
Combining structural and symbolic methods

for the veri�cation of concurrent systems

Jordi Cortadella�

Department of Software

Universitat Polit�ecnica de Catalunya

Barcelona, Spain

Abstract

The contributions during the last few years on the

structural theory of Petri nets can now be applied to

formal veri�cation. The structural theory provides

methods to �nd e�cient encoding schemes for sym-

bolic representations of the reachable markings. It also

provides approximations of the state space that allow

to alleviate many bottlenecks in the calculation of the

reachability set by breadth or depth �rst search algo-

rithms.

The paper reviews some of the results on the struc-

tural theory and explains how they can be incorporated

in a model-checking veri�cation framework for concur-

rent systems.

1 Introduction

Formal veri�cation of concurrent systems su�ers
from the state explosion problem. The number of
states of a system can grow exponentially in the num-
ber of subsystems.

One major challenge in the ongoing research on ver-
i�cation is to signi�cantly increase the size of the sys-
tems that can be veri�ed. The progress achieved by
symbolic model-checking techniques have approached
the veri�cation domain to practical-sized systems.
However, there are still serious limitations of time and
memory for many cases.

We discuss here several techniques for the ver-
i�cation of systems modeled with Petri nets [16].
For many years, Petri nets have been the target of
many researchers and di�erent theoretical results have
emerged. These results can now be used to alleviate
some of the veri�cation bottlenecks.

We consider the veri�cation of concurrent systems
using temporal logics such as linear temporal logic
(LTL), computation tree logic (CTL) or �-calculus [1].
Typically, temporal logic formulae can describe state

and path properties. An example of state property

�This work has been funded by CICYT TIC 95-0419

is \at most one writer has access to the database".
This is a property that can be checked locally for each
state of the system. On the other hand, the property
\every request will be eventually acknowledged" is a
path property that must be checked for all possible
sequences of events of the system.

Verifying a property often requires the exploration
of the state space. To reduce the complexity of such
exploration, approaches going to opposite directions
can be devised, namely,

� by reducing the state space while preserving the
properties that must be veri�ed or

� by enlarging the state space, making veri�cation
conservative (no false positives) but reducing the
symbolic representation of the state space.

The main contribution of this work is to show how
structural and symbolic techniques can be combined
in the same veri�cation framework.

The techniques we will discuss can be classi�ed ac-
cording to their e�ect on the calculation and represen-
tation of the state space:

� State reduction and abstraction techniques.

� Symbolic representation of the state space.

� Approximations of the state space.

We assume the reader to be familiar with Petri nets
and symbolic model checking techniques. We refer
the reader to [12, 11] for a basic background on these
topics.

2 State reduction and abstraction

techniques
Partial-order reduction techniques have been pro-

posed to reduce the state space generated by concur-
rent systems [18, 15]. Intuitively, the main observation
of these methods relies on the fact that concurrent

i1

i1

i1

v

v i2

i2

State
space

i1 i2

v
Structural
reduction

i1 v;i2

Partial-order
 reduction

i1

i1

v

v

i2

State
space

i1 v;i2

v;i2
i1

Figure 1: State reduction and abstraction techniques

events are modeled by a set of sequences executing all
possible interleavings. When the execution order is ir-
relevant for the properties that must be veri�ed, it is
enough to choose one of them to preserve the behav-
ioral skeleton of the system without losing accuracy in
the veri�cation task.

An example is illustrated in Figure 1. Assume that
i1 and i2 denote invisible events from the point of
view of the properties that must be veri�ed. Clearly,
the transitions labeled with i1 and i2 are independent
since they do not share any input/output place. Un-
der such conditions, i1 and i2 will occur concurrently
when enabled and any of the sequences i1; i2 or i2; i1
could be produced. Partial-order reduction techniques
would choose only one of them, thus resulting in a re-
duction of the state space. In practice, this technique
can be applied by reducing the set of enabled events
explored at each state when building the reachability
set of the system with breadth or depth �rst search
algorithms [15].

When the formalism to model the system is a Petri
net, reduction rules to transform the net into a sim-
pler one that preserves the relevant properties can be
applied [12, 17]. The example of Figure 1 illustrates
one of such rules. Transitions labeled with v and i2
represent a sequence of these two events. A reduction
ruled called \fusion of series transitions" can be ap-
plied and obtain a new transition that abstracts the
behavior of both events into a single event labeled v; i2.
Such type of rules can be used to automatically remove
invisible actions (e.g. i2 could be removed from the la-
bel v; i2) or to derive a symbolic representation of the
state space in a hierarchical manner [14].

3 Symbolic representation of the state

space

Ordered binary decision diagrams (OBDDs) [2]
have emerged as an e�cient form to represent boolean
functions and have provided a crucial toolbox for ver-
i�cation systems based on symbolic model checking
techniques [11].

Petri nets present a structure appropriate for
boolean encoding. If we consider a safe Petri net1,
the state of each place can be encoded by one boolean
variable. Thus, the reachability set of the Petri net
can be represented by a boolean characteristic func-
tion and manipulated by boolean operations [14].

Figure 2 depicts a safe Petri net. Its reachability
set is represented by the state graph at the left of the
�gure (8 states). Each state is labeled with the indices
of the marked places. The set of reachable markings
can be characterized by the boolean function2

S = (s1 � s4)(s2 � s3)(s5 � s8)(s6 � s7)

((s1 � s2), (s5 � s6)) (1)

that can be e�ciently represented by an OBDD.

Traversal algorithms for building the reachability
set of the Petri net from its initial marking can be
e�ciently implemented by using boolean operations
[4, 3]. In particular, if m0 is the initial marking of a
net N , the reachability set S can be obtained by com-
puting the least �x point of the following recurrence:

S0 = fm0g

Si+1 = Si [Image(N;Si) (2)

where Image is a function that returns the states
reachable from Si in one step. In the example,
Image(N; f[1256]g) = f[3456]; [1278]g.

The e�ciency of OBDD-based methods manipulat-
ing sets of markings has been shown by di�erent au-
thors. As an example, [14] shows how a Petri net
modeling the dining philosophers paradigm can repre-
sent the reachability set for 28 philosophers (4:8�1018

markings) with an OBDD of about 103 nodes.

4 Approximations of the state space

The exact exploration of the state space can be a
tedious task, even for symbolic representations of such
space. It is well known that, although the �nal sym-
bolic representation of the state space can be small,
traversal algorithms, such as the one de�ned by the

1the method can be easily extended to k-bounded Petri nets

[14].
2
� and , denote XOR and XNOR operations respectively.

[1256]

[3456] [1278]

[3478]

[1357]

[2457] [1368]

[2468]

t1

t1

t4

t4

t3

t2 t5

t2t5

t3

[1257]

[3457] [1268]

[3468]

[1356]

[2456] [1378]

[2478]

t1

t1

t5

t5

t3

t2 t4

t2t4

t3

t1 t2 t3 t4 t5

s1

s3

s2

s4

s5

s7

s6

s8

Figure 2: Safe Petri net and its reachability set (ex-
ample from [5]).

recurrence (2), often su�er from the size of the rep-
resentation of Si at intermediate steps of the explo-
ration. This phenomenon may cause the exploration
to become impractical.

Here we review some methods from the structural
theory of Petri nets that can alleviate most of these
problems. In particular, they can help to �nd

� an e�cient encoding of the state space

� conservative approximations of the state space
without executing search algorithms

� successive re�nements of the state space approx-
imation

4.1 E�cient encoding

Assume that it is possible to identify a set of safe
places P 0 = fp1; : : : ; png that are not pairwise concur-
rent, i.e. no pair of places can be marked simultane-
ously. Thus, at most one token will mark the places
in P 0 at any reachable marking of the net. Therefore,
the places in P 0 can only be in n+ 1 di�erent states.
In the case that some place is always marked, only n

states are possible. Under this constraint, the state of
the places in P 0 can be encoded with dlog2(n+1)e (or
dlog2 ne if always marked) boolean variables [13].

Identifying places that are not concurrent can be
conservatively performed by computing the structural

t1t2

t3

p1

p3

2

2

2

p2

p4

2010 3002 2104

0120 1112 0214 1206

0308

t1 t1 t1

t2

t2
t2 t2

t3

t3

t3

t2

t3

Figure 3: Potentially reachable markings (example
from [12]).

concurrency relation [9] that gives necessary condi-
tions for two places not to be concurrent. A com-
plementary way is the calculation of state machines

initially marked with one token. State machines cor-
respond to place invariants that can be obtained by
using algebraic methods [7, 12].

Let us illustrate this feature with the example of
Figure 2. There are four place invariants that de�ne
state machines of the net. They correspond to the
sets of places fs1; s4g, fs2; s3g, fs5; s8g and fs6; s7g.
In all cases, there is always one place in the set that
is marked in the state space. This property can be
structurally deduced from the fact that they de�ne
state machines of the net. Thus, the state of each set
of places can be encoded with one boolean variable.
Let us call these variables x1; : : : ; x4 respectively, i.e.
x1) s1s4, x1) s1s4, x2) s2s3, and so on. The set
of reachable states can now be characterized by the
boolean equation

S = (x1 � x2), (x3 � x4) (3)

which is much simpler than (1).

4.2 Conservative approximations

The structural theory of Petri nets provides e�cient
mechanisms to derive the so-called potentially reach-

able state space, that corresponds to the set of mark-
ings that ful�l the state equation of the Petri net [12].
The state equation gives a superset of the state space
since any reachable marking ful�ls the state equation,
but not vice versa.

Figure 3 depicts a Petri net and its potentially
reachable state space. The states are labeled with four
digits that correspond to the token count of p1 : : : p4
respectively (the initial marking is 2010). We can ob-

serve than one of the markings ful�ling the state equa-
tion, 0308, is not reachable from the initial marking.

Using a superset of the state space results in some
limitations of the predicates that can be veri�ed.
Thus, properties that hold for all states in a set (uni-
versal quanti�ers) also hold for any subset of states.
However properties than hold when there exists some
state with a speci�c characteristic in a set (existential
quanti�ers) only hold for supersets. Therefore, the po-
tentially reachable state space provides a conservative
method to verify properties without existential quan-
ti�ers. On the other hand, subsets of the reachable
state space can be useful for conservative veri�cation
of properties with existential quanti�ers.

4.3 Re�nements of the state space ap-
proximation

We discuss here two approaches to derive successive
re�nements of the state space.

Backward state elimination

The potentially reachable state space also provides a
starting point to calculate the exact state space using
backward state elimination. If we call Ŝ0 the poten-
tially reachable state space of a net and S the reach-
able state space, the following recurrence gives succes-
sive subsets S � Ŝi+1 � Ŝi � Ŝ0:

Ŝi+1 = Image(N; Ŝi) [fm0g (4)

At each step of the recurrence, all those states that are
not reachable from any of the states of Ŝi are elimi-
nated in Ŝi+1, except the state corresponding to the
initial marking m0.

In the example of Figure 3, S can be obtained from
Ŝ0 by applying the previous recurrence only once, thus
eliminating the state 0308 from the reachable set. Un-
fortunately, a �x point does not always guarantee the
exact state space. This is illustrated by the exam-
ple of Figure 2. The shadowed states ful�l the state
equation and, therefore, belong to Ŝ0. However the
backward state elimination cannot remove any state
since all states are reachable from some state of the
set.

In the worst case, still any Ŝi gives an initial set
of unreachable states. This knowledge can be crucial
to make the state exploration much more e�cient by
taking the unreachable states as \don't cares" of the
boolean functions used to represent the transition re-
lation and the reachability set of the net [3].

Modulo-invariants

Desel et al. [5] introduced modulo-invariants as a gen-
eralization of the concept of place-invariants. The in-
teresting property of modulo-invariants is that a basis
can be calculated in polynomial time from the inci-

dence matrix of the net by obtaining its Smith Normal
Form [8]. Besides providing the conventional place in-
variants that can be used to encode the token count of
the places, as explained in section 4.1, they also pro-
vide extra information to prune the potentially reach-
able state space.

Let us take again the example of Figure 2. A basis
of the place-invariants of the net is the following (all
of them corresponding to state machines):

s1 + s4 = 1 s2 + s3 = 1

s5 + s8 = 1 s6 + s7 = 1

Interestingly, these invariants can be used to obtain
a superset of the state space. By using the encoding
proposed in section 4.1 with four boolean variables
(x1 : : : x4) the characteristic function

Ŝ0 = 1

would be obtained. Note that this is the character-
istic function of the 16 states depicted in Figure 2.
Even though the state space is larger, the characteris-
tic function is simpler than (3).

Modulo-invariants provide a new invariant

I = s1 + s2 + s5 + s6 � 0 (mod 2)

indicating that the token count of the places in the
invariant must remain 0 modulo 2. As an example,
the marking [1357] ful�ls the invariant since

I = 2 � 0 (mod 2)

whereas [1257] does not since

I = 3 6� 0 (mod 2)

Invariant I removes all shadowed states of Fig-
ure 2 from the reachability set. The characteristic
function of the markings ful�ling the modulo-invariant
corresponds to the boolean equation (3). In general,
modulo-invariants provide more stringent conditions
for reachability than the state equation. In our exam-
ple, they are able to obtain the exact state space.

5 Putting everything together
The methods described in the previous section can

be combined in the same veri�cation framework. This
illustrated in Figure 4.

Petri net

of the state space
 approximation
 Conservative

BDD-encoding
 of places

 modulo-
invariants

Reduced

Petri net

Structural analysis
(place bounds and
 invariants)

Reduction rules
 (abstraction)

State space refinement
(backward or forward
 traversal)

verification ?
 Successful enough resources

(CPU, memory) ?

Answer:
 YES NO

Answer: Answer:

KNOW
DON’T

state space ?
Exact

Verification YES

YES YES NO

NO NO

Figure 4: Putting everything together

Reduction rules can be applied at the earliest steps
of the veri�cation to simplify the structure of the Petri
net. Structural methods based on the state equation
and place invariants can be used to derive an e�cient
encoding of the markings. Next, the characteristic
function of the potentially reachable state space can
be derived from the modulo-invariants of the net.

Finally a cyclic veri�cation process starts. This
process completes when some of the following condi-
tions holds:

� The veri�ed property conservatively holds for an
approximate state space.

� The exact state space has been reached. Then
the result of the veri�cation (either positive or
negative) is also exact.

� The veri�ed property does not hold in an approx-
imate state space and there are no more resources
(time and/or memory) to obtain a further re�ne-
ment of the state space. The answer to the veri-
�cation process is \don't know" and the designer
must conservatively assume that is negative.

The successive re�nements can be obtained by ap-
plying one or several steps of the backward state elim-
ination strategy (4). In case a �x point is reached,
a forward traversal from m0 must be performed us-
ing the information about unreachable states as \don't

care" conditions for the manipulation of boolean char-
acteristic functions.

6 Conclusions

The results on the structural theory of Petri nets
make this formalism attractive for the speci�cation
and veri�cation of concurrent systems. A Petri net-
based veri�cation framework can also be applied to
other event-based models, such as process algebras,
from which Petri nets can be derived, e.g. by syntax-
directed translation techniques.

This paper has presented a strategy to integrate
structural and symbolic methods in the same model-
checking veri�cation framework, thus taking advan-
tage of the e�cient algorithms devised at each domain.

Recent research by Esparza and Melzer [6] has pro-
posed to perform conservative veri�cation with the
information provided by transition-invariants. The
utilization of constraint programming [10] to derive
\realizable" transition-invariants results in an e�cient
strategy to �ght against the state explosion problem.
The integration of constraint programming in model
checking techniques seems to deserve further investi-
gation.

Acknowledgments

I wish to thank Michael Kishinevsky, Luciano
Lavagno and Enric Pastor for numerous discussions
on the topics presented in this paper.

References

[1] A. Arnold. Finite transition systems: semantics

of communicating systems. Prentice Hall, 1994.

[2] R. Bryant. Symbolic boolean manipulation with
ordered binary-decision diagrams. ACM Comput-

ing Surveys, 24(3):293{318, September 1992.

[3] G. Cabodi and P. Camurati. Symbolic FSM
traversals based on the transition relation. IEEE
Trans. on Computer-Aided Design, 16(5):448{
457, May 1997.

[4] O. Coudert, C. Berthet, and J. C. Madre. Veri�-
cation of sequential machines using boolean func-
tional vectors. In L. Claesen, editor, Proc. IFIP
Int. Workshop on Applied Formal Methods for

Correct VLSI Design, pages 111{128, Leuven,
Belgium, November 1989.

[5] J. Desel, K.-P. Neuendorf, and M.-D. Radola.
Proving nonreachability by modulo-invariants.
Theoretical Computer Science, 153:49{64, 1996.

[6] J. Esparza and S. Melzer. Model checking LTL
using constraint programming. In 18th Interna-

tional Conference on Application and Theory of

Petri Nets, pages 1{20, June 1997.

[7] M. Hack. Analysis of production schemata by

Petri nets. PhD thesis, MIT, 1972.

[8] R. Kannan and A. Bachem. Polynomial algo-
rithms for computing the Smith and Hermite nor-
mal forms of an integer matrix. SIAM J. Com-

put., 8(4):499{577, November 1979.

[9] A. Kovalyov and J. Esparza. A polynomial al-
gorithm to compute the concurrency relation of
free-choice signal transition graphs. In Proc. of

the International Workshop on Discrete Event

Systems (WODES), pages 1{6, August 1996.

[10] K. McAloon and C. Tretko�. Optimization and

Computational Logic. John Wiley & Sons, 1996.

[11] K.L. McMillan. Symbolic Model Checking.
Kluwer, 1993.

[12] T. Murata. Petri Nets: Properties, analysis and
applications. Proceedings of the IEEE, 77(4):541{
580, April 1989.

[13] E. Pastor and J. Cortadella. E�cient encoding
schemes for symbolic analysis of Petri nets. In
Proc. of the Conference on Design, Automation

and Test in Europe (DATE), March 1998.

[14] E. Pastor, O. Roig, J. Cortadella, and R. Badia.
Petri net analysis using boolean manipulation. In
15th International Conference on Application and

Theory of Petri Nets, pages 416{435, June 1994.

[15] D. Peled. Combining partial order reductions
with on-the-
y model-checking. Formal Methods

in System Design, 8:39{64, 1996.

[16] C. A. Petri. Kommunikation mit Automaten.
PhD thesis, Bonn, Institut f�ur Instrumentelle
Mathematik, 1962. (technical report Schriften des
IIM Nr. 3).

[17] M. Silva. Las Redes de Petri: en la Autom�atica

y la Inform�atica. AC, 1985. (in Spanish).

[18] A. Valmari. Stubborn sets for reduced state space
generation. In 10th International Conference on

Application and Theory of Petri Nets, pages 1{22,
June 1989.

