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ABSTRACT
Most of the logic synthesis algorithms are not scalable for large
networks and, for this reason, partitioning is often applied. How-
ever traditional mincut-based partitioning techniques are not al-
ways suitable for delay and area logic optimizations. The paper
presents an approach that uses a dominator-based partitioning and
conventional logic synthesis techniques for delay optimization of
large networks. The calculation of dominators is crucial to find
topologically ordered clusters suitable for logic restructuring. As a
result, a scalable and efficient strategy for delay optimization is pro-
posed and evaluated, showing tangible improvements with respect
to existing techniques. A comparison with a standard mincut-based
partitioning technique is also presented.

Categories and Subject Descriptors:B.6.3 [Hardware]: Logic
Design - Design Aids; J.6 [Computer Applications]: Computer-
aided engineering.

Terms: Algorithms, Design.

Keywords: logic partitioning, logic design, timing optimization.

1. INTRODUCTION
Graph partitioning is the traditionaldivide-and-conquerstrategy

proposed to afford different synthesis problems in large Boolean
networks [1–5]. Many of these approaches are reduced to themin-
cut problem, that has been extensively used in placement [6] or
FPGA partitioning [7, 8], where the minimization criteria is the
number of wires among different parts of the circuit. However,
a cut-size partition does not control the type of input-output in-
teractions produced by the external connections. This problem is
specially important for timing optimization in which logic restruc-
turing must be performed guided by the critical paths that traverse
the entire circuit from inputs to outputs.

Different approaches have been developed for timing optimiza-
tion [9–13]. However, most of them cannot be used in large circuits
because of their complexity. Instead of usingmincutpartitioning,
some approaches create delay-driven partitions. In [14], a simple

∗This work was supported by grants from Intel Corporation, CI-
CYT TIN2004-07925-C03-01, European Social Fund, FI and a
Distinction for Research by the Generalitat de Catalunya.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GLSVLSI’06,April 30–May 2, 2006, Philadelphia, PA, USA.
Copyright 2006 ACM 1-59593-347-6/06/0004 ...$5.00.

method for clustering (reducedepth) was proposed: the nodes are
clustered in DFS order and new clusters are created when a ca-
pacity constraint is exceeded. The method in [15] uses a similar
approach, but enables the duplication of logic to improve the delay
of the critical paths.

The method presented in [16] is able to find a delay-driven or
area-driven partition. Initially, a good area-oriented partition under
delay constraints is found and a refining step is done to obtain the
final partition. However, delay results are not satisfactory, since the
initial area partition has a high influence on the final solution.

To our knowledge, DEPART [17] is the best method to perform
a delay-driven partitioning for large Boolean networks suggested
so far. Only nodes in the transitive fanin of the critical outputs are
selected for restructuring. The cones of logic of different outputs
are clustered in the same block if their size is less than the capacity
constraint. In this paper, DEPART is taken as a reference for com-
parison. The drawback of this method emerges when the cone of a
critical output does not fit in one cluster. In this case, new clusters
are greedily created until all clusters are small enough to fit in the
size constraint.
Contributions. The main contribution of this paper is a novel
method for network partitioning oriented to timing optimization.
The method is based on the concept ofvertex dominatorand gener-
atestopologically ordered clustersthat enable a correct propagation
of delay information. With this strategy, tangible improvements can
be obtained in delay, thus better exploring the area-delay trade-off
of Boolean networks.

Based on the partitioning method, an algorithm for delay opti-
mization is proposed. This algorithm is guided by the criticality
of the nets and combines delay and area optimization in the same
framework, using the dominator-based partitioning.

An overview of the approach is presented in Section 2. Section 3
presents the required background on vertex dominators. The new
partition method is described in Section 4. Finally, the overall delay
minimization strategy is explained in Section 5, and experimental
results are reported in Section 6.

2. OVERVIEW
The methodDBP (Dominator-based partitioning) presented in

this paper aims at capturing fragments of critical paths that have
small fanout to the rest of the circuit. Thus, the clusters tend to
be deep (many levels) with internal nodes having little fanout to
external nodes. This type of clusters offers more possibilities for
restructuring towards delay minimization.

Clusters with little external fanout are sought by findingdomi-
nators. Intuitively, a dominator of a noden cutsall paths fromn to
the outputs [18]. This concept can be extended to multiple-vertex
dominators [19] when the paths are cut by several nodes.

Figure 1 emphasizes the difference between hMetis [3] andDBP
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Figure 1: Comparison of hMetis andDBP.

in a particular example1. It is an “artificial” circuit with 2-input
AND gates that has been created only for this comparison. In both
cases, the graph is partitioned into two clusters, denoted by the◦
and• nodes, respectively. The cut-size generated by hMetis is 5
(the output edges of the same node are assumed to belong to the
same hyperedge), whereas the one generated byDBP is 7. How-
ever, the clusters generated by hMetis cannot be topologically or-
dered, since there are edges◦ → • and• → ◦. The clusters gener-
ated byDBP can be topologically ordered. Finding a topological
order is crucial to propagate the arrival times of the outputs of one
cluster to the inputs of the successor clusters. The partition ob-
tained byDBP has been determined by the output node, that is
a single dominator of the whole graph. The leftmost cluster has
been obtained by taking the nodes closer to the dominator without
exceeding the pre-defined cluster size. The rightmost cluster has
been obtained by gathering the remaining nodes.

Another consequence of the dominator-driven partition is that
the longest path is divided into two parts usingDBP. However
hMetis splits it into six subpaths, thus preventing the optimization
across the cluster boundaries.DBP can optimize every cluster in
topological order, from inputs to outputs, propagating the obtained
arrival times. This propagation is essential to achieve a global re-
structuring of the network. In this example, the circuit originally
has 36 levels. The final circuit after restructuring each cluster, pro-
duces a result with 26 levels with hMetis and only 10 withDBP.

The moderate size of the clusters enables the use of conventional
delay optimization techniques and to iterate over the network sev-
eral times to gradually reduce delay with different cluster bound-
aries. This strategy produces results with better quality, still keep-
ing the method scalable for large networks.

3. PRELIMINARIES
We use the classical representation of Boolean networks as

graphs.

DEFINITION 3.1. A Boolean networkis a directed acyclic
graph G= (V ,E), whereV is the set of nodes of the network and
E the set of wires. A Boolean function is associated to each node
of the network. The nodes with no fanin are the primary inputs,
whereas the nodes with no fanout are the primary outputs. 2

A subset of nodes induces awindow(cluster) in a Boolean net-
work. The window contains all edges between nodes of the win-
dow. A window can beextractedfrom the Boolean network, trans-
formed and inserted back into the network. For that, the set of
inputs and outputs of the cluster must be identified to preserve the

1For simplicity, the arrows of the edges are not shown and are im-
plicitly assumed to go from the inputs to the outputs.
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Figure 2: Window extraction in a Boolean network.

DominatorPartition (G, S)
{Input: Network’s graphG. Size limit for a window,S}
{Output: GraphG clustered into windows}

repeat
Doms:= FindDominators (G)
while Doms6= /0 do

bestDominator:= SelectBestDominator (Doms, S)
window:= ClusterDominatedWindows (G, bestDominator)
Doms:= Doms- window

endwhile
until No changes
ClusterSmallWindows(G, S)

Figure 3: Algorithm for partition a network into windows.

interface with the rest of network, as shown in Fig. 2. Note that, in
general, a window need not be connected.

The concept ofdominatoris a key in this paper. Dominators are
widely used in several areas, such as code optimization in com-
pilers [20] and test pattern generation techniques [21]. Recently,
dominators have been used in logic synthesis for non-disjoint de-
composition of Boolean functions [19].

DEFINITION 3.2 (DOMINATOR). Given a network
G = (V ,E), a subset of nodes X= {x1,x2, · · · ,xk} ⊂ V is a
dominator of a node u∈ V \X if:

• Every path from u to a primary output contains some vertex
xi ∈ X, and

• no proper subset of X is a dominator of u.
This definition can be naturally extended to sets of nodes, i.e. a
subset of nodes being the dominator of another subset of nodes.2

In our work, we are interested in windows with few primary out-
puts. In the example of Fig. 2, the extracted window has three pri-
mary outputs, derived from the three pins connected from the two
dominator nodes of the window to their fanouts.

Dominators with only one (two) nodes are called single (double)-
vertex dominators. In general, a dominator withk nodes is called
a k-vertex dominator. For the calculation of dominators we use the
algorithms from [18,19,22].

EXAMPLE 3.1. In Fig. 4(a), {b} is a single dominator of
{g,h,q}, but does not dominate r since there is a path from r to c
that does not cross b.{r,s} is a double-vertex dominator of{z,C}.
Dominators of larger size can also be found, e.g. the 4-vertex domi-
nator{h, i, j,k} of {r,s,z,C}. Note that every node (or set of nodes)
can have different sets of multiple-vertex dominators. For example,
{C} is also dominated by{r,s} and{h, i,s}. 2

4. PARTITION METHOD
The method presented in this paper aims at partitioning the nodes

of the Boolean network into a set of disjoint windows. This process
is initiated by considering every node as a window and iteratively
clustering them to build larger windows without exceeding some
capacity constraint. In this iterative clustering, the concept ofdom-
inator plays an essential role. We next describe the details of the
partitioning algorithm, presented in Fig. 3. The execution of the
algorithm is later illustrated with the example shown in Fig. 4.



4.1 Core of the algorithm
Initially, every node of the network is a window. The function

FindDominators calculates all the single and double-vertex
dominators of the network. The complexity of finding dominators
is O(nk), wheren is the number of graph nodes, andk is the number
of nodes in the dominator. The Lengauer-Tarjan algorithm [18] and
the algorithms described in [19, 22] are used to search for single-
and double-vertex dominators, respectively2.

The innermost loop merges windows using the calculated dom-
inators. In the clustered graph, the weight of each edge between a
pair of windows indicates the number of wires between nodes of
the two windows. The algorithms receives a parameterS(size) that
defines the maximum capacity for a window.

The selection of the best dominator is performed according to
the characteristics of the window of dominated nodes (including
the dominator itself). The criteria to select the best dominator are
the following (in priority order):

• Smallest number of output nodes in the window. The out-
put nodes are those having fanout outside the window. Ini-
tially, the output nodes are the dominators themselves. In a
partially-clustered network, every window acting as domina-
tor can have several output nodes.

• Smallest weight of the outgoing edges from the window.

• Largest size of the window

This selection is based on the observation that a node (or a set of
nodes) that dominates many other nodes is a good candidate to be-
come the root of the window, since all the dominated nodes do not
have transitive fanout outside of the window.

When the size of the window induced by a dominator exceeds
S, some of the nodes are excluded from the window. In the case
of delay optimization, these nodes correspond to the least critical
nodes in the window (largest slack between the arrival and the re-
quired time). In our experiments, the unit delay model has been
used to calculate the delay information, after having decomposed
the network into 2-input nodes.

The procedureClusterDominatedWindows merges the
dominated windows into a single one. The new window may con-
tain other dominators of the network (a dominator can be domi-
nated by another dominator). For this reason, all the nodes from
the window are removed from the set of dominators (Doms :=
Doms−window). The clustering proceeds until no more domi-
nators exist.

The outermost loop executes the clustering loop to build larger
windows. After the first iteration, most of the windows are not
single nodes any longer and the new windows are built by merging
windows from the previous iteration. The process continues until
no more clustering is possible.

At the end of the main loop, some small windows or individ-
ual nodes might remainorphan, out from the large windows gen-
erated by clustering. The procedureClusterSmallWindows
still gives an opportunity for further clustering. Here is whereS is
taken as a soft constraint and a moderate growth of the windows is
tolerated to incorporate neighbouring small windows. In the exper-
iments done in this paper, a 25% increase fromS is tolerated in the
final phase of partitioning.

4.2 Example of a partitioning
Figure 4 shows an example of applying the

DominatorPartition algorithm to a small graph. The

2Experimentally it has been observed that calculating larger
multiple-vertex dominators has a negligible impact on the results,
while increasing the computational complexity significantly.
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Figure 4: Example of a dominator-based partitioning.

size limit for a window is defined asS= 8. The circles represent
simple nodes, the boxes represent windows obtained after cluster-
ing. The numbers in boldface inside every window indicate the
number of nodes contained in the window. The two other small
numbers indicate the number of output and input nodes on the
interface of the window. The connectivity cost is indicated by the
weights in the edges (omitted if the cost is 1).

Using the original network graph (Figure 4.a) the single vertex
dominators are first selected, since they produce windows with the
least number of outputs. These dominators are used to cluster sim-
ple nodes into windows as indicated by the shadow clouds. If the
size limit is exceeded, like in the case of the dominatorc that dom-
inates 9 nodes{c, i, j, t,A,B,D,E,F}, some nodes are excluded
from the window using delay criticality information. Assuming,
in this example, that all arrival times on the primary inputs are the
same, nodeA is excluded from the window since it has a delay slack
larger than other nodes dominated byc.

When the clustered object is a window with multiple nodes, the
delay slack is calculated as the minimum slack among all the out-
puts of the window. Therefore the most critical path captured inside
the window is the one that determines the criticality of the window.

After the first iteration, the partially-clustered graph shown in
Fig. 4(b) is obtained. At this point, two windows (labelled with 4
and 2) are selected as a double-vertex dominator for nodey. The
clustering of the three nodes derives another window with 7 nodes
and leads to the graph shown in Fig. 4(c).

It is important to realize that the partitioning algorithm never ex-
plicitly looks for dominators with more than two nodes. However,
multiple-vertex dominators are implicitly used for clustering by
iteratively applying the clustering with single- and double-vertex
dominators. This property enables an efficient use of multiple-



vertex dominators without an excessive computational complexity.
The main loop of the algorithm completes and delivers the

clustering in Fig. 4(c). We can observe that there are still
someorphan nodes in the graph. Here is where the procedure
ClusterSmallWindows does the rest of the work. Rather than
explaining the details of this procedure, we explain it by means of
the intuitive example. The nodew is clustered with the leftmost
neighboring window with 7 nodes, since the connectivity cost with
it (equal to 4) is larger than the one with the neighboring window
at the right. Similarly, nodeA is clustered with its neighbour at the
top. NodeC is clustered withs (both are small). This leads to the
graph in Fig. 4(d).

Finally, the window with two nodes in Fig. 4(d) is clustered with
the window with 5 nodes, thus deriving the clustering shown in
Fig. 4(e), since the combined window still satisfies the capacity
constraint S=8.

4.3 Preserving topological order
In Fig. 4(d), the partitioning algorithm could have also consid-

ered clustering the window with label 2 with the window with label
9 (even though the size limit would have been slightly exceeded).
However, clustering window 2 with window 9 would create a cycle
in the graph due to the three edges 2→ 7, 2→ 9 and 7→ 9 that
form a cycle. Graphs with cycles cannot be topologically ordered,
which makes easy propagation of the delay information between
windows impossible.

The DBP algorithm prevents cycles by imposing the following
constraint:

A window cannot be created if one of its output nodes
belongs to the transitive fanin of one of its input nodes
in the graph before clustering.

5. TIMING-DRIVEN OPTIMIZATION
Figure 5 presents the algorithm for timing-driven optimization

of large Boolean networks. Initially, a pre-processing step with low
computational cost can be applied to the whole network. In our
case, we implemented the algorithms in SIS [23] and used some
of the typical scripts for logic synthesis. The network was finally
decomposed into 2-input gates.

The algorithm has two main loops: one for delay optimization
and another for area optimization. These loops use different opti-
mization scripts (DelayScript or AreaScript in Fig. 5).

The structure of each loop is similar. It is a set of procedures that
are repeated until no further improvement is observed. This itera-
tive process is captured by the outermostrepeat-until loops.

We next describe the details inside each optimization loop. Ini-
tially the delay information is calculated: arrival times, required
times, and slacks based on the unit delay model. Next, the critical
region of the network is extracted. The critical region is defined as
the set of nodes with slack smaller than a pre-defined slack (param-
eterSlackin Fig. 5). In case of the area optimization loop, we select
a non-critical region according to the same slack information.

The selected region of the network (either for delay or area op-
timization) is partitioned using the dominator-based algorithm de-
scribed in Section 4. After this step, a set of disjoint windows that
cover the region is defined. The size of the windows (Sd or Sa) is
defined according to the computational complexity of the optimiza-
tion script that is used in the innermost loop. For synthesis scripts
with large run-time, the size of the windows must be smaller than
the one used for simpler scripts.

The innermost loop visits the windows in topological order, from
inputs to outputs. For each window, the synthesis script is applied
to optimize either for delay or area. This script transforms the win-

DelayOptimization (N, DelayScript, AreaScript,Slack, Sd, Sa)
Inputs:

N: Boolean network;
DelayScript: Script for delay optimization;
AreaScript: Script for area optimization;
Slack: slack to select the critical region;
Sd: size limit for windows during delay optimization;
Sa: size limit for windows during area optimization;

Output: An optimized networkN

Preprocess(N)

{Delay optimization}
repeat

CalculateDelayInformation(N)
Critical := SelectCriticalRegion(N, Slack)
DominatorPartition(Critical , Sd)
for each windowW in Critical visited

in Topological Order from PIsdo
DelayScript(W)
PropagateDelays (W)

endfor
until No delay improvement

{Area optimization}
repeat

CalculateDelayInformation(N);
NonCritical := SelectNoncriticalRegion(N, Slack)
DominatorPartition(NonCritical, Sa)
for each windowW in Noncritical visited

in Topological Order from PIsdo
AreaScript(W)
PropagateDelays (W)

endfor
until No area improvement

return N

Figure 5: Algorithm for optimizing large networks.

dowW without changing its interface to other windows. Next, the
delay information is propagated and re-calculated incrementally.

Once the innermost loop is completed, another iteration of the
outermost loop is executed, until no improvements are produced.

5.1 Optimization of sequential networks
The optimization scheme presented in this paper can be also ap-

plied to sequential networks. In this case any window of the net-
work can contain latches. Within a window, combinational and
sequential don’t cares can be computed. The sequential don’t cares
can be computed by assuming that the window has a free environ-
ment. Thus, a conservative underestimation of the actual don’t care
set is obtained.

In the current version of our optimization prototype, only com-
binational optimization has been implemented. Future efforts will
be devoted to sequential optimization.

6. EXPERIMENTAL RESULTS
To evaluate the efficiency of the optimization algorithms pre-

sented in this paper we have conducted three types of experiments:
(1) comparison with DEPART [17] on medium-size examples, (2)
comparison with mincut partitioning (hMetis) on large examples,
and (3) evaluation of the trade-off between area and delay depend-
ing on the size of the windows. When runningDBP, the delay
script used for optimization was simply thespeedup [9] command
in SIS, whereas the area script was thealgebraic.

For the first two experiments the size of the windows forDBP
have been selected to beSd = 50 for delay optimization andSa =
100 for area optimization with aSlackof 2 units.



Bench. Levels Literals CPU (sec)
sp up DEP. DBP sp up DEP. DBP sp up DBP

C880 21 21 20 834 913 873 8 8
alu4 26 26 25 1214 1917 1398 25 19
C2670 16 17 15 1450 1482 1442 50 46
apex5 14 14 14 1465 1580 1504 2 3
table3 40 44 40 1746 2750 1746 120 37
C3540 33 33 33 2275 2382 2359 33 14
apex3 13 12 13 2569 2810 2575 21 14
seq 14 15 15 2895 3003 2905 19 25
C5315 22 25 22 3081 3099 3152 29 23
pair 18 20 15 3105 3158 3522 16 6
C7552 23 22 21 4127 4577 4547 61 37
des 19 20 19 6083 6223 6385 52 51
C6288 69 75 66 6627 6367 7655 464 236
Norm 1.00 1.05 0.97 1.00 1.08 1.07 1.00 0.58

Table 1: Comparison of speedup, DEPART and DBP.

6.1 Comparison with DEPART and speedup
The results for the first experiment are shown in Table 1. The

normalized average results are shown in the last row of the table.
The goal of this experiment is twofold: to compare our method with
DEPART [17] and withspeedupapplied to the flat netlist. The ex-
periment has been performed on the same MCNC benchmarks used
in [17], using the same pre-processing script (twicescript.rugged
followed byeliminate -1; speedup -i) and the same measurement
units for delay and area: levels of 2-input gates and literals.

The results for DEPART are the ones reported in [17] in which
the windows were constrained to have 200 nodes at most. We ob-
served that this size was excessive forspeedup in the optimiza-
tion of some windows and, for this reason, we chose a smaller size
(Sd = 50) for runningDBP.

Even using smaller windows,DBP is on average superior to DE-
PART in delay (0.97 vs. 1.05), while similar in area. Since the
networks have moderate size,speedup was also executed on the
whole network to compare with the same command applied within
a window using theDBP-based partitioning. Surprisingly, the ap-
plication of speedup to theDBP-windows was superior in delay
than applying it to the whole network (3% improvement in delay
at the expense 7% increase in area). One of the reasons for that is
that the restructuring obtained byspeedupdepends on the order in
which the transformations are performed (e.g. see Fig. 2 in [13]).
The dominator-based clusters offer a better guidance forspeedup
and prevent transformations that can later result in worse delays.
Additionally, the runtime time between the flat method andDBP is
compared, and a clear reduction forDBP is observed. The runtime
for DEPART is not shown, since the CPU and the windows sizes
used for the experiments were different.

This experiment gives us the confidence that our partitioning
method does not incur in large penalties with regard to the flat
method, even on relatively small examples.

6.2 Comparison with hMetis
The results of the second experiment are presented in Table 2.

They have been executed on the largest ISCASS’99 benchmarks,
selecting only those that were larger than 9000 literals in factored
form after applying the pre-processing script. In this experiment, a
lighter script is applied as the pre-processing step (algebraicscript
andspeedup -i) instead of thescript.rugged, since don’t care cal-
culation is infeasible on large examples.

The experiments were also run usingreducedepth [14]. This
command was fast on small examples, but ran out of time for large
networks. The obtained results were worse than the hMetis-based
algorithm and, for this reason, are not shown in the paper.

The comparison with hMetis was done as follows:
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• In the algorithm of Fig. 5, theDominatorPartition
procedure was substituted by hMetis, with the same size of
windows.

• Since hMetis does not guarantee a topologically-ordered par-
tition, a minimum set of feedback edges was calculated and
ignored to obtain an close to topological order of the win-
dows [24]. The delay information in the feedback edges
was obtained from the one calculated in the previous itera-
tion (since it was not possible to propagate it in topological
order).

• Two variations with hMetis were run.
– The first one usingSlack= ∞ to capture the whole net-

work in the critical region and to only apply the delay
optimization script (labeledGhMin the table).

– The second one usingSlack= 2, as inDBP (labeled
hMin the table).

In both cases, the weights of the edges between nodes on the
critical region were multiplied by a constant factor to bias
hMetis towards avoiding cuts in the critical paths (without
weights the results of hMetis partitioning are much worse).
With this experiment, we estimated the contribution of run-
ning different optimization scripts for the critical and non-
critical regions of the network.

Table 2 reports the results of the technology independent op-
timization after the initialization script (Orig.), and for all three
methods. It also reports the results after technology mapping using
mapwith the lib2 library. DBP improves delay by 22% and area
by 18% when compared to global hMetis (GhM). After technology
mapping the delay improvement is reduced to 16%. Global hMetis
produces networks with larger area, since non-critical regions are
also optimized for delay. After technology mapping,DBP offers a
5% delay improvement with a cost of 4% in area comparing with
hMetis focused on the critical path.DBP creates windows where
the delay minimization script performs a better optimization.The
runtime ofDBP is approximately 2x higher than hMetis, since the
delay script spends more time on the minimization of individual
windows (that have on average larger depth in case ofDBP) and
more iterations are executed to reach a network with no further im-
provements.

The CPU time for partitioning is negligible compared to the time
for the logic optimization within the windows.

6.3 Trade-off between area and delay
The objective of this experiment is to evaluate the impact of the

window size on the results obtained by the previously described



Bench. Literals Levels Area Delay CPU (sec)
Orig. GhM hM DBP Orig. GhM hM DBP GhM hM DBP GhM hM DBP GhM hM DBP

b14 11122 15972 14443 14515 92 44 32 32 11017 9893 9809 44.4 37.7 36.7 167 180 404
b14 1 9424 14701 11871 12393 70 40 30 30 10058 8222 8706 40.5 34.3 33.6 191 117 329
b15 17829 22962 20359 20229 91 63 54 49 14734 12811 12814 61.9 56.4 53.4 298 140 686
b15 1 17116 21422 18766 18829 71 38 31 30 13636 11947 12127 40.5 35.4 35.1 590 157 528
b17 56405 77962 62990 63332 128 62 55 53 50048 38704 38669 68.6 60.3 58.0 4266 617 1613
b17 1 53188 66455 57323 57889 71 37 33 32 41832 35550 36630 43.1 38.0 35.2 2697 415 1274
b20 22727 34644 30969 32634 108 54 37 36 23123 20617 22072 57.3 41.5 40.1 668 349 488
b20 1 19663 36471 27408 26008 105 46 36 36 25101 18425 17512 46.3 40.7 40.5 1111 385 515
b21 23654 37815 30127 31364 109 51 38 36 25859 20040 20988 50.0 41.6 40.6 893 538 523
b21 1 19652 33726 27465 28544 99 46 35 35 23288 18607 19531 48.2 40.0 40.2 751 338 675
b22 34441 59030 39316 44592 101 43 51 38 40543 24946 29228 45.2 51.3 42.0 2246 166 1078
b22 1 29799 54271 34535 40969 102 47 48 36 37291 22201 27111 48.9 47.6 40.1 1711 229 892
s35932 16304 19376 19352 19500 22 10 9 9 13657 12742 12787 14.0 13.6 13.8 267 620 104
s38417 22172 25785 23184 23694 31 25 24 23 17349 15067 15462 26.6 26.7 24.5 546 69 84
s38584 20086 21470 20146 20222 28 22 21 20 13480 12787 12810 22.5 23.2 21.5 71 184 327
Norm 1.00 0.80 0.82 1.00 0.85 0.78 1.00 0.78 0.82 1.00 0.89 0.84 1.00 0.27 0.57

Table 2: Comparison between hMetis andDBP for large networks.

methods (Figure 6). The experiment is conducted using different
sizes forS (12, 25, 37, 50, 62, and 75 nodes) and, as a reference
point, the methodGhM with S= 50.

The main conclusion is thatDBP always obtains better results
in delay regardless the size of the windows. Moreover, as the plot
shows, the impact of the window size on the results of theDBP
is much smaller than the impact on the results of the mincut-based
methods.

The mincut-based methods (hMetis and global hMetis) perform
better (delay-wise) results for windows with size of 20-40 nodes.
For smaller sizes there is a significant degradation, which is eas-
ily explained by the restructuring limitations imposed by the size
of the window. However, a similar degradation in delay is also
observed when the window size grows. We studied this strange
phenomenon in more detailed and we observed that the topologi-
cal order of the clusters was violated more often when the window
size grew, i.e. the larger the windows, the smaller the probability to
obtain a topologically ordered partition. For this reason, the subop-
timal propagation of delay information has a negative influence on
the resulting delay.

The CPU time is also affected by the size of the windows. For
DBP, the runtime increases with the size of the windows, whereas
it decreases for hMetis. The dependency is the opposite with larger
windows, hMetis stops on local minima much earlier and executes
fewer iterations of the algorithm.

7. CONCLUSIONS AND FUTURE WORK
Scalability is a crucial aspect for the applicability of logic syn-

thesis techniques on large networks. A partitioning technique based
on the calculation of dominators has been proposed to tackle the
complexity of delay optimization.

In DSM technologies, the combination of logic and physical syn-
thesis seems to be essential to meet the demand of today’s design-
ers regarding delay and power optimization. We believe that the
proposed partitioning strategy, enhanced with layout information,
could be a valid approach for integrating and exploring logic and
physical parameters of the design.
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