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ABSTRACT

Early evaluation allows to execute operations when enonfgh-i
mation at the inputs has been received to determine the walue
the outputs. Systems that can tolerate variable-latenitg, .such
as latency-insensitive or asynchronous systems, can ealtheir
performance by using early evaluation. The most relevaatngte

of a unit with early evaluation is the multiplexor: the outman
be determined as soon as the information of the selectechehan
arrives, without waiting for the other channels.

This paper analyzes the potential impact of early evalnatio
concurrent systems. An analytical model, based on a Pdtexie
tension with early firing is proposed to estimate the perforce.
The reduction of the analytical model to a linear prograngrior-
mulation for an efficient estimation of the upper bound far $lys-
tem throughput is proposed. The results show the accuratheof
model and the benefits of early evaluation.

1. INTRODUCTION

Lazy and eager evaluation are two different strategies to-co
pute the value of expressions. Lazy evaluation is typicafigd
to minimize resource utilization, since expressions aig evalu-
ated when it is strictly necessary. On the other hand, eagdn-e
ation aims at speeding-up computations by evaluating eses
as soon as the values of the variables are available, tiygeting
the evaluation of other expressions.

The main motivation of this work comes from the area of lagenc
insensitive L) and asynchronous systems [4, 11]. The computa-
tional model of this type of systems resembles dataflow caimgu
Every wire and storage unit has an extra bit that indicatestir
the contents of the component is valid or not. Every compariat
unit produces a valid result when all input data are valid.
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Figure 1: Multi-guarded transitions: (a) AND-causality; (b)
early firing with guard {a,c}; (c) early firing with guard {b,c}.

1.1 Early evaluation

The requirement that all input data must be available to cgenp
aresult is too strict in some cases. For example, if a funationit
computesa = bxc, it is not necessary to wait for both operands if
one of them is already available and known to be zero. Therefo
the resulta = 0 could be produced by agarly evaluationof the
expression. A typical component in digital circuits is thelti
plexor. The simplest multiplexor has two input daézafidb), one
input control signal §) and one output data); with the following
behavior:

z=if cthen aelse b

The early evaluation of the multiplexor can be producedoif,if-
stancec anda are available and the value ofs true. In that case,
the resultz = a can be produced and the valuelotan be dis-
carded when it arrives at the multiplexor. Early evaluatias been
proposed and used in asynchronous design [2, 10].

Petri nets are not capable of modeling early evaluatiorgesin
the enabling of transitions is based on AND-causality, a#.in-
put conditions must be asserted. Causal Logic Nets fromdt2]
tend Petri nets to allow transition enabling triggered Hyiteary

The dynamic behavior of these systems can be often modeled!ogic guards associated with transitions. In this paper resent a

by marked graphs [5], a subclass of Petri nets [9] withoutag®
Data items are modeled as tokens on the arcs of the graph. #&/hen
computational unit has tokens in all input arcs, it can comsall
input data and produce a result on the output arcs.
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new model of nets, calledhulti-guarded net§GN), with the power
of modeling early evaluation that associate with a singéagi-
tion multiple logic guards selected non-deterministigatihis non-
deterministic selection models interaction of the comvith con-
ditions in the data-path.

Figure 1(a) illustrates the firing rule in Petri nets (ANDusality).
Early evaluation is modeled byulti-guardedtransitions. A guard
is a subset of places that can enable a transition. A muétidgrd
transition has a set of guards from which one of them is chosen
nondeterministically at each firing. For example, a tramsitmod-
eling the previously described multiplexor would have acfétvo
guards,{{a,c},{b,c}}. The availability of information is deter-
mined by the presence of a token in the place. For every token,
there is an associated data value. For example|s a Boolean
value ¢rue or false.

However, GNs only model the control of the system. Data-
dependent control is modeled by the nondeterminism thattsel
the guard. In our example, the selection betwéam} and{b,c}
is what models the fact that the token associatetidan have the
valuetrue or false

When a transition igarly-enabledit can fire by storing aneg-
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Figure 2: Throughput of a GN with probabilistic guards.

ative token(-1) in the input places without tokens. This negative
token will be cancelled out when the Igtesitive tokerarrives at
the place.

1.2 Performance analysis

Evaluating the performance of choice-free systems has éeen
tensively studied by many authors. The performance is chited
by theminimum cycle meaf¥]. If we assign a delay to each node
in the marked graph, the mean weight of a cycle is defined as the
total delay of the cycle divided by the number of tokens indje
cle. The cycle with the maximum value is the one that deteesnin
the performance of the system. The minimum cycle mean can be
efficiently computed in polynomial time [6]. The performancof
these systems can be increased when the delay of the crifdaeb
can be partially hidden by sporadic early evaluations.

Figure 2 depicts a marked graph with three cycles. The shad-
owed transitiond1; andM, model two multiplexors. Their control
signals are assumed not to be critical and are not depictéukin
graph. Thus, the two input arcs of the multiplexors modeltéhe
input data. Associated to each input arc there is a guard asal a
number in the interval0,1] that indicates the probability for the
guard to be selected. Each transition is assumed to havdalait

Under a pure Petri net model with AND-causality, the perfor-
mance of the system would be determined by the most stringent
cycle. The throughpur hy (tokens/transitions) for each cycle is the
following:

3 3 2

Hence, the global throughput of the system would be 2/5. By in
corporating early evaluation, the throughput can be irsgdaas
shown in the table at the right-hand side of the figure. WRen
is close to 0, the system throughput tends to 0.4, i.e., inmst
completely determined by cycle (3). On the other handy and

B approach 1, the throughput increases and tends to 0.&yicte,
(2) determines the system throughput. In general, the tfimowt
may oscillate between 0.4 and 0.6 depending on the probebitit
each multiplexor.

Note that, as it can be seen in this example, the naive method
of computing the throughput of the early evaluation systemaa
weighted sum of the throughputs of the individual loops =oiR
rect, since loops may affect each other in a complex intgrpla

The speculative execution of branches, the selection afittahs
from the cache memory (instead of main memory), or the bysass
in the pipeline to avoid stalls, are typical examples of\yearalu-
ation schemes to improve the performance of microprocessor
each of these schemes, a multiplexor-based implementation
volved. The impact of these mechanisms in the performance is
strongly related to the probability of the events assodiateeach
multiplexor input, e.g. hit ratio of the cache, probabilitf/branch
instructions, etc.

Having analytical models for early evaluation contributesase
the exploration of different architectural mechanisms avaluate
their impact in performance.

2. MULTI-GUARDED NETS

DEFINITION1 (GN). A Multi-Guarded NetGN) is a tuple
A = (P,T,F,G) where:

e P is afinite set of places
e T is afinite set of transitions

o F C(TxP)U(PxT)is the flow relation, and

«G:T—27 assigns a set of guards to every transition, such
that the following condition is satisfied. Let us define the
presetand thepostsetf a transition as’t = {p|(p,t) € F}
and t* = {p|(t,p) € F}, respectively. Every transition t is
assigned a set of guards(, where every guard;ge G(t)
is a subset of of t's preset, i.e;, g °t.

A classical Petri net is simply &N in which G(t) = {*t}, for
everyt € T (see, e.g. [9] for a tutorial on Petri nets). InGN,
the transitions can also satisfy the conditiGft) = {°t}. Such
transitions will be callegdimpletransitions.

DEFINITION 2 (MARKING). A marking in aGN is a function
m: P — Z, that assigns an integer (p) to each place p. Aarked

GNis a tupleal = (P, T,F,G,mp), where ng is the initial mark-
ing.

Note that, unlike Petri net§&Ns can have negative markings. If
m(p) > 0 one says that place hasm(p) positive tokens. Other-
wise, placep has|m(p)| negative tokens. Negative tokens account
for the activity that must be discarded when arriving at thgut
of the transition, e.g. discarding the branch target addndgen a
branch is not taken.

DEFINITION 3 (FIRING SEMANTICS). The dynamic behavior
of a markedGN is determined by its firing rules. The execution of
a transition t can be described as follows:

e Guard selectionA guard g € G(t) is selected nondetermin-
istically first in the initial marking, rg, and then each time
t fires. The guard selection is trivial for simple transitgn
since they only have one guard. For non simple transitions
any guard g < G(t) can be selected. The selected guard of
a transition t ispersistenti.e., never changes between the
firings of t.

Enabling If the guard g € G(t) has been selected for the
next firing of t, then the transition t becomes enabled when
every place & g; has a token (ifp) > 0).

Firing. A transition t enabled at marking m can fire leading
to another marking frsuch that

m(p) —1 if pe°t\t*
n*((p)_{ m(p)+1 if pet®\*t
m(p) otherwise



Every transition locally changes the marking of the net- Dif
ferent transitions may fire concurrently and simultanegpusl|
(if enough positive tokens are present in their common prese
places).

e Single-server semanticdNo multiple-instances of the same
transition can fire simultaneously. Therefore, a guard sele
tion is produced for each transition firing.

The persistence of the guards is an accurate abstractidreof t
conditions for early evaluations (e.g. mux select signakihg
non-determinism. The single-server semantics is an atisnafor
those systems that communicate through channels usingsFIFO

DEFINITION 4 (REACHABILITY ). The set of reachable mark-
ings, R, of a giveisN is the set of markings that can be generated
from the initial marking, g, by iteratively applying the firing rules.

Note that, in general, the set of reachable markings carfipéén
due to the infinite accumulation of positive or negative ttke

In this paper, we will only consider the subclassGifls with-
out choice places. It corresponds to the subclassarked graphs
(MG) in Petri nets extended to handle early evaluation with nega
tive marking. This subclass is sufficient for modeling a watkess
of systems with early evaluation. It also satisfies some gnt@s
that simplify their analysis.

DEFINITIONS5 (GMG). A Multi-guarded Marked Graph
(GMG) is a strongly connecte@N with [*p| = |p*| =1VpeP.

Places can be omitted in drawings@MG as shown in figure 2.

2.1 State equation and place invariants

LetC be then x mincidence matrix of th&N with rows corre-
sponding tan places and columns tatransitions.

-1 it ep\p
Gj=< +1 iftje’p\p’
0 otherwise

DEFINITION 6  (P4NVARIANT ). A P-invariant or place invari-
ant is a vector, s, of n nonnegative integers such that

s-C=0 1)
Similarly to classicaMGs [9], it can be shown that every minimal
P-invariant of aGMG corresponds to a minimal cycle. Intuitively,
an invariant represents a set of places in which the weightedof
tokens is invariant in any reachable marking.

In the GMG shown in figure 2, the three minimal P-invariants
correspond to the three cycles. The total sum of tokenst{pesi
negative) is invariant for each cycle: 3 for the left and ntéddops,
and to 2 for the right loop.

As in classical Petri nets, the state equation

m=my+C-0o 2)

gives a necessary condition for the reachability of marking/here
o is the firing count vector: th¢'s component corresponds to the
number of times transitiot) has fired.

2.2 TimedGMG

In Petri nets, transitions usually represent the eventiores
of the system. To model latencies or delays of the systemtgven
a positive real numbed(t) is associated with every transitiorof
the GMG. For modeling synchronous systel(s) is typically re-
stricted to be a positive integer (or rational) indicatihg humber
of clock cycles it takes to complete the action. Notice thatfir-
ing of GMG transitions is persistent, i.e., a transition cannot be
disabled by the firing of another transition. Therefore aasition
t that becomes enabled at timewill fire at time T+ 3(t). It can be
shown that more general delay models are possible foGHE,

most notably it is possible to have probabilistic distribos of de-
lays associated with every transition to model variablerlay units
or delay variations. This however goes beyond the scopesypth
per.

The performance evaluation of the model requires some a prio
information about probabilities for selecting guards. Séeroba-
bilities can be obtained from statistical analysis or satioh. It is
assumed here that selection of guards for different tiansitare
independent events and hence probabilities of the guardsferf-
ent transitions are uncorrelated.

DEFINITION7 (TGMG). A Timed Multi-Guarded Marked
Graph(TGMG) is a tupleAl = (P, T,F,G,mg, 8,a) where:

e (PT,F,G,mg) is a markedGMG.

e 5. T — 0T U0 assigns a nonnegative delay to every transi-
tion.

e a is a function that assigns a strictly positive probability
to each guard such that for every guarded transition t:

Ygec)a(9) =1

The firing semantics of th@ GMG is derived from the previ-
ously described semantics of t&G. It slightly differs in a few
aspects:

e Guard selection for every transition is still non-deteristiis,
but respects probabilities in the infinite executions.

o Firing of transitiort takesd(t) time units, from the time it be-
comes enabled until the firing is completed. With the single-
server semantics, no multiple instances of the same tiamsit
can be firing simultaneously.

DEFINITION 8 (STEADY STATE THROUGHPUT). The steady
state throughput, T(n ), of aTGMG is defined as:

ThAC ) = |imram@

wheret represents the time and(t) is the firing count vector at
timert.

Some authors say that the firing process is “weakly ergoditiei
above limit exists [3]. In the next section, we show that thewe

limit exists for anyTGMG. Note thatT h(4( ) is defined as a vec-
tor. Potentially, different transitions, represented bgnponents of

Th(a( ), can have different throughputs. We will show later that in
any TGMG all transitions have the same throughput.

2.3 Properties ofcmc

DEFINITION9 (BOUNDEDNESS. Aplace, p, of &GN is said
to beboundedf there exist two integer numbers, | and u, such that
I <m(p) < uforevery reachable marking m. A place is k-bounded
if —k < m(p) <k. AGN is boundedf all its places are bounded.

A special case df-boundedness is 1-boundedness (also called safe-
ness) when no more than one positive or negative token caeltbe h
in a place.

DEFINITION 10 (DEADLOCK-FREEDOM AND LIVENESS. A
GN is deadlock-freeff for every reachable marking m there exists
a transition t enabled at m. &N is live iff for every transition t
and every reachable marking m, there exists a reachable inmark
m' from m such that t is enabled i’'m

The following two properties hold faBMGs.

PROPERTY 1. AGMG is live iff it is deadlock-free.



Proof:

=) . .

By definition any liveGMG is deadlock-free.

(<)

Let us assume that there exist&MG that is deadlock-free but it
is not live. So, there exists a reachable markimgt which a given
set of transitions are deadlocked but the rest can fire intifin
This would mean that the live transitions do never requikens
produced by the deadlocked transitions. This cannot besinge
the net is strongly connected and all guards can be selectedd

PROPERTY 2. AGMG is deadlock-free iff for each P-invariant
the sum of markings in its corresponding places is positive.

Proof:

(<) _ _ _

Assume a deadlock is reached, i.e., a markirigas been reached at
which every transition is disabled. Clearlymagvery transition has
at least one preset plage,with a non-positive markingn(p) < 0.
Given that theGMG is a strongly connecte@N, such set of non-
positive places contains at least one cycle that corresptind P-
invariant.

(=) . o .
Assume there is a P-invariant such that the sum of markings in
its corresponding places is not positive. Let us denotdke
cycle that corresponds to such P-invariant. Since any gteande
selected with a non-zero probability, a markmgyill be eventually
reached in which every transition that belongs to the cgcbelects

a guard with a place iQ. Therefore, inm every transitiort € Q
waits for a positive token in a placp °t, contained irQ (i.e.,p e

Q) in order to get enabled. Let us assume for a moment that every

transitiont € Q can eventually fire fronm. This would mean that

a positive token has travelled all alo@pthrough the preset places
of all the transitions iMQ. This would however require the sum
of markings inQ to be positive due to the above made assumption
that allt € Q selected guards with places fragh We have reached

a contradiction. Therefore, at least one transition wikhdleck
forever starting from markingn. By property 1, the rest of the
transitions will also eventually deadlock. a

In this paper we are only interested in liBMGs. Liveness of
a GMG can be checked in polynomial time using an extension of
Commoner’s theorem [Sf marked graph is live iff every cycle is
marked

Let us consider th# GMG in figure 3. The guards of transition
t1 are pg with probability a and p, with probability 1— a. Let us
first assume that the delays of both transitions are equalltothe
initial marking (pa, pb, pc) = (1,1,0), t; is enabled and will fire
leading to marking1,0,1). In this marking.t, is enabled, while
t is enabled with probabilitgt or disabled with probability + a.
Figure 3 (left-bottom) shows a reachability graph with thelgabil-
ities of transitions between markings. The process of itianing
between markings in thEGMG can be described with a Markov
chain whose transition graph corresponds to the reacteditiph
of the TGMG.

Let us change the delay of transitirand assume tha(t,) = 2
ando(ty) = 1. A surprising property o6MGs is that, although all
the places are covered by P-invariants, the set of reachadule-
ings can be infinite since the net is not bounded. The graphen t
right of the figure 3 represents the potential evolutiondefrhark-
ing for placespy and p¢ (pa is always 1). Each transition arc corre-
sponds to one time unit. From the initial markifwgb, pc) = (1,0),
ty fires in 1 time unit leading to markin@, 1). In this markingt>
is enabled whereas is enabled with probabilityt (in casep; is
selected as guard). Regardless the selectiap'®fjuard,t, will
complete the firing in 2 time units, thus leading to the inititate
in casepy is selected (with probability + a) or leading to the
state(—1,2) in casep, is selected (with probabilityr). Although,
the larger the marking of the smaller the probability of being
reached, it is not possible to define neither an upper boung<fo
nor a lower bound fopy,.
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Figure 3: A TGMG and its Markov chain for the bounded
(8(t1) = 8(t2) = 1) and unbounded cased(t;) = 1,9(t2) = 2).

The following theorem states however that the unique steady
state throughput exists even for the unbound&MGs.

o(1)

T
Proof: If the net is not live it will deadlock (property 1) and hence
the steady state throughput of all transitions will be 0. edtfise,
for a given transitiornt, the expressior?AA (whereay, is the firing

count vector during interval) is upper bounded bg%t—) and lower
bounded by 0 for evergs > 0. The limit would not exist ifS* could

oscillate indefinitely between two valuesandl, whereu > |. Let
us assume that such an oscillation is possible. Thus, dargigen

time intervalA4, the selected guards malcf#1 be greater tham,

THEOREM 3. The limit lim;_e exists for anyTGMG.

and during a given time intervdl,, the selected guards mal‘?#2

be less tham. Since is upper and lower bounded for afy> 0,
the only way to keep the oscillations betwaeandl is by growing
the intervalsd; andA; as time passes. However, the probability of
selecting the guards that ma\%L > utends to 0 ad\; increases.
Hence, the probability of oscillating indefinitely is 0. |

As in classicaMGs, the steady state throughput ofF@MG can
be characterized by a single scalar number.

THEOREM 4. The steady state throughput of all transitions of
aTGMG is the same.

Proof: Let us assume that two transitiopsandt, exist such that
Th(ty) < Th(tz). This would mean that in the steady stgteloes
not require tokens produced by and in turn, the tokens produced
by the transitions that are in a directed path that startg. athis
implies that eithet; andt, are not connected or some guards have
probability 0. Contradiction. O

This fact eases the performance evaluation dfGMG: to
compute the throughput of the system itis enough to compate t
throughput of one transition. Notice that theorem 4 woulthaid
if some guard probabilities are equal to zero. Guards witlo ze
probability might result in disconnected graph componenith
different throughputs. As an example, considet =0 in the ex-
ample of figure 2: Cycles (1) and (3) would become disconiecte
with throughputs 37 and 2/5 respectively.

Theorem 4 indicates that all transitions oT&MG fire, on av-
erage, the same number of times in an infinite execution afyke
tem. Therefore, the evolution of the marking will exhibitepet-
itive behavior, what implies the existence of average nmaylof
every place.



THEOREM 5. For everyTGMG, there exists a limit throughput of the upper cycle) asapproaches 1, and tg/'2 (the

1 throughput of the lower cycle) asapproaches 0.

M= IimHm—/ m(&)dE For a standardG, it is known that the throughput can be ob-

TJo tained as a minimal throughput of its cycles, or equivaleal an
inverse to the maximal cycle time among all the cycles. Itipar-
tant to note that extending either of these techniques td GG
by averaging the cycle throughputs (or cycle times) doeyiedd
correct results. Computing the throughput as an averagelifid-

wherem is a vector with componen® p) representing the average
marking of individual places.

3. ANALYSIS WITH MARKOV CHAINS ual Cyc|e throughputs gives:

Due to the stochastic nature of selecting guardsGMG can
be viewed as a continuous time stochastic process. As we have }-a+ 2. (1-a)= 4-a
mentioned before the evolution of ti&&MG therefore can be ex- 2 3 6

pressed as a continuous time Markov chain with a transitiaply Computing it as an inverse to an average cvcle time gives:
isomorphic to the reachability graph of ti&GMG. Deriving a puting ge oy d

Markov chain out of th& GMG is a variation of standard for the 1 2
stochastic Petri Nets technique [1,8] and therefore istithted here 2.0+ 3. (1-0) ~ 3%a
by example. 2

Figure 4 shows &GMG (delays of all transitions assumed to  Neither of these expressions is equal to the exact througihpu
be 1) and the associated transition graph of a Markov chaachE  pression above computed with Markov chains.
arc in the Markov chain corresponds to one time unit. For sim-  The use of Markov chains allows one to compute the exact
plicity, the transitions of th# GMG are namea, b, c,d and places throughput of any bounde@iGMG. However, it requires an ex-
ab, ba,ac, cd,da using pairs of names of preset-postset transitions. haustive exploration of the reachability graph that is eqdially
The states of this graph, S, S are the reachable markings. The larger than the size of the bound€GMG.
matrix-like shape depicted at each state correspond to #nkimg

at each state (see graphical explanation in figure 4). Aredaar
beled with probabilities to be taken (omitted if probaiis 1) and 4 A BOUND ON TGMG THROUGHPUT

a set of firing transitions. Let us first consider the sub-classT@EMG in which all guards
are singleton sets, i.e., each guard contains only one :plaee
b bed G(t) |gl = 1. All examples considered in this paper so far, except
i ‘ the one in figure 1, belong to this sub-class. Nets from tras<
Lol ad (01 01 are easier for analysis since tokens within guards do netfare
ba b 1o P S P with each other. We will later show how to transform argMG
@La Q | b.c o0 | mbe | to an equivalent singleton form.
a a Lett be a transition of FGMG, 9(t) its delay, andorob(en(t))
K S1 S2 S3 be the probability of being enabled during the steady state com-
1-a putation. prob(en(t)) can be thought as the average proportion of
da@ Q ac Marking matrix—like representation: time during whicht is enabled. Since transitions have deterministic
delays and operate under the single server semantics,|iheifay
m(ba) m(ab>} equation holds:
@ m(da) m(ac)
od m(cd)
d c o(t) - Th(t) = prob(en(t)) ®)
i ) . . Let us denote the average marking of plade the steady state
Figure 4: A TGMG and its associated Markov chain. asm(p). Equation 3 can be used to obtain the following theo-

) ) rem that gives an upper bound for the steady state througifput
The average time spent at each state (marking) at the steddy s 3 TGMG with singleton guards and simple transitions.
can be obtained by solving the set of linear equations cooret
ing to the Markov chain. LeZ;,Z5,Z3 be the probabilities to be
in the corresponding stat&, S, S3 during the steady state. One
can write a set of equations corresponding to the transitidrihe
Markov chain:

THEOREM 6. LetAl be aTGMG such that every transition t
is simple or has singleton guards.

(A) Lett be a guarded transition with singleton guards. &ép)
be the probability of the singleton guard=g{p} € G(t). Then:

L =4 Thit) < M
Zs = (1-0)-2» - 3(t)
Z1+2,+723 = 1 (B) Lett be a simple transition. Then:
The solution is: min__e: M(p
Thit) < Miftpee M(P)
1 1 a(t)
ZLi=Zp= . Zz=,
3—-a’ 3-a See the Appendix for a sketch of the proof of theorem 6. For the

Transitiona is fired with probability 1 fromS; and with prob- following two sub-classes the throughput bound of theoréstige
ability 1 — a from S,. Therefore, the steady state throughput of €xact system throughput.
transitionais:
COROLLARY 7. (A) LetA’ be a 1-boundedGMG with sin-

2_qa gleton guards for all its transitions. Lett be one of the s#ions,
Thla)=Z1+(1-0a)-Z = 3 g then:
Theorem 4 states that the rest of transitions have the same Thit) = Y pet (P)-m(p)

throughput. Notice that the computed throughput tends &(the 3(t)



(B) LetaAl be a 1-bounded GMG with simple transitions only
(i.e., atimedVG). Lett be one of the transitions, then:

min__e; M
tM(p)
Thit) = —P "
Notice that simple transitions with only one preset place ar
particular case of transitions with singleton guards. Thusy fulfil
both condition (A) and (B) of corollary 7.

4.1 Reduction to singleton form

Figure 5 shows a fragment of BEGMG with a guarded transi-
tion t whose guard§(t) = {{a,b},{b,c}} are not singletons. An

equivalentfTGMG has a guarded transition with singleton guards.

Two new simple transitiong; andty, with zero delay are intro-
duced. They combine together the guafdsb} and{b,c} of the
original transitiont. Note that placéb is duplicated. It can be
proven that this transformation can transform 3GMG to a sin-
gleton form without changing its throughput.

Figure 5: Reduction to singleton form.

5. LP FORMULATION

Let us consider ZGMG such that every transitionis simple
or has singleton guards. According to theorem 6, the stetady s
throughput of each guarded transitiomust satisfy the following
inequality:

3t)-Thit) < S a(p)-m(p)
pe’t
and each simple transitiarmust fulfill:
d(t) - Th(t) <m(p)

for every preset placp € °t.
On the other hand, the average steady state markiisgneces-
sarily a solution of the state equation:

One can combine the above constraints on the throughput and

on the average marking, to build a Linear Programming Proble
(LP) that maximizes a paramety corresponding to th#GMG
throughput (one scalar variable suffices since the throuigbipall
transitions is the same):

Maximize @:

o(t)- @< Z

pe’t

a(p)-m(p), for everyt € *Ty
i . (4)
o(t)- @< m(p) foreverype *T,
M=my+C-o
@< minl/d(t)
teT

WhereTy is the set of transitions with singleton guards, apis
the set of simple transitions. Transitions with only onesptelace

can be included either iy or in T,. The vectoro represents the
firing count vector that drives the system from the initialrkiag,

my, to the estimated average markifig The constraint > 0 has
been dropped since for any positigethere are as well partially
negativeo’s that deliver the same maximal value @fthis is due

to the fact thatC is not a full rank matrix). The last constraint
@< mingeT 1/3(t) ensures a single server semantics (i.e., that more
than one copy of the same transition cannot fire at the sang).tim
This constraint is redundant for 1-boundeE@MG. It can be shown
that the solution of the LP (4) always exists.

T

E ] 4/5
1/4

1y p3<f> t2
1/4@ :
5 4
Py Pg

Initial marking Steady state (average markir

Figure 6: Reaching an average marking

Figure 6 illustrates how the LP problem (4) works on a patéicu
system. Transitiotp has two guard$p, } and{ ps} with probabil-
ities 1/5 and 4/5. Transitionts has also two guardsps } and{pg}
with probabilities ¥4 and 34. In the figure, the higher the blank
level in a place the higher its occupancy, i.e., a fully blplkgce cor-
responds to a marking of 1. The estimated average markirem giv
by the LP ism= (0.6,—0.2,0.6,0.6,0.0,0.6,0.8,0.6,0.8). One of
the possible firing count vectors driving the system frogto m
iso=(0.4,0.6,0,1,1,1.4,1.8). Itis interesting to notice that the
average marking ofy, is negative. However, this does not imply
thatm(py) is always negative in the steady state. In fact, it must
become positive to enable transitibnwhen the selected guard is
{p2}.

The solution of the LP problem (4) returns an upper bound on
the throughput for thd GMG.

THEOREM 8. Let Al be aTGMG with singleton guards. Let
@ be the solution of LP problerf#). Then the throughput of every
transition t satisfies the upper bound: th< ¢.

This theorem enables an efficient method for finding an upper
bound on the throughput of BGMG. The bound can be found in
polynomial time (since LP is polynomial). Moreover, coesyf 7
defines two sub-classes ®6MG for which the solution of the LP
problem is guaranteed to be exact.

Example of LP model

Consider again the 1-bound@&@&MG from figure 4 (delays of all
transitions assumed to be 1). The associated LP problem is:

Maximize @
@ < ab for transitionb
@ < ac for transitionc
¢ < for transitiond
¢ < oa-ba+(l—a)-da fortransitiona
ba = 1l+b-a for placeba
da = 1+d-a for placeda
ab = a-b for placeab
ac = a-c¢ for placeac
cd = 14c—d for placecd
The solution to this problem is
2—a

(p:

w
|
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Figure 7: Analysis of elastic DLX with early evaluation and \ariable latency.
which corresponds exactly to the solution we have obtainigd w Circuit Throughput

; : : . - Name | Nodes Edges Sim LP ATh | Err
Markov chain analysis. The solution obtained by the LP is-nec s77 > 23> 03331 033310333 0% 0%
essarily the exact throughput since condition (A) of call7 is s208 12 15| 0.500| 05711 0.594 | 14% | 4%
fulfilled. Fora = 0.5 the throughput is .@ with average marking $298 5434 10040| 0.091 | 0.120 | 0.129 | 32% | 8%
m(ab) = 0.6, m(ac) = 0.6, m(cd) = 0.6, m(ba) = 0.4, m(da) = 0.8. s349 73 114 0.333| 0.333| 0.333| 0% | 0%
s382 28 46| 0.250 | 0.284 | 0.294 | 14% | 4%
5386 121 204 | 0.400| 0.400| 0.400| 0% | 0%
6. EXPERIMENTAL RESULTS s400 30 50| 0.400| 0.438| 0.470| 10% | 1%
s444 34 58| 0.200 | 0.261 | 0.287 | 31% | 7%
i i s510 367 671| 0.167 | 0.167 | 0.167| 0% | 0%
6.1 MOde“ng of an elastic DLX s526 46 67 | 0.333| 0.333| 0.333| 0% 0%
The paper [4] shows the idea of latency-tolerant, aka symaius s641 89 138| 0.333| 0.393 | 0.432| 18% | 3%
elastic, systems without early evaluation using differamsions of s713 104 167| 0.250 | 0.333 | 0.333| 33% | 12%
a DLX microprocessor. Figure 7 show&MG model of an elastic $820 424 738| 0.143| 0.201 | 0.230 41;’/0 724)
DLX with two early evaluation stage’s The model contains tran- gggg gg gég 8'%22 8%2 833% 202 é£
sitions named-, D, E,M,W corresponding to the five basic stages s1423 396 711| 0.100| 0.184 | 0.189 | 84% | 21%
of the pipeline: Fetch, Decode, Execute, Memory, and Wiiek. 51488 564  1003| 0.188 | 0.236 | 0.271| 26% | 3%
TransitionB models a bubble in the bypass network due to an as- | s1494 564  1000| 0.154 | 0.222 | 0.277 | 44% | 3%
sumed long wire delay. This bubble leads to a stall in the @it 5378 | 736 1320| 0.235] 0.250 1 0.250| 6% | 3%
when bypass of the result from the previously executeduostn 59234 867 1658] 0.200| 0.219| 0.248 | 10% | 2%

is needed by the next instruction.

The probability of the data dependency between instrustisn
given bya. TheE stage is modeled as a guarded transition that
takes results either from the decode stage (probabilityt) or the
bypass (probability).

The Write-back stage is modeled by another guarded transiti
W, that takes results either from the memory stage in case-of ex
ecuting a Load memory operation or directly from the exexuti
stage in case of other instruction@.stands for the probability of
Load instructions.

We also assume that the memory stadehas a variable latency.
This is typical for a memory sub-system. E.g.Mfmodels only
the first level cache, then it would have small latency in a#sa
hit, and a long latency in case of a miss. The average latenky o
is equal to 1 &. The latency of the rest of transitions is 1.

Under a regulaMG model with AND-causality (without the
guarded transitions), the throughput of the system wouldide
termined by the most stringent bypass cycle and would bel equa
to 0.5. The throughput for a system with early evaluation is much
higher and is captured in the table shown in figure7 for a fdwes
of a,3 andd.

6.2 Random graphs with early evaluation

To illustrate the impact of early evaluation and validate tior-
rectness of the approach for estimating throughpufT@MGs,
we performed some experiments on sequential circuits fitwen t
MCNC benchmarks.

The circuits were decomposed into 2-input gates and thes-tra
formed intoTGMGs as follows: (1) The largest strongly connected

component from the graph was extracted, (2) each edge was as

signed a token with probability 0.75, (3) each node was cardig

as a 2-input mux with probability 0.25 (i.e., 1 out of 4 nodessw

a mux, on average), (3) the probability of each input chaohel
mux was generated randomly, (4) all nodes were assumed & hav

1A correct modeling of elastic s%/stems, in general, requiegs
resenting both forward flow and backward flow (stall propegt
that can be done with pipelinddG. Although it is easy to model
the backward flow wittsMG, for simplicity, we represent only the
forward flow here.

Table 1: Experimental results with sequential circuits.

unit delay and (5) complementary arcs were included to guieea
the graph to be 1-bounded (see [9] for details on how to make a
graph 1-bounded).

Table 1 reports the characteristics and the results oltefiore
the circuits. The columMG reports the throughput of the sys-
tem without early evaluation. The colunitP reports the upper
bound of the estimated throughput with early evaluatiomgishe
LP model. Finally, the columfim reports the results obtained by
simulatior?.

The first observation is that early evaluation has a tangihte
pact in the performance of the system. This is reported irctie
umn ATh, calculated as (Sim-MG)/MG. In one of the examples
(s1423) the improvement in throughput was 84%. In some other
cases, the early evaluation had no impact, due to the facthtba
most stringent cycle of the graph had no muxes.

Considering MG and LP as lower and upper bounds, respec-
tively, for the throughput with early evaluation, we reptiré col-

umn Err calculated agSim— Th|/Sim whereTh is throughput
estimated as the mid point of the interval [MG,LP]. In mosies
the error was smaller than 5%. Only in a couple of cases inlwhic
early evaluation had a significant impasf7(L3 ands1423), the
error was larger. In these cases, the simulation reportebadh-
put close to the upper bound.

_ The CPU required to obtaifih using the LP model was always

smaller than 2 seconds, and about two orders of magnituter fas
than the simulatioh

25000 c?/cles_ of simulation were run for each example, guagant
ing results with very small standard deviation.

3iny in the largest cases298, the LP model required about 2
minutes to pbe solved. All the LPs were solved by a PC Pentium IV
2.4 Ghz using the GLPK (GNU Linear Programming Kit).



7. CONCLUSIONS

Tolerance to variable delays not only makes systems mose ela
tic, but opens the opportunity to incorporate new execug@remes.
One of these schemes is early evaluation, that can coreriiout
improve the performance of latency-insensitive and asymtus
systems.

This paper proposes an analytical method to estimate ttierper
mance of systems with early evaluation. The method calesilanh
upper bound of the throughput that is guaranteed to be eract f
single-guarded 1-bounddd5MGs and forMGs. The experiments
show that it often calculates the exact result even for thegs
class of theTGMGs.

A surprising fact is that the upper bound can even be caledlat
for unbounded systems that can accumulate an infinite anafunt
positive and negative tokens.

The efficiency of the analytical model suggests that it cdadd
used for a fast architectural exploration by detecting thiesy(e.g.
multiplexors) that are the bottlenecks of the system ang, tban-
didates to be executed in early-evaluation mode.
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APPENDIX

Sketch of the proof of theorem 6

Part A.

Let us consider a small fragment of&MG shown in Figure 8.
Let the guards of; be G(t) = {{a},{b}} and the probabilities of
their selection ber andp. Let us assume that the delays of all tran-
sitions are the same and thais not enabled. Thus, from marking
m(a) = 1, m(b) = 0, two transitions of the corresponding Markov
chain are possible:

e Guard{a} is selected, transitiofj is enabled and fired lead-
ing to a new markingr'(a) = 0, ' (b) = —1 with a negatively
marked placé.

e Guard{b} is selected, transitiofy is not enabled and hence
the marking remains the samé(a) = 1, n'(b) = 0 one time
unit later. Due to persistence in guard selection, traorstti
will not get enabled untit, delivers a token into plade

a
<t1 a

t2
Figure 8: Evolution of guarded transition t;.

Thus:
a  prob(m'(a) =0Am (b) =—1)

B prob(m'(a) =1Am(b) =0)

This reasoning can be applied recursively to the next st@fesl)
and(1,0) implying the following lemma:

LEMMA 9. Lett be atransition with two singleton guards, then:
o - prob(not_ery) = B-m(b)~
where proljnot_eny) is the steady state probability for transition t
not to be enabled due to the selection of the gudrdand nb) <

0; and m(b)~ is the average negative marking of place b, i.e.,
m(b)~ = prob(m(b) = —1) +2- prob(m(b) = -2) +...

The following theorem can be obtained from lemma 9:

THEOREM 10. If transition t has two singleton guards, then:

3(t)-Th(t)=a- (m(a) - i(i —1)Prob(m(a) = i)) +

B- (m(b) - _i(i — 1)Prob(m(b) = i ))

Proof: We first establish the logical expression fmob(enakt)).
This expression is transformed into an arithmetic formhkzt in-
cludes terms witm(b) ~ and prob(not_ery). After regrouping the
terms of the expression, lemma 9 and equation 3 yield the proo

Theorem 10 can be generalized for an arbitrary number ofesing
ton guards and for transitions with different delays. Tleao6(A)
trivially follows from this generalization.

Part B.

Lett be a simple transition. Then:

prob(enalit)) = prob( /\ m(p) > 1) < minm(p)
pe't pe®t
The application of equation 3 yields:
minpe.tm(p)

Th(t) < 51)



