristic leads to excellent
results, as we will see in Section VIII. After coloring, each
color denotes a set of mutually exclusive FFs. For each color
C := {f1, · · · , fN}, we devise the following invariant:∑

fi∈C

fi ≤ 1, (5)

which is used by PROMISE to assist other sequential synthesis
approaches and to optimize the encoding—Section VII-A
describes how PROMISE carries out the optimization.

For example, Figure 3 describes a conflict graph built from
f5, f6, and their complemented values. After coloring, we get
3 sets: {f5,∼f6}, {f6}, and {∼f5}. The first set corresponds
to a non-trivial relation: f5 +∼f6 ≤ 1.

B. Extracting Equalities Using Gaussian Elimination

This subsection presents a systematic strategy for deriving
a system of linear equalities of the signals in the circuit from
simulation traces. This improves the effectiveness of sequential
synthesis of the circuit, such as the one in Figure 2.

PROMISE infers linear equalities like Equation 2 from sim-
ulation traces. Since any valid invariant holds in all reachable

Authorized licensed use limited to: UNIVERSITAT POLITECNICA DE CATALUNYA. Downloaded on November 24,2025 at 09:24:57 UTC from IEEE Xplore.  Restrictions apply. 



states, it must be at least valid for the observed simulation data.
This requirement is equivalent to a system of linear constraints
for possible values of coefficients ci ∈ C (fs1

1 denotes the
value of f1 in state s1):

fs1
1 fs1

2 · · · fs1
N 1

fs2
1 fs2

2 · · · fs2
N 1

...
fsM
1 fsM

2 · · · fsM
N 1


︸ ︷︷ ︸

A:M×(N+1)

·


c1
c2
...
cN

cN+1


︸ ︷︷ ︸
c:(N+1)×1

=


0
0
...
0
0

 , (6)

which is equivalent to equations like Equation 4. A solution to
the system (c =

[
c1 · · · cN+1

]T
) determines the coefficients in

Equation 4. This system may have infinitely many solutions;
that is, there could be an infinite number of equations to
include in the set of invariants. Yet, many equations are
redundant—for example, 2 · f1 + 2 · f2 = 2 · f3 is merely
a scaled version of f1 + f2 = f3. PROMISE adopts a standard
approach [23]–[25] based on Gaussian elimination [26] (with
O(n3) complexity) to determine a minimal set of vectors, en-
suring that no vector can be expressed as a linear combination
of the others. In this way, PROMISE efficiently infers equations
such as Equation 2 and leverages them to aid the sequential
synthesis of circuits in Figure 2.

Consider the linear system constructed according to the
simulation cycles 0. . .5 (no cycle 6) in Figure 2b:

0 0 0 0 0 0 0
1 0 0 1 0 0 0
0 1 0 1 1 0 0
1 1 0 1 1 1 0
0 0 1 1 1 1 1
1 1 0 0 1 1 1

 ·


c1
c2
...
c7

 =


0
0
...
0

 . (7)

One possible set of solutions to this system is:[
1 0 2 −1 1 −1 1

]T
, (8)[

0 1 1 0 −1 0 0
]T

. (9)

We plug them separately in Equation 4 (replacing the values
of c1 . . . c7) to obtain two relations:

f1 + 2 · f3 + f5 + f7 = f4 + f6, (10)
f2 + f3 = f5. (11)

These relations hold in cycles 0. . . 5, but the second relation
failed in cycle 6. In general, the inferred relation might be
spurious since a simulation trace is not guaranteed to cover
all states. Therefore, the validity of the invariants must be
guaranteed by formal verification, as described next.

VI. THE GUARANTEE PHASE:
PROVING THE SUGGESTED INVARIANTS

The result of the previous section is a set of candidate
invariants inferred from simulation. The simulation traces only
contain a subset of the reachable states. PROMISE attempts
to verify that the conjunction of the invariants is valid in all

reachable states using a model checker. If the proof failed,
PROMISE adds the states in the counterexample trace to the
set of simulation states to correct the set of invariants. If
the invariant holds, we use it to optimize the circuit. For
example, the model checker will return a counterexample trace
that contains cycle 6 (in Figure 2b) to disprove Equation 11.
Having the new state, PROMISE can reexecute the procedure
in Section V-B to correctly infer Equation 2.

The verified invariants enable PROMISE to apply the circuit
optimization techniques described in the next section.

VII. THE OPTIMIZE PHASE:
CAPITALIZING ON THE INVARIANTS

This section describes how PROMISE uses the invariants
from Section V to optimize the circuits.

A. Applying Encoding Optimizations to the Circuit

This subsection describes how PROMISE performs encoding
optimization using inequalities like Equation 3.

In general, for a set of signals F := {s1, · · · , sN}, a
system of inequalities like Equation 3 (that we aim to prove
in Section V-A) describes that the sum of the signals is within
a set of values K := {k1, . . . , kM}, that is:

(s1 + · · ·+ sN ) ∈ {k1, . . . , kM}. (12)

For example, Figure 4a describes a subcircuit with 3 FFs,
f1, f2, and f3. Assume that the following inequality holds in
all reachable states:

0 ≤ f1 + f2 + f3 ≤ 1. (13)

Here, F := {f1, f2, f3} and K := {0, 1}. Since f1, f2, and f3
can only take 4 possible combinations of values, the subcircuit
with 3 FFs can be substituted with another subcircuit with 2
FFs as in Figure 4c. The following describes how we construct
the substituted circuit.

The substitution must preserve the circuit’s functionality.
Following a standard pattern as a previous work on encoding
optimization [15], PROMISE uses an encoding circuit Enc(·)
that takes the inputs to the original FFs (e.g., i1, i2, i3 in
Figure 4c) and sends the encoded inputs (e1, e2) to the encoded
FFs (x1, x2). PROMISE uses another decoding circuit Dec(·)
to convert the encoded FFs’ outputs back to the original
outputs (o1, o2, o3). For any reachable FF value assignment
to a set of FFs f1, . . . , fN , the encoding and decoding
functions cancel each other’s effect, that is, f1, . . . , fN =
Dec(Enc(f1, . . . , fN )), and the decoding circuit preserves the
initial state.

PROMISE uses a state mapping table to decide on the
encoding scheme and the encoding and decoding circuits.
It maps a set of reachable FF values—all combinations
that satisfy Equation 12—in the unoptimized circuit into the
corresponding FF values in the optimized circuit. Figure 4b
describes a state mapping table that maps a state in Figure 4a
to a state in Figure 4c. For instance, according to the last entry
in Figure 4b, when both the original and optimized circuits
start from the initial state, if the original circuit (Figure 4a)

Authorized licensed use limited to: UNIVERSITAT POLITECNICA DE CATALUNYA. Downloaded on November 24,2025 at 09:24:57 UTC from IEEE Xplore.  Restrictions apply. 



Other unspecified terms, such as
(f1, f2, f3) = (1, 1, 0), are don't cares

f1 f2 f3

i1 i2 i3

o1 o2 o3

f1 f2 f3 x1 x2

0 0 0 0 0
100 0 1

10 0 01
0 01 1 1

x1 x2

i1 i2 i3

O1 O2 O3

e1 e2

e1 := i1 | i2
e2 := i1 | i3

o1 := x1 & x2
o2 := x1 & ~x2
o3 := ~d1 & d2

Encoding
circuit

Decoding
circuit

(a) Unoptimized circuit (3 FFs).

(b) State mapping table. (c) Optimized circuit (2 FFs).

Fig. 4: Circuit substitution: 3 FFs to 2 FFs.

reached a state (f1, f2, f3) = (1, 0, 0) after applying certain
input sequence, the optimized circuit (Figure 4c) must have
(x1, x2) = (1, 1). Different mappings potentially have dif-
ferent effects on the cost of the encoding circuit. Although
exploring different mappings is beyond the scope of this
paper, we will see in Section VIII that the mappings used
by PROMISE successfully simplify the circuit.

The encoding and decoding circuits can be built from the
state mapping table using a standard logic synthesis tech-
nique (e.g., a Karnaugh map). We apply a pre-processing step
for FFs with complemented outputs (∼fi), since they might
not exist originally: we insert a pair of inverters at the input
and output of each complemented FF (∼fi), and complement
the initial value of that FF [7].

PROMISE performs encoding optimization only for F and
K that reduce the number of FFs. The number of FFs in
the substituted subcircuit |RF | after applying the encoding
optimization is given by

|RF | := ⌈log2(
∑
k∈K

(
|F |
k

)
)⌉, (14)

where
(
a
b

)
denotes the number of b-combinations of a el-

ements. The expression in log2(·) describes the number of
combinations of FF values that sum up to each value in the
set K ∈ {k1, . . . , kM}. Each combination corresponds to a
row in the state mapping table; therefore, the number of FFs
needed to represent these states is the log2(·) of the number of
entries. Encoding optimization is profitable if |RF | is less than
the number of FFs in the original subcircuit |F |. In Equation 1,
|F | = 5 and K ∈ {0, 1}, therefore, |RF | = ⌈log2(

(
5
0

)
+(

5
1

)
)⌉ = 3. Since |RF | < |F |, applying the transformation

reduces the number of FFs. Consider another case when
K = {0, 1, 2, 3}. Here, |RF | = ⌈log2(1 + 5 + 10 + 10)⌉ = 5,
and therefore the transformation is not desirable.

States

Suggest

Guarantee

Properties

(Verified)
Properties

Optimize

Simulate

Circuit

Simulate: Sample the circuit's state space 

Suggest: From the sampled states, guess
certain properties that might hold in all
reachable states

Guarantee: Try to prove properties inferred
in the "suggest" phase:
- Pass: forward them to the optimize phase
- Fail: add the counterexample into the set of
states and go back to the suggest phase

Optimize: Use the verified property to
improve circuit's quality

Fig. 5: PROMISE’s suggest-guarantee-optimize circuit opti-
mization procedure.

B. Enhancing Sequential Synthesis Using Invariants

In addition to the encoding optimization above, PROMISE
embeds other sequential synthesis procedures in its optimize
phase and assists them using the invariants in Section V. With-
out loss of generality, here, we discuss the synergy between
PROMISE and one particular sequential synthesis flow [7];
we believe that this also applies to other sequential synthesis
approaches (e.g., Marakkalage et al. [14]).

Signal correspondance [7] is a sequential synthesis tech-
nique that detects, proves, and merges sequentially equivalent
nodes and FFs. This approach relies on k-induction internally
to carry out the proof. Without a suitable invariant, the depth
k required to prove the property might be prohibitively large.
However, in the presence of invariants provided by PROMISE,
they can efficiently prove signal equivalence and perform more
effective optimizations.

This concludes the optimization methods used by PROMISE.
We now evaluate their effectiveness.

VIII. EVALUATION

This section evaluates the effectiveness of PROMISE. Our
research artifact is publicly available [27].

A. Methodology

We implemented PROMISE—a suggest-guarantee-optimize
procedure that uses the techniques we have seen so far. Fig-
ure 5 describes our invariant generation and circuit optimiza-
tion flow. Unless stated otherwise, the parameters discussed
apply to all experiments.

Benchmarks. We have a set of benchmarks generated using
different circuit compilation tools: Dynamatic [28] (an MLIR-
based HLS tool that converts an input C code to a dynamically
scheduled dataflow circuit) and XLS [29] (converts a design
specified in its input language into a statically scheduled

Authorized licensed use limited to: UNIVERSITAT POLITECNICA DE CATALUNYA. Downloaded on November 24,2025 at 09:24:57 UTC from IEEE Xplore.  Restrictions apply. 



TABLE I: Effectiveness of Suggest and Optimize: The fea-
tures of PROMISE (EN and IN) consistently improve the cost.
Compared with SC only, SC + EN + IN achieved average
reductions of 31% 6-LUT and 29% FF.

AIG results 6-LUT results
Benchmark Enabled features FF AIG Depth FF 6-LUT Depth

37 1566 40 37 214 7
SC 37 1152 40 37 163 8
SC EN 36 1156 40 36 163 8
SC IV 37 1151 40 37 162 8

factorial
(xls)

SC EN IV 36 1156 40 36 163 8
54 593 20 54 126 5

SC 53 516 17 53 118 4
SC EN 53 561 18 53 127 4
SC IV 54 517 18 54 118 4

iterative
division

(xls)
SC EN IV 53 532 18 53 122 4

43 702 42 43 136 9
SC 43 617 42 43 120 8
SC EN 42 651 42 42 121 8
SC IV 43 622 42 43 122 8

iterative
sqrt
(xls)

SC EN IV 42 626 42 42 121 8
34 243 17 34 70 4

SC 32 211 13 32 59 3
SC EN 31 225 13 31 59 3
SC IV 32 211 13 32 58 3

simple
loop
(xls)

SC EN IV 31 220 13 31 60 3
497 4817 35 497 986 7

SC 482 4582 35 482 931 7
SC EN 367 4039 35 367 784 7
SC IV 374 2250 28 374 536 5

factorial
(Dynamatic)

SC EN IV 328 2411 30 328 523 5
392 3034 30 392 752 7

SC 310 2369 26 310 545 6
SC EN 135 906 17 135 204 4
SC IV 241 874 16 241 302 4

iterative
division

(Dynamatic)
SC EN IV 146 924 17 146 217 4

605 5325 47 605 1189 11
SC 581 4859 41 581 1103 10
SC EN 161 892 17 161 224 4
SC IV 308 877 15 308 355 4

iterative
sqrt

(Dynamatic)
SC EN IV 184 910 16 184 251 4

46 326 20 46 73 5
SC 34 268 16 34 58 4
SC EN 24 156 12 24 45 3
SC IV 27 150 12 27 44 3

simple
loop

(Dynamatic)
SC EN IV 24 162 16 24 43 3

262 2435 32 262 586 8
SC 240 2173 31 240 531 7
SC EN 142 1331 27 142 339 5
SC IV 197 1107 27 197 346 5

matvec
(Dynamatic)

SC EN IV 151 1198 27 151 326 5
393 3681 32 393 839 8

SC 366 3409 32 366 769 7
SC EN 243 2690 36 243 648 8
SC IV 278 1815 28 278 527 5

bicg
(Dynamatic)

SC EN IV 221 1946 28 221 503 5
460 4262 32 460 1002 8

SC 405 3763 31 405 879 7
SC EN 229 2433 29 229 515 6
SC IV 314 1592 23 314 467 5

gaussian
(Dynamatic)

SC EN IV 221 1692 23 221 396 5
1405 12816 32 1405 2943 8

SC 1285 11686 34 1285 2674 7
SC EN 817 9732 48 817 2279 11
SC IV 999 6237 31 999 1616 5

gemver
(Dynamatic)

SC EN IV 758 6655 33 758 1486 6
407 3585 33 407 877 8

SC 363 3039 30 363 775 6
SC EN 262 2763 37 262 728 9
SC IV 280 1414 28 280 457 5

stencil
2d

(Dynamatic)
SC EN IV 215 1614 28 215 442 5

1117 10271 36 1117 2429 8
SC 1031 9338 33 1031 2176 7
SC EN 616 7192 42 616 1586 10
SC IV 801 4639 34 801 1222 5

2mm
(Dynamatic)

SC EN IV 584 5100 34 584 1121 6

circuit). They are decent targets for evaluating PROMISE:
Dynamatic generates circuits by connecting individually de-
signed dataflow units to ensure performance and flexibility,
but suffers from the area overhead due to this modularity.
XLS generates coarse-grained, statically scheduled blocks that
communicate via handshake interfaces—offering flexibility,
but also introducing redundancy. Each benchmark without
memory accesses (XLS cannot handle memory accesses) has
two functionally identical implementations in two tools. We
also include several standard HLS benchmarks (matvec, bicg,

gemver, kernel 2mm, stencil 2d) [30]. For each synthesized
top-level module, we added a wrapper to simplify the commu-
nication between the circuit and its environment. Each module
includes a ”go” input pin to start the execution and a ”done”
output pin that signals when the computation is complete.
All designs have been functionally verified using a set of
representative input vectors.

Simulate. We synthesize the circuit using Yosys [31]. We
use Verilator [32] to simulate each circuit with random inputs
for 4 rounds, each for 25000 cycles.

Suggest. We use the algorithms described in Section V
to infer invariants from the set of simulated states. We only
extract relations between the FFs that dictate the control status
in the design (e.g., the data validity flag of a buffer).

Guarantee. We use the rIC3 model checker [33] to carry
out the formal verification of the conjunction of the invariants
inferred in the suggest phase. rIC3 uses the PDR model
checking algorithm [19], [34]. If rIC3 reports that the property
is invalid, the states in the counterexample will be added to
the set of simulated states. We iterate between the suggest and
guarantee phases until rIC3 confirms that the conjunction of
the invariants holds in the circuit.

Optimize. Our baselines are the unoptimized circuit and the
circuit optimized only with the scorr command (the signal
correspondence optimization) available in ABC. We then com-
plement the scorr command with our encoding optimization
(Section VII-A) and invariants (Section V).

We need to specify our invariants when running the scorr
command: scorr allows declaring a certain PO as a con-
straint; during the proving step, the algorithm ignores the
states where the constraint fails. We construct a logic cone as
a constraint from the conjunction of the invariants. We strip
away the logic cone after the optimization.

Our optimization metrics. To report the area results, we
use ABC to convert the circuit to an AIG network using
the st command and map the circuit to an FPGA LUT
network using if -K 6. As with any sequential synthesis
optimization, we do not alter the circuit’s latency (i.e., the
clock cycle count); therefore, we do not report it, as it re-
mains consistent across all designs. Whenever the complexity
permits, we apply sequential equivalence checking to formally
verify that our modifications preserve the behaviors of the
original circuits.

B. Effectiveness of PROMISE: Suggest and Optimize

Table I reports the ABC synthesis results of PROMISE.
The columns grouped with “Enabled features” indicate
which optimization techniques are applied: Column EN in-
dicates whether encoding optimization is applied, SC indi-
cates whether signal correspondence [7] (scorr in ABC) is
applied, and IN indicates whether the invariants are used in
scorr. The columns AIG results and 6-LUT results report
the achieved area and delay. The best synthesis result of each
single benchmark is highlighted in green.

Design with a network of modular units. The benchmarks
labeled with “(Dynamatic)” are generated by Dynamatic [28].

Authorized licensed use limited to: UNIVERSITAT POLITECNICA DE CATALUNYA. Downloaded on November 24,2025 at 09:24:57 UTC from IEEE Xplore.  Restrictions apply. 



100 101 102

400

600

LU
Ts

matvec (Dynamatic)
Combinational SC SC + IN (ours)

100 101 102

600

800

LU
Ts

bicg (Dynamatic)

100 101 102

Induction depth

500

1000

LU
Ts

gaussian (Dynamatic)

Fig. 6: Effect of using different induction depths and inclusion
or exclusion of invariants when using scorr in ABC.

Dynamatic implements handshake modules at the operation
level (e.g., a multiplier has its handshake interface) to ensure
the best composability and latency [35], but has a very large
resource overhead [1]. In these benchmarks, signal correspon-
dence alone (i.e., the rows with only SC) sees improvement
over pure combinational synthesis (i.e., the rows with no tech-
niques). On the other hand, we see a substantial logic reduction
when signal correspondence is used with our additions—
either encoding optimization (EN) or invariants (IN); in each
benchmark, the best metric is achieved by applying at least
one of our optimizations (i.e., EN or IN).

Design with a single module. The benchmarks labeled
“(xls)” are generated by XLS [29]. As a single-module design,
the circuit has less redundancy to explore. When adding
a wrapper to simplify communication (see Section VIII-A),
some interface logic in XLS-produced circuits becomes re-
dundant. Our invariant supports the signal correspondence
procedure in removing this redundancy.

Encoding optimization vs. invariant-enhanced signal
correspondence. Generally, it is expected to see that encoding
optimization reduces the FF count at the cost of a more
complex logic. However, circuits with SC + EN consistently
have fewer AIG or 6-LUT nodes than those with SC alone.
This is because reducing the FFs also reduces the combina-
tional logic’s primary inputs and outputs, which potentially
simplifies the logic function. While the encoding optimization
may increase the maximum logic depth, this effect is offset
by the logic savings enabled by the invariants—the rows with
SC + EN + IN always have the best logic depth.

TABLE II: Comparing the effectiveness of PROMISE’s invari-
ants vs. using the reachable set of states as an invariant for
benchmark “simple loop (Dynamatic)”.

AIG results 6-LUT results
Invariants FF AIG Depth FF 6-LUT Depth
No invariants 34 268 16 34 58 4
Reachable states 46 152 13 46 65 3
Promise’s invariants 27 150 12 27 44 3

TABLE III: Runtime statistics of Suggest and Guarantee.
Columns Sim, Proof, Linear equality, and Mutual exclusion
are reported in seconds.

XLS-Produced Circuits
Benchmark Sim Proof Linear

equality
Mutual

exclusion Iter.
factorial 0 0.1 0 0 0

iterative division 0 0.4 0 0 1
iterative sqrt 0 0.6 0 0 2
simple loop 0 0.1 0 0 0

Dynamatic-Produced Circuits
Benchmark Sim Proof Linear

equality
Mutual

exclusion Iter.
factorial 0.8 4.7 0 0.2 1

iterative division 0.8 1.7 0 0 0
iterative sqrt 1.7 2.4 0.1 0.1 0
simple loop 0 0.2 0 0 0

matvec 0.4 3.4 0 0 0
bicg 0.8 7.6 0 0 0

gaussian 1.2 16.3 0.1 0.1 0
gemver 7.6 119.2 0.9 0.7 0

stencil 2d 0.8 30.9 0 0.1 0
2mm 5.7 334.4 0.6 0.5 0

Increasing induction depth vs. using invariants. Figure 6
describes the effect of inclusion and exclusion of invariants and
varying the induction depth (1 to 250) when using scorr for
benchmarks matvec, bicg, and gaussian. In each benchmark,
increasing the induction depth alone does not improve the area.
Surprisingly, the number of 6-LUTs after applying scorr
increases when the induction depth is large. This shows that
PROMISE-generated invariants greatly improve the effective-
ness of scorr.

Effectiveness of PROMISE’s invariants vs. reachability.
BDD-based reachability analysis produces a set of reachable
states—this can be formulated as an invariant (i.e., given the
set of all reachable states {s1, s2, . . . , sN}, we can format
them as a invariant: (state = s1)|(state = s2)| · · · (state =
sN )). Table II reports the synthesis result of the benchmark
“simple loop (Dynamatic)”. The table reports the optimization
result after using scorr, assisted by no invariants (No invari-
ants), the set of reachable states as an invariant (Reachable
states), and PROMISE’s invariants (PROMISE’s invariants).
From the result, using the set of all reachable states as an
invariant is less effective than our invariants.

We omit the further comparison with encoding optimization
that requires a complete set of reachable states (e.g., Sentovich
et al. [15]) due to the poor scalability of the reachabil-
ity analysis [9]. For one of our medium-sized benchmarks,
matvec (Dynamatic), the reachability analysis in ABC could
not converge after 48 hours.

Authorized licensed use limited to: UNIVERSITAT POLITECNICA DE CATALUNYA. Downloaded on November 24,2025 at 09:24:57 UTC from IEEE Xplore.  Restrictions apply. 



C. Scalability of PROMISE: Suggest and Guarantee

Table III reports the runtime statistics of the property mining
procedures (Section V) and time needed to prove the proper-
ties (Section VI). Column Iter. reports the number of failed
proof attempts (that trigger re-execution of the suggest phase).
Columns Mutual exclusion and Linear equality report the
total runtime of the techniques introduced in Section V-A
and Section V-B. Column Sim reports the total time spent on
circuit simulation. Our results indicate that circuit simulation
is a scalable source for gathering information for invariant
generation—the total simulation time is always under 10
seconds. This can be further improved by parallelization.
Column Proof reports the total runtime of running the rIC3
model checker. All model checking runs converge in a rea-
sonable time without any abstraction technique applied (often
necessary for model checking to converge [1], but not needed
in our experiments).

Scalability of property mining. In benchmarks with data-
dependent control flow (e.g., the “factorial” benchmarks gen-
erated using Dynamatic), few corrections were done (see
Section VI) before our property mining procedure could infer
a verifiable invariant. Yet, our property mining procedures are
scalable: most property generation takes less than 1 second. All
the mutual exclusion properties are generated within 0.1 sec-
onds. The largest benchmark “kernel 2mm (Dynamatic)” only
requires less than 2 seconds to generate the properties.

IX. RELATED WORK

Dataflow designs produced from high-level languages.
There has been an increasing interest in HLS tools to produce
dataflow processing networks [28], [29], [35]–[41]. Dataflow
processing systems are composable and deliver high perfor-
mance due to their dynamic nature [42]. This paradigm comes
with a resource overhead (up to 50% of the dataflow circuit
logic is redundant, bypassing multiplexers and buffer slots that
are never occupied with valid data [1]), and many research
works aim at removing it [1], [35], [43]–[46]. Unlike these
efforts, PROMISE offers a more general solution, independent
of specific circuit generation methods.

Encoding optimization. Sentovich et al. [15] focus on
optimizing encoding in circuits generated from ESTEREL.
They greedily remove one register at a time and require
computation and analysis of the entire reachable state space.
Computing the reachable state space is typically impracti-
cal without problem-specific abstractions. Empirical evidence
suggests that induction in the presence of invariants is more
scalable than reachability analysis [9]. We efficiently infer en-
coding optimization opportunities using simulation. Sentovich
et al. [21] also describe an FF optimization approach that
leverages the knowledge of their circuits; yet, their technique
is specific to ESTEREL-produced circuits.

Redundancy removal in sequential circuits. Sequential
synthesis techniques like those of Mishchenko et al. [7] and
Marakkalage et al. [14] remove redundancy using induction;
yet, they do not take advantage of any invariants. Many
research efforts explore redundancy removal approaches in a

limited setting, such as combinational circuits [47], feedback-
free circuits, and a particular redundancy structure [1], [48].
These approaches do not aim to improve the circuits’ encod-
ing, and our invariants can be used to improve the effectiveness
of their optimization.

Generating invariants for circuits. There exist techniques
for automatically deriving inductive invariants for dataflow
circuits [8], [9] to improve verification runtime, but they are
limited to a set of predefined units. There is a family of
model checking algorithms that aim to synthesize an inductive
invariant to prove the safety property [19], [34], [49], [50].
These methods are specific to generating an inductive invariant
for a single safety property, operate on unreachable states,
and the operators used to construct the invariants have either
too limited expressivity (i.e., pure Boolean formulas [19]) or
are too general and overfit the observed states [49] (i.e., any
first-order logic operator). Our method operates on simulation
traces, and we aim to infer expressions (e.g., Equation 3 and
Equation 4) that commonly appear in the control logic of the
circuits generated from hardware compilers.

Property generation from simulation. Using simulation—
referred to as dynamic analysis in software engineering—
to derive loop invariants has been studied in the software
verification domain [23]–[25], [51]. Empirical results show
that these invariants can support proving the equivalence be-
tween the program before and after a certain optimization [51].
Execution traces, from both software and hardware, have also
been leveraged to infer temporal specifications [52], [53];
they generate more expressive properties than ours (e.g., LTL
formulas instead of invariants). However, these properties are
not readily applicable to circuit optimization. Inspired by them,
we adopted a similar insight—using simulation to support
verification—but specifically for circuit optimization.

X. CONCLUSION

We presented PROMISE, a framework that utilizes simu-
lation data to detect redundancy in the sequential circuit’s
state encoding and extract invariants to speed up the cir-
cuit verification. PROMISE efficiently detects state encod-
ing optimization opportunities in cases where conventional
techniques are prohibitively expensive, and derives linear
invariants to make existing sequential synthesis procedures
fundamentally more effective. PROMISE synergizes compre-
hensive simulation-based testing, formal verification, and logic
synthesis to uncover new opportunities for more effective and
scalable optimization. PROMISE is open-sourced and available
at github.com/ETHZ-DYNAMO/promise.

ACKNOWLEDGEMENT

This work has been supported by the Swiss National
Science Foundation (grant number 215747) and the ETH
Future Computing Laboratory (donation from Huawei Tech-
nologies).

Authorized licensed use limited to: UNIVERSITAT POLITECNICA DE CATALUNYA. Downloaded on November 24,2025 at 09:24:57 UTC from IEEE Xplore.  Restrictions apply. 



REFERENCES
[1] J. Xu, E. Murphy, J. Cortadella, and L. Josipović, “Eliminating excessive

dynamism of dataflow circuits using model checking,” in Proceedings of the
31st ACM/SIGDA International Symposium on Field Programmable Gate Arrays,
Monterey, CA, Feb. 2023, pp. 27–37.

[2] S. Chaki and A. Gurfinkel, “BDD-based symbolic model checking,” in Hand-
book of Model Checking. Springer International Publishing, 2018, pp. 219–245.
[Online]. Available: https://doi.org/10.1007/978-3-319-10575-8 8.

[3] E. Clarke, K. McMillan, S. Campos, and V. Hartonas-Garmhausen, “Symbolic
model checking,” in Proceedings of the 8th International Conference on Computer
Aided Verification, New Brunswick, NJ, Jun. 1996, pp. 419–22.

[4] E. M. Clarke, T. A. Henzinger, and H. Veith, “Introduction to model checking,” in
Handbook of Model Checking. Springer International Publishing, 2018, pp. 1–26.
[Online]. Available: https://doi.org/10.1007/978-3-319-10575-8 1.

[5] C. Kern and M. R. Greenstreet, “Formal verification in hardware design: A
survey,” ACM Transactions on Design Automation of Electronic Systems, vol. 4,
no. 2, pp. 123–93, Apr. 1999.

[6] M. Sheeran, S. Singh, and G. Stålmarck, “Checking safety properties using in-
duction and a SAT-solver,” in Proceedings of the 3rd International Conference on
Formal Methods in Computer-Aided Design, Austin, TX, Nov. 2000, pp. 127–44.

[7] A. Mishchenko, M. Case, R. Brayton, and S. Jang, “Scalable and scalably-
verifiable sequential synthesis,” in Proceedings of the 27th International Con-
ference on Computer-Aided Design, San Jose, CA, Nov. 2008, pp. 234–41.

[8] S. Chatterjee and M. Kishinevsky, “Automatic generation of inductive invariants
from high-level microarchitectural models of communication fabrics,” Formal
Methods in System Design, vol. 40, no. 2, pp. 147–69, 2012.

[9] J. Xu and L. Josipović, “Automatic inductive invariant generation for scalable
dataflow circuit verification,” in Proceedings of the 42nd International Conference
on Computer-Aided Design, San Francisco, CA, Oct. 2023, pp. 1–9.

[10] C. A. Furia, B. Meyer, and S. Velder, “Loop invariants: Analysis, classification,
and examples,” ACM Computing Surveys, vol. 46, no. 3, Jan. 2014.

[11] E. M. Sentovich, K. J. Singh, C. Moon, H. Savoj, R. K. Brayton, and A.
Sangiovanni-Vincentelli, “Sequential circuit design using synthesis and optimiza-
tion,” in Proceedings 1992 IEEE International Conference on Computer Design,
Cambridge, MA, Oct. 1992, pp. 328–33.

[12] G. De Micheli, Synthesis and Optimization of Digital Circuits. New York:
McGraw-Hill, 1994.

[13] R. Brayton and A. Mishchenko, “ABC: An academic industrial-strength verifi-
cation tool,” in Proceedings of the 22nd International Conference on Computer
Aided Verification, Edinburgh, Jul. 2010, pp. 24–40.

[14] D. S. Marakkalage, E. Testa, W. L. Neto, A. Mishchenko, G. De Micheli, and
L. Amarù, “Scalable sequential optimization under observability don’t cares,”
in Proceedings of 2024 Design, Automation & Test in Europe Conference &
Exhibition, Valencia, Spain, Mar. 2024, pp. 1–6.

[15] E. M. Sentovich, H. Toma, and G. Berry, “Latch optimization in circuits generated
from high-level descriptions,” in Proceedings of the 15th International Conference
on Computer-Aided Design, San Jose, CA, Nov. 1996, pp. 428–35.

[16] M. Case, A. Mishchenko, and R. Brayton, “Cut-based inductive invariant com-
putation,” in Proceedings of the 17th International Workshop on Logic Synthesis,
Lake Tahoe, CA, Jun. 2008, pp. 253–58.

[17] G. Cabodi, S. Nocco, and S. Quer, “Strengthening model checking techniques
with inductive invariants,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 28, no. 1, pp. 154–58, Jan. 2009.

[18] C. van Eijk, “Sequential equivalence checking based on structural similarities,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,
vol. 19, no. 7, pp. 814–19, Jul. 2000.

[19] A. R. Bradley, “SAT-based model checking without unrolling,” in Proceedings of
the 12th International Workshop on Verification, Model Checking, and Abstract
Interpretation, Austin, TX, Jan. 2011, pp. 70–87.

[20] ABC: System for sequential logic synthesis and formal verification, Commit:
ca78f5e, berkeley-abc. [Online]. Available: https://github.com/berkeley-abc/abc/
tree/ca78f5e6e5308df420ffc5c709e6d37caf97e40b.

[21] E. M. Sentovich, H. Toma, and G. Berry, “Efficient latch optimization using ex-
clusive sets,” in Proceedings of the 34th Annual Design Automation Converence,
Anaheim, CA, Jun. 1997, pp. 8–11.

[22] Graph coloring. [Online]. Available: https://en.wikipedia.org/w/index.php?title=
Graph coloring&oldid=1279292851.

[23] M. D. Ernst, J. Cockrell, W. G. Griswold, and D. Notkin, “Dynamically discov-
ering likely program invariants to support program evolution,” in Proceedings of
the 21st International Conference on Software Engineering, Los Angeles, CA,
May 1999, pp. 213–24.

[24] T. Nguyen, D. Kapur, W. Weimer, and S. Forrest, “Using dynamic analysis to
discover polynomial and array invariants,” in Proceedings of 34th International
Conference on Software Engineering, Zurich, Switzerland, Jun. 2012, pp. 683–93.

[25] R. Sharma, S. Gupta, B. Hariharan, A. Aiken, P. Liang, and A. V. Nori, “A data
driven approach for algebraic loop invariants,” in Proceedings of 22nd European
Symposium on Programming, Rome, Italy, Mar. 2013, pp. 574–92.

[26] Kernel (linear algebra). [Online]. Available: https : / / en . wikipedia . org / w /
index . php ? title = Kernel (linear algebra ) &oldid = 1261076439 # Computation
by Gaussian elimination.

[27] J. Xu, Research artifact of Promise: Property mining for sequential synthesis,
Jul. 2025. [Online]. Available: https://doi.org/10.5281/zenodo.16333795.

[28] Dynamatic, Commit: 999dc3c, EPFL-LAP. [Online]. Available: https: / /github.
com/EPFL-LAP/dynamatic/tree/999dc3ce2fb95eac1dd39cad441fbdf6b8389aee.

[29] Xls: Accelerated hw synthesis, Google, Inc. [Online]. Available: https://github.
com/google/xls.

[30] L.-N. Pouchet, Polybench: The polyhedral benchmark suite, 2012. [Online].
Available: https://sourceforge.net/p/polybench/wiki/Home/.

[31] Yosys Open SYnthesis Suite, Commit: 29cf4a9. [Online]. Available: https://github.
com/YosysHQ/yosys/tree/29cf4a919062fe7b6a6f21b946dbec15a3d2114a.

[32] W. Snyder, Verilator: Verilator open-source SystemVerilog simulator and lint
system, 2025. [Online]. Available: https://www.veripool.org/verilator.

[33] Y. Su, Q. Yang, Y. Ci, T. Bu, and Z. Huang, “The rIC3 hardware model checker,”
arXiv preprint arXiv:2502.13605, Feb. 2025.

[34] N. Een, A. Mishchenko, and R. Brayton, “Efficient implementation of property
directed reachability,” in Proceedings of 14th International Conference on Formal
Methods in Computer-Aided Design, Austin, TX, Oct. 2011, pp. 125–34.

[35] L. Josipović, R. Ghosal, and P. Ienne, “Dynamically scheduled high-level synthe-
sis,” in Proceedings of the 26th ACM/SIGDA International Symposium on Field
Programmable Gate Arrays, Monterey, CA, Feb. 2018, pp. 127–36.

[36] L. Josipović, A. Guerrieri, and P. Ienne, “Dynamatic: From C/C++ to dynamically
scheduled circuits,” in Proceedings of the 28th ACM/SIGDA International Sym-
posium on Field Programmable Gate Arrays, Seaside, CA, Feb. 2020, pp. 1–10.

[37] Vivado design suite user guide: High-level synthesis, Xilinx Inc., 2018. [Online].
Available: https : / / www . xilinx . com / support / documentation / sw manuals /
xilinx2017 4/ug902-vivado-high-level-synthesis.pdf.

[38] Y. Chi, L. Guo, J. Lau, Y.-k. Choi, J. Wang, and J. Cong, “Extending high-level
synthesis for task-parallel programs,” in Proceedings of the 29th IEEE Symposium
on Field-Programmable Custom Computing Machines, Orlando, FL, May 2021,
pp. 204–13.

[39] L. Guo, Y. Chi, J. Wang, et al., “AutoBridge: Coupling coarse-grained floor-
planning and pipelining for high-frequency HLS design on multi-die FPGAs,”
in Proceedings of the 29th ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays, Virtual Event, Mar. 2021, pp. 81–92.

[40] L. Guo, P. Maidee, Y. Zhou, et al., “RapidStream: Parallel physical imple-
mentation of FPGA HLS designs,” in Proceedings of the 30th ACM/SIGDA
International Symposium on Field-Programmable Gate Arrays, Virtual Event,
Feb. 2022, pp. 1–12.

[41] A. Elakhras, A. Guerrieri, L. Josipović, and P. Ienne, “Unleashing parallelism in
elastic circuits with faster token delivery,” in Proceedings of the 32nd Interna-
tional Conference on Field-Programmable Logic and Applications, Belfast, UK,
Aug. 2022, pp. 253–61.

[42] A. Elakhras, A. Guerrieri, L. Josipović, and P. Ienne, “Survival of the fastest:
Enabling more out-of-order execution in dataflow circuits,” in Proceedings of the
32nd International Symposium on Field-Programmable Gate Arrays, Monterey,
CA, Mar. 2024, pp. 44–54.

[43] J. Xu and L. Josipović, “Suppressing spurious dynamism of dataflow circuits
via latency and occupancy balancing,” in Proceedings of the 32nd ACM/SIGDA
International Symposium on Field Programmable Gate Arrays, Monterey, CA,
Mar. 2024, pp. 188–98.

[44] R. Nigam, S. Thomas, Z. Li, and A. Sampson, “A compiler infrastructure for
accelerator generators,” in Proceedings of the 26th ACM International Conference
on Architectural Support for Programming Languages and Operating Systems,
Virtual, Apr. 2021, pp. 804–17.

[45] A. Elakhras, J. Xu, M. Erhart, P. Ienne, and L. Josipović, “ElasticMiter: Formally
verified dataflow circuit rewrites,” in Proceedings of the 30th International
Conference on Architectural Support for Programming Languages and Operating
Systems, Rotterdam, The Netherlands, Apr. 2025, pp. 293–308.

[46] L. Josipović, A. Marmet, A. Guerrieri, and P. Ienne, “Resource sharing in dataflow
circuits,” in Proceedings of the 30th IEEE Symposium on Field-Programmable
Custom Computing Machines, New York, May 2022, pp. 1–9.

[47] S.-Y. Lee, H. Riener, A. Mishchenko, R. K. Brayton, and G. De Micheli, “A
simulation-guided paradigm for logic synthesis and verification,” IEEE Trans-
actions on Computer-Aided Design of Integrated Circuits and Systems, vol. 41,
no. 8, pp. 2573–86, May 2022.

[48] Q. Tan, A. Gupta, and S. Malik, “Usage-based RTL subsetting for hardware
accelerators,” in Proceedings of the 41st International Conference on Computer-
Aided Design, San Diego, CA, Dec. 2022, pp. 1–9.

[49] A. Goel and K. Sakallah, “AVR: Abstractly verifying reachability,” in Proceedings
of 26th International Conference on Tools and Algorithms for the Construction
and Analysis of Systems, Dublin, Ireland, Apr. 2020, pp. 413–22.

[50] M. L. Case, A. Mishchenko, and R. K. Brayton, “Automated extraction of
inductive invariants to aid model checking,” in Proceedings of the 7th Inter-
national Conference on Formal Methods in Computer Aided Design, Nov. 2007,
pp. 165–72.

[51] B. Churchill, O. Padon, R. Sharma, and A. Aiken, “Semantic program alignment
for equivalence checking,” in Proceedings of the 40th ACM SIGPLAN Conference
on Programming Language Design and Implementation, Phoenix, AZ, Jun. 2019,
pp. 1027–40.

[52] M. Gabel and Z. Su, “Symbolic mining of temporal specifications,” in Proceed-
ings of the 30th International Conference on Software Engineering, Leipzig,
Germany, May 2008, pp. 51–60.

[53] W. Li, A. Forin, and S. A. Seshia, “Scalable specification mining for verification
and diagnosis,” in Proceedings of the 47th Design Automation Conference,
Anaheim, CA, Jun. 2010, pp. 755–60.

Authorized licensed use limited to: UNIVERSITAT POLITECNICA DE CATALUNYA. Downloaded on November 24,2025 at 09:24:57 UTC from IEEE Xplore.  Restrictions apply. 


