
Resource-Guided FPGA Floorplanning via
Quad-Tree-Based NLP Optimization

Ze Chen⋆ and Jordi Cortadella

Universitat Politècnica de Catalunya, Barcelona, Spain
{ze.chen, jordi.cortadella}@upc.edu

Abstract. Field-programmable gate arrays (FPGAs) are widely adopted
as accelerators for compute-intensive applications. In modern FPGA
flows, floorplanning provides coarse-grained region constraints, but com-
mercial tools offer no automatic support, requiring designers to man-
ually define partition regions that substantially impact placement and
routing. This paper presents a fully automatic framework that generates
resource-guided floorplanning constraints to improve the clock frequency
of FPGA designs. The framework employs a divide-and-conquer strat-
egy with nonlinear optimization for resource-aware region assignment,
exploiting FPGA heterogeneity in a device-agnostic manner and produc-
ing constraints that integrate into commercial toolflows. The framework
has been integrated in Vivado and tested with nine benchmarks and
two platforms, improving the maximum clock frequency by 11.4% and
5.8%, respectively, and yielding an additional 4.1% gain with timing-
optimization strategies without significant congestion overhead.

Keywords: Field-programmable gate arrays · Floorplanning · Nonlin-
ear optimization · maximum clock frequency

1 Introduction

Due to their reconfigurability, fine-grained parallelism, and energy efficiency,
FPGAs have become key accelerators for performance-critical domains such as
signal processing and machine learning [6,9]. In modern flows, designers rely on
commercial placement and routing engines. However, these tools still depend on
manually defined floorplans to guide physical synthesis. Effective floorplanning
reduces design iterations and improves subsequent placement and routing.

Research on floorplanning spans multiple device generations. Early works
introduced core representations such as slicing trees and sequence pairs, estab-
lishing the foundations for layout exploration via stochastic search [7,12]. Homo-
geneous FPGAs adopted similar formulations, enabling rectangle-based packing
and annealing-based optimization [5,10]. With the advent of devices containing
BRAM and DSP slices, floorplanning became a resource-aware allocation prob-
lem, with methods incorporating column alignment, multi-resource modeling, or
analytical formulations to handle heterogeneous footprints [2,11,15].
⋆ Corresponding author.



2 Z. Chen and J. Cortadella

Still, a gap remains between academic formulations and modern industrial
practice. Most prior work assumes rigid, non-overlapping rectangular regions
with hard capacity constraints. In contrast, current implementation flows typi-
cally interpret floorplanning as soft region guidance: regions may partially over-
lap, and the placer is allowed to relax local suggestions when necessary to pre-
serve routability or timing closure. At the same time, many real-world designs
exhibit deep logical hierarchy and strongly heterogeneous resource requirements.
These characteristics motivate formulations that explicitly account for hierarchy
and heterogeneous resource footprints, while remaining compatible with soft
region semantics and easy to integrate into industrial implementation flows. To
the best of our knowledge, unfortunately, there is no literature on resource-aware
floorplanning for single-die FPGAs with soft-occupancy constraints. To evaluate
the impact of our contributions, we have enhanced a commercial flow with our
soft-occupancy constraints and compared results with and without them.

The main contributions of this paper are summarized next:

– The problem of static floorplanning for heterogeneous single-die FPGAs un-
der soft-occupancy constraints is formulated, bridging the gap between rigid
academic models and practical industrial flows.

– A scalable divide-and-conquer approach is proposed, that combines hierarchy-
aware netlist clustering with mathematical optimization to derive coarse-
grained region assignments integrable into commercial CAD flows.

– The framework is architecture-agnostic and easily extensible, enabling de-
ployment across diverse FPGA families and vendor toolchains.

2 Framework overview

The framework is a pre-implementation stage between synthesis and placement.
As illustrated in Fig. 1, it consists of four stages: (i) abstraction of the netlist
and device layout, (ii) hierarchy-aware netlist clustering and quad-tree construc-
tion over the fabric, (iii) hierarchical floorplanning via a nonlinear programming
(NLP) model, and (iv) post-processing to generate floorplanning constraints.
This flow has been integrated into Vivado [14] to run experiments in Section 4.

Synthesis

Quad-Tree 
Modeling

Our Floorplanning Framework

FPGA Framework

HDL code

Placement
&

Routing

Floorplanning
constraints

Hierarchy-aware 
partitioning

Hierarchical netlist
(cells, nets, pins)

Die layout

Netlist clusters

Multi-level grid

Hierarchical
Floorplanning
(NLP model)Bitstream

Fig. 1: Flow of the framework



Resource-Guided FPGA Floorplanning 3

2.1 Hierarchical netlist and die layout abstraction

The starting point of the framework is a synthesized design and the description of
the target FPGA architecture. From the synthesis output, we construct a netlist
representation that captures cells, pins, nets and the hierarchical organization
of cells into modules. In parallel, the device is abstracted as a two-dimensional
arrangement of floorplannable units, each labeled with the types and relative
amounts of available resources such as logic, memory, and DSP blocks. These
units constitute the leaf level of a spatial hierarchy over the fabric. Reserved or
forbidden areas of the device (such as configuration columns or dedicated clock-
ing regions) are treated as non-allocatable regions. This abstraction provides
a uniform architectural view for the subsequent clustering and floorplanning
stages.

2.2 Hierarchy-Aware Partitioning and Quad-Tree Modeling

Given the abstracted netlist and device layout, the second stage builds two cou-
pled hierarchies: a logical hierarchy of netlist clusters and a geometric hierarchy
over the fabric.

On the netlist side, the framework performs a bottom-up, hierarchy-aware
clustering to derive coarse-grained clusters with strong internal connectivity and
limited external communication. Instead of flattening the entire design, the origi-
nal module hierarchy is used as a guide, so that the clusters preserve module-level
structural boundaries while reducing the problem size for optimization.

On the device side, the floorplannable units are recursively grouped into a
quad-tree. Neighboring units are aggregated into larger regions, and this process
continues until the whole die is represented by a single root node. Each node
in the quad-tree represents a region of the heterogeneous fabric together with
its available resources. The resulting multi-level grid provides a coarse-to-fine
geometric decomposition that defines the search space for the subsequent region-
assignment model. The detailed formulations of the clustering and quad-tree
construction appear in Section 3.1.

2.3 Hierarchical floorplanning with an NLP model

Given the netlist clusters and the quad-tree over the device fabric, the third stage
performs region assignment in a hierarchical manner. Instead of treating each
cluster as a rigid rectangle, the framework adopts a soft-occupancy view in which
a cluster may occupy several regions with different fractions of its heterogeneous
resource demands. At each node of the quad-tree, a small nonlinear programming
(NLP) problem determines how the clusters share the resources of the child
regions. Capacity constraints ensure that no region is overfilled, while demand
constraints ensure that each cluster covers enough resources across the child
regions it occupies. The objective function combines two complementary effects:
a connectivity-aware term, which encourages strongly connected clusters to stay



4 Z. Chen and J. Cortadella

depth=0 depth=1 depth=2

Resource 1

𝒗𝒓𝒐𝒐𝒕
𝒗𝟏𝟏 𝒗𝟏𝟐

𝒗𝟐𝟏 𝒗𝟐𝟐

𝒗𝟏𝟏,𝟏𝟏

𝒗𝟏𝟏,𝟐𝟏

𝒗𝟏𝟏,𝟏𝟐

𝒗𝟏𝟏,𝟐𝟐 𝒗𝟏𝟐,𝟐𝟏

𝒗𝟐𝟏,𝟏𝟏

𝒗𝟐𝟏,𝟐𝟏

𝒗𝟐𝟏,𝟏𝟐

𝒗𝟐𝟏,𝟐𝟐

𝒗𝟏𝟐,𝟐𝟐

𝒗𝟏𝟐,𝟏𝟏 𝒗𝟏𝟐,𝟏𝟐

𝒗𝟐𝟐,𝟏𝟏

𝒗𝟐𝟐,𝟐𝟏

𝒗𝟐𝟐,𝟏𝟐

𝒗𝟐𝟐,𝟐𝟐

Macro 1
Macro 2
Macro 3

Macro 1+2

Macro 2+3
Resource 2

Resource 3

Macro 2

Macro 1 Macro 3

Fig. 2: Recursive refinement along the quad-tree hierarchy

close, and a compactness term, which penalizes overly scattered allocations of a
single cluster.

The optimization proceeds top-down along the quad-tree. Starting from the
root, which captures a coarse global allocation, each level refines the distribu-
tion of occupancies within child regions. This multi-level scheme keeps individ-
ual NLP problems small, exploits the hierarchy of both design and device, and
yields a set of soft region assignments that are later converted into floorplanning
constraints. The full mathematical formulation of the NLP model is given in
Section 3.2.

2.4 Floorplan generation and integration

When recursive refinement terminates, each cluster is associated with a set of re-
gions where it has non-zero occupancy. Due to the soft-occupancy formulation,
the corresponding footprint typically forms an irregular shape with staircase-
like boundaries. Before emitting physical constraints, the framework encapsu-
lates each cluster’s occupied area in a minimum-area rectangular bounding box
(Fig. 2), and overlapping boxes are allowed because the constraints are used as
soft guidances. These boxes are finally translated into floorplanning constraints
that can be consumed by commercial FPGA implementation tools.

3 Methodology

This section details the two main components of the proposed framework: hierarchy-
aware clustering and quad-tree modeling of the FPGA fabric (Section 3.1), and
the quad-tree–based NLP model for hierarchical floorplanning (Section 3.2).

3.1 Netlist Clustering and Fabric Abstraction

(A) Netlist-to-Cluster Modeling Modern FPGA designs contain deeply hi-
erarchical netlists with hundreds of thousands of primitive cells. The clustering
stage recursively decomposes this hierarchy into coarse clusters with strong in-
ternal connectivity and limited external communication, in a bottom-up manner.



Resource-Guided FPGA Floorplanning 5

Glue Logic

Cut Edge

Modules

1° Recursion

2° Recursion

3° Recursion

TOP

𝐴0

𝐵0 𝐵1 𝐵2

𝐶0 𝐶1 𝐶2 𝐶3 𝐶4

𝐷0 𝐷1 𝐷2 𝐷3 𝐷4

𝐸0 𝐸1

𝑪𝟎 𝑪𝟏 𝑩𝟏 𝑩𝟐 𝑨𝟎

𝑫𝟎 𝑫𝟏 𝑫𝟐 𝑪𝟐 𝑪𝟑 𝑪𝟒 𝑩𝟎

𝑪𝟎

𝑫𝟎 𝑫𝟏

𝑪𝟏

𝑫𝟐

𝑩𝟐

𝑪𝟑 𝑪𝟒

𝑩𝟏

𝑫𝟎 𝑫𝟏 𝑫𝟐 𝑪𝟐

𝑨𝟎

𝑩𝟎 𝑫𝟎 𝑫𝟏 𝑫𝟐 𝑪𝟐 𝑪𝟑 𝑪𝟒

Candidate
Module

Atomic
Module

Hierarchical Netlist

Flattened at 3° Recursion
Flattened at 2° Recursion
Flattened at 1° Recursion

Collapsed

Fig. 3: Illustration of bottom-up recursive netlist partitioning

As illustrated in Fig. 3, the netlist is first scanned to evaluate the aggregated
resource demand of each module, i.e., each hierarchical logic block composed of
multiple primitive cells. Modules whose resource usage exceeds a threshold are
marked as clustering candidates, while smaller or leaf modules (with no children)
are treated as atomic and permanently grouped with all their descendants.

We then traverse the hierarchy bottom-up and process candidates whose
children are all atomic. For each such module, we build a local hypergraph
capturing its glue logic and child connectivity, partition the glue logic among the
children, collapse the parent, and reconnect the children directly to the parent’s
parent; this recursion continues until the design is flattened into a set of parallel
coarse-grained clusters.

Formally, each design segment is modeled as a weighted hypergraph (V,E, ω, c),
where each vertex v represents a primitive cell or module with resource demand
c(v), and each hyperedge e represents a net with weight ω(e) proportional to its
bit-width. Hypergraph partitioning then produces clusters C1, . . . , Ck by mini-
mizing inter-cluster connectivity subject to balance constraints:

min
∑
e∈E

ω(e) · δ(e); subject to
c(Vi)

c(V )
≤ 1

k
(1 + ϵ), ∀i ∈ {1, . . . , k}, (1)

Here δ(e) is the number of clusters spanned by hyperedge e, and ϵ is the imbal-
ance tolerance. This hierarchical partitioning flattens the netlist into k coarse-
grained clusters M = {m1, . . . ,mk}, each with aggregated demand γn,t over the
type of resource t.
(B) Quad-Tree Abstraction of the FPGA Fabric We now formalize the
quad-tree construction sketched in Section 2.2. The heterogeneous FPGA fabric
is aligned to a regular grid of base cells whose boundaries coincide with the
smallest floorplannable units. Each base cell may contain multiple resource types,
and its capacity vector counts how many resources of each type it contains.
These cells form the leaf level of the spatial hierarchy. Fig. 4(a) illustrates such



6 Z. Chen and J. Cortadella

Resource 1

Forbidden
Region

Quad-tree Level 1

Quad-tree Level 2

Quad-tree Level 3

Resource 2

Resource 3

(a) (b)

Fig. 4: (a): Partitioning of heterogeneous FPGA layout (b): 3d footprint of het-
erogeneous resources of (a)

a subdivision, while Fig. 4(b) highlights the heterogeneous resource distribution
across base cells.

Starting from the leaf level, neighboring base cells are recursively grouped
into 2×2 blocks to form parent nodes, and the process continues until the entire
die is represented by the quad-tree root. Each node j is annotated with a capacity
vector θj,t equal to the sum of its descendants. Forbidden or reserved regions
(e.g., dedicated clocking or configuration columns) are included in the quad-tree
by cutting along their vertical boundaries while aligning horizontal cuts with
neighboring base cells, while the resulting cells have zero usable capacity.

The resulting quad-tree is the multi-level grid in which the NLP model allo-
cates cluster resources in Section 3.2.

3.2 Quad-Tree-Based NLP Model

Building on the netlist clusters and the quad-tree grids, we now introduce the
NLP formulation used for hierarchical node-level resource assignment. For clar-
ity, the main symbols of the model are summarized in Table 1.

Each cluster mn has heterogeneous resource requirements γn,t, and each
quad-tree node j provides capacities θj,t. The continuous occupancy variables
ρj,n,t, which represent the fraction of mn’s type-t resource allocated to node j.
Constraints. The first constraint explicitly bounds the occupancy variables:

0 ≤ ρj,n,t ≤ 1, ∀ j, n, t (2)

The second constraint enforces the resource satisfaction for each cluster.
Within the current node, the cumulative amount of type-t resources assigned
to cluster mn over all quadrants J must meet the demand γn,t:∑

j∈J
ρj,n,t · θj,t ≥ γn,t, ∀n, t (3)

To couple allocations between heterogeneous resource types and satisfy the
composition of each node, we normalize with respect to the aggregate capacity
of that node. Let

sj,t =
θj,t∑
t′ θj,t′



Resource-Guided FPGA Floorplanning 7

Symbol Description

mn Cluster n in the clustered netlist, n ∈ {1, . . . , k}
j Node (quadrant) in the quad-tree grids
t Resource type (e.g., logic, memory, DSP)
γn,t Demand of cluster mn for resource type t

θj,t Available capacity of type t in node j

ρj,n,t Fraction of mn’s type-t resource demand assigned to node j

(Xj , Yj) Geometric coordinates of the center of node j

(x∗
n, y

∗
n) Center of gravity of cluster mn

sj,t Share of type-t resource capacity in node j

R Set of all nodes in the quad-tree
J Set of child nodes (quadrants) of the current node
E Set of hyperedges in the clustered netlist
ω(e) Weight (bit-width) of hyperedge e ∈ E

Table 1: Main notation used in the quad-tree-based NLP model.

denote the share of type-t capacity in node j. The third constraint refers to the
normalized cross–type usage bound. In quadrant j, the aggregate occupancy of
resource t (summed over all clusters) must not exceed the normalized share sj,t:∑

n

ρj,n,t ≤ sj,t, ∀ j ∈ J , t (4)

Connectivity-aware objective. The objective combines a connectivity-aware wire-
length term with a compactness term. Since clusters are represented by frac-
tional occupancies of quad-tree nodes rather than rigid shapes, the traditional
half-perimeter wirelength (HPWL) is not directly applicable: there is no single
bounding box per cluster, and geometry is defined implicitly by the ρj,n,t.

To estimate interconnection cost without requiring explicit rectangular foot-
prints, we adopt a clique-based model that operates on clusters’ center of gravity.
For every net e ∈ E connecting n(e) clusters, a complete set of pairwise distances
between cluster centers is formed, transforming the multi-pin connection into a
fully connected graph (clique). The total interconnection cost is evaluated as

WL =
∑
e∈E

n(e)∑
p=1

n(e)∑
q=1
q ̸=p

d(x∗
p, x

∗
q) ·

2

n(e)
· ω(e) (5)

where ω(e) denotes the bit-width of hyperedge e, and d(·, ·) is the Manhattan
distance between clusters’ center of gravity. The L1 norm can be smoothed, e.g.,
by replacing |x∗

p − x∗
q | with

√
(x∗

p − x∗
q)

2 + ϵ2, to improve numerical robustness.

Centers of gravity. Cluster’s center of gravity (x∗
n, y

∗
n) reflect the global spatial

distribution induced by the occupancy variables. They are defined as capacity-
weighted averages over all nodes R:

x∗
n =

∑
j∈R

∑
t θj,t · ρj,n,t ·Xj∑

j∈R

∑
t θj,t · ρj,n,t

, y∗n =

∑
j∈R

∑
t θj,t · ρj,n,t · Yj∑

j∈R

∑
t θj,t · ρj,n,t

(6)



8 Z. Chen and J. Cortadella

During the hierarchical optimization, each NLP subproblem only treats the ρj,n,t
associated with the child nodes j ∈ J of the current quad-tree node as variables;
all other occupancies over j ∈ R \ J are inherited from previous levels and
remain fixed. This preserves a globally consistent center of gravity while enabling
localized refinement within each subproblem.

Dispersion regularization. Minimizing Eq. (5) alone may lead to solutions where
clusters are spread thinly across many nodes. To discourage such fragmented
allocations, we introduce a dispersion term that measures the spatial coherence of
each cluster. Dispersion quantifies how far a cluster’s allocated fractions deviate
from its own center of gravity:

Dx,n=
∑
j

∑
t

θj,t ·
√
ρj,n,t ·(x∗

n−Xj)
2; Dy,n=

∑
j

∑
t

θj,t ·
√
ρj,n,t ·(y∗n−Yj)

2 (7)

Since ρj,n,t ∈ [0, 1], the transformation √
ρj,n,t amplifies the contribution of small

fractional assignments, making it expensive for a cluster to occupy many nodes.
We aggregate the horizontal and vertical spreads into a single scalar dis-

persion measure by focusing on the dominant direction. A cluster is considered
compact only if both its horizontal and vertical spreads are small; if one direction
becomes much larger (e.g., an elongated stripe), the maximum of (Dx,n, Dy,n)
reflects this lack of compactness. We therefore define

Disp =
∑
m

max(Dx,n, Dy,n) ≈
∑
m

Dx,n +Dy,n +
√
(Dx,n −Dy,n)2 + 1

2
(8)

Final objective and hierarchical optimization. The optimization problem at each
quad-tree node is a nonlinear program that balances connectivity and dispersion:

min
ρj,n,t

α ·WL+ β ·Disp (9)

where α and β control the trade-off between wirelength and dispersion.
The NLP is solved recursively along the quad-tree, following the hierarchical

scheme outlined in Section 2.3. Starting from the root node, which captures a
coarse global allocation, each level refines the distribution of occupancies within
its child quadrants while respecting allocations decided at higher levels. This
multi-level strategy keeps each subproblem small, and ultimately produces the
soft node assignments used to generate floorplanning constraints.

4 Experiments and Evaluation

Implementation and CAD flow. Post-synthesis netlist is exported from AMD
Vivado 2024.2.2 and processed by a Python front-end, which builds the clustered
netlist and quad-tree grids described in Section 3. Hierarchy-aware clustering
uses the hypergraph partitioner KaHyPar [8], and each quad-tree subproblem is



Resource-Guided FPGA Floorplanning 9

modeled in GEKKO [3] and solved with the IPOPT nonlinear optimizer [13]. The
resulting per-cluster footprints are written as region constraints (pblocks) into
a Vivado .xdc file which is either omitted (baseline flow) or sourced (floorplan
flow) before batch implementation so that placement is guided by our framework.

Devices and benchmarks. Experiments are conducted on two FPGA platforms,
the AMD KRIA K26 and the Virtex-7 XC7VX415T. Nine benchmark designs
are used for evaluation: four CNN accelerators generated by NN2FPGA [4], and
five heterogeneous applications from the Koios suite [1]. These benchmarks span
a wide range of sizes and resource compositions, including compute-intensive,
memory-centric, and irregular workloads. The profiles are summarized in Table 2.

Vivado synthesis strategies. We evaluate both flows with two strategies [14]:

– Default strategy: the built-in balanced strategy, which aims to reach timing
closure while maintaining moderate compilation time.

– Performance_ExplorePostRoutePhysOpt(Perf_Opt): an aggressive
timing-oriented strategy that applies multiple placement and routing algo-
rithms and extensive post-place phys_opt_design to maximize timing slack.

4.1 Methodology and Metrics

For each benchmark, implementation strategy, and flow (baseline vs. floorplan),
we sweep the target clock period around the expected performance of the design.
For each period T , Vivado is run to completion and the worst negative slack
(WNS) is collected. The smallest period for which WNS ≥ 0 is denoted Tmin.
The corresponding maximum clock frequency is given by fmax = 1000/Tmin (in
MHz). In addition to timing closure, we also record several metrics:

– Routability. Congestion information is obtained from Vivado’s congestion
reports. According to UG906 [14], congestion levels above 3 can degrade
quality of result (QoR) and those above 6 often prevent timing closure or

Benchmark/Device CLB
(count / %)

DSP
(count / %)

BRAM
(count / %)

KRIA K26 14640 1248 144

NA1 13005 (88.8%) 764 (61.2%) 51 (35.4%)
NA2 13181 (90.1%) 764 (61.2%) 46 (31.9%)
NA3 12480 (85.2%) 764 (61.2%) 43 (29.9%)
NA4 11415 (78.0%) 764 (61.2%) 57 (39.6%)

Virtex-7 VX415T 64400 2160 880

proxy6 10444 (16.2%) 99 (4.6%) 72 (8.2%)
proxy7 30254 (47.0%) 320 (14.8%) 352 (40.0%)
clstm 39379 (61.2%) 1289 (59.7%) 370 (42.0%)
bwave 14416 (22.4%) 700 (32.4%) 272 (30.9%)
dla 42469 (66.0%) 800 (37.0%) 96 (10.9%)

Table 2: FPGA resource utilization for each benchmark design.



10 Z. Chen and J. Cortadella

even lead to routing failure. Besides, Vivado typically terminates routing
iterations early once timing closure is reached and further improvements are
unlikely. We report the number of regions with congestion level > 3, and the
number of global routing iterations.

– P&R Runtime. We report the runtime of the main implementation stages
(placement, post-place phys_opt_design, and routing). The runtime of our
pre-implementation framework is negligible and is omitted.

4.2 Results and Analysis

Figure 5 shows the maximum clock frequency for all benchmarks under both
implementation strategies.
fmax under default P&R strategy. Across all nine benchmarks, introduc-
ing pblock constraints improves the fmax compared to the baseline flow. For
the CNN-based NN2FPGA designs on KRIA K26, the average improvement is
25.95 MHz (11.36%); for the Koios benchmarks on Virtex-7, the average gain
is 14.98 MHz (5.79%). In every design, the baseline flow fails to meet timing
at the fmax achieved with pblocks, with worst negative slack deficits ranging
from 0.047 ns to 0.342 ns. These results show that the proposed floorplan-
ning consistently shifts the timing boundary to a more favorable operating point
under a standard, non-aggressive implementation strategy.
fmax under Aggressive Timing strategy. With the Perf_Opt strategy, the
baseline already achieves higher frequencies than with the default flow, and most
benchmarks even exceed the pblock results obtained under the default strategy.
Nevertheless, pblocks still push the frequency boundary further: on average we
observe an additional average improvement of 10.93 MHz (4.06%) over the
corresponding baseline without pblocks. This indicates that global floorplanning
and CAD-level timing optimizations are complementary: the former structures
the placement space at a coarse granularity, while the latter refines critical paths
within the assigned regions.

Congestion and Runtime. Table 3 summarizes two representative implemen-
tation points for each benchmark under the Perf_Opt strategy: (1) the run cor-
responding to the maximum clock frequency achievable without pblocks, and (2)

NA1 NA2 NA3 NA4 proxy6 proxy7 clstm bwave dla
0

100

200

300

400

500

600

M
a
x
 C

lo
c
k
 F

re
q
u
e
n
c
y
 (

M
H

z
)

Fig. 5: Impact of pblock constraints on maximum clock frequency.



Resource-Guided FPGA Floorplanning 11

Benchmark Placement PhysOpt Routing Total Cong. Reg. GR Iter.
npb pb npb pb npb pb npb pb npb pb npb pb

NA1 8:00 8:21 3:55 4:15 7:25 9:03 19:20 21:39 2 2 4 4
NA2 6:45 6:54 0:18 0:18 7:58 11:32 15:05 18:44 3 3 4 5
NA3 6:40 7:42 0:18 4:23 7:32 9:20 14:30 21:25 1 1 3 8
NA4 5:36 5:57 0:16 2:10 6:22 8:47 12:14 16:54 1 1 5 6

proxy6 2:10 2:20 0:24 0:28 3:51 5:00 6:25 7:48 0 0 4 3
proxy7 6:06 6:58 4:52 6:23 10:49 11:30 21:47 24:51 0 0 5 3
clstm 4:36 5:05 0:22 2:30 7:41 4:15 12:38 11:50 0 0 3 3
bwave 3:00 2:57 1:29 1:39 5:52 5:44 10:11 10:20 0 0 3 3
dla 4:02 4:13 0:15 0:14 3:22 3:26 7:39 7:53 0 0 2 2

Table 3: Comparison of different runtimes (min), number of congestion regions
(level > 3), and global routing iterations under Perf_Opt strategy with (pb) and
without (npb) pblock constraints.

the run corresponding to the maximum clock frequency achievable with pblocks.
It provides a direct comparison of runtime and routability at the highest fre-
quency each flow can achieve.

With pblock guidance, implementation runtime typically increases moder-
ately, as placement, physical optimization, and routing explore a more struc-
tured, region-constrained search space to meet tighter timing objectives.

From the routability perspective, both congestion level and global routing
iterations remain well behaved. For the larger NN2FPGA designs (NA1-NA4),
which already exhibit non-negligible congestion in the baseline flow, the pblock-
guided flow does not increase the number of congestion regions, and the number
of global routing iterations is typically increased or unchanged, reflecting the ad-
ditional effort required to meet tighter timing objectives in designs that are close
to congestion limits. For the smaller Koios benchmarks, congestion levels remain
stable, and the number of routing iterations is often reduced or unchanged, con-
sistent with the intuition that, in relatively uncongested designs, coarse region
guidance helps the router converge more quickly to a timing-closed solution.

Overall, under an aggressive timing-optimization strategy, pblock guidance
achieves a higher frequency at the cost of a modest runtime increase, without
introducing additional routing risk or significant implementation overhead.

5 Conclusion

We presented a resource-aware floorplanning framework for single-die FPGAs
that integrates hierarchy-aware netlist partitioning with quad-tree–based NLP
optimization. The approach can be incorporated into industrial flows. Exper-
iments on nine benchmarks show consistent fmax improvements with modest
P&R runtime overhead and without degrading routability, as reflected by stable
congestion levels and similar routing-iteration behavior. Future work includes ex-
ploring shape-aware netlist modeling, extending the framework to multi-objective
formulations that jointly consider timing, routability, and power, and applying
the approach to emerging architectures with finer-grained heterogeneity.



12 Z. Chen and J. Cortadella

Acknowledgements. This work has been supported by funds from the Span-
ish Agencia Estatal de Investigación under grant PID2020-112581GB-C21 (MO-
TION), and by the China Scholarship Council (CSC). The authors would also
like to thank Luciano Lavagno and Yimamu Yilihamujiang for their helpful dis-
cussions and valuable feedback on this work.

Disclosure of Interests. The authors have no competing interests to declare
that are relevant to the content of this article.

References

1. Arora, A., et al.: Koios 2.0: Open-source deep learning benchmarks for FPGA
architecture and CAD research. IEEE TCAD 42(11), 3895–3909 (2023)

2. Banerjee, P., Sur-Kolay, S., Bishnu, A.: Floorplanning in modern FPGAs. In: 20th
Int. Conf. on VLSI Design held jointly with 6th Int. Conf. on Embedded Systems
(VLSID’07). pp. 893–898. IEEE (2007)

3. Beal, L., Hill, D., Martin, R., Hedengren, J.: GEKKO optimization suite. Processes
6(8), 106 (2018)

4. Bosio, R., Minnella, F., Urso, T., Casu, M.R., Lavagno, L., Lazarescu, M.T., Pasini,
P.: NN2FPGA: Optimizing CNN inference on FPGAs with binary integer program-
ming. IEEE TCAD 44(5), 1807–1818 (2025)

5. Emmert, J.M., Bhatia, D.: A methodology for fast FPGA floorplanning. In: Proc.
of the 7th Int. Symp. on FPGAs. pp. 47–56 (1999)

6. Gandhare, S., Karthikeyan, B.: Survey on FPGA architecture and recent applica-
tions. In: Proc. ViTECoN. pp. 1–4 (2019)

7. Murata, H., Fujiyoshi, K., Nakatake, S., Kajitani, Y.: VLSI module placement
based on rectangle-packing by the sequence-pair. IEEE TCAD 15(12), 1518–1524
(2002)

8. Schlag, S., Heuer, T., Gottesbüren, L., Akhremtsev, Y., Schulz, C., Sanders, P.:
High-quality hypergraph partitioning. ACM J. Exp. Algorithmics 27, 1–39 (2023)

9. Shawahna, A., Sait, S.M., El-Maleh, A.: FPGA-based accelerators of deep learning
networks for learning and classification: A review. IEEE Access 7, 7823–7859 (2018)

10. Shi, J., Bhatia, D.: Performance driven floorplanning for FPGA based designs. In:
Proc. of the 5th Int. Symp. on FPGAs. pp. 112–118 (1997)

11. Singhal, L., Bozorgzadeh, E.: Heterogeneous floorplanner for FPGA. In: 15th An-
nual IEEE Symp. on Field-Programmable Custom Computing Machines (FCCM
2007). pp. 311–312. IEEE (2007)

12. Wong, D., Liu, C.: A new algorithm for floorplan design. In: 23rd ACM/IEEE
Design Automation Conference. pp. 101–107 (1986)

13. Wächter, A., Biegler, L.: On the implementation of an interior-point filter line-
search algorithm for large-scale nonlinear programming. Math. Program. (106),
25–57 (2006)

14. Xilinx Inc.: Vivado design suite user guide (2024)
15. Yuan, J., Dong, S., Hong, X., Wu, Y.: Lff algorithm for heterogeneous FPGA

floorplanning. In: Proc. of the 2005 Asia and South Pacific Design Automation
Conf. pp. 1123–1126 (2005)


	Resource-Guided FPGA Floorplanning via Quad-Tree-Based NLP Optimization

