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Abstract. Synthesis bridges the gap between specification and implementation by
systematically transforming one model into another and approaching the primitives
of the specification to those realizable by the implementation. This work faces the
problem of the synthesis of reactive systems, in which there is an explicit distinction
between input and output actions. The transformations used during synthesis must
preserve the properties that characterize the correct interaction between the system
and the environment. The concept of I/0 compatibilty is proposed to define this
correctness, and is used to provide a set of transformations for the synthesis of
reactive systems.

The theoretical contributions of the work are applied to the synthesis of asyn-
chronous circuits. Petri nets are used as specification model, and a set of structural
methods are proposed for the transformations of the model and the synthesis of
digital circuits.

1 Introduction

A reactive system is a concurrent system in which the behavior explicitly
manifests an interaction with the environment. Unlike other models to express
concurrency, reactive systems have a clear distinction between the actions
performed by the environment (input events) and those performed by the
system (output events). Additionally, a reactive system may also have internal
actions not observable by the environment.

I/0 automata [15] were proposed as a model for discrete event systems in
which different components interact asynchronously. The distinction between
input, output and internal events is fundamental to characterize the behav-
ior of real-life systems. While a system can impose constraints on when to
perform output or internal actions, it cannot impose any constraint on when
an input action can occur. For this reason, input actions are always enabled
in any state of an /O automata.

In this work, we deal with the synthesis problem of reactive systems.
Given a system and its environment, a synchronization protocol is committed
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in such a way that, at any state, the environment is guaranteed to produce
only those input actions acceptable by the system. For the specification of
this type of systems, one might use I/O automata with a dummy state that
is the sink of any input action not acceptable by the system.

We want to solve the following problem: given the specification of a re-
active system, generate an implementation realizable with design primitives
that commits the protocol established with the environment. In this par-
ticular work, we focus on the synthesis of asynchronous circuits, where the
events of the system are rising and falling signal transitions and the design
primitives are logic gates.

The specification formalism used for the synthesis of asynchronous cir-
cuits is Petri nets [17], an event based model that can express concurrency
explicitly. For this reason, the state explosion problem may arise when state-
level information is required for synthesis. This paper will tackle this problem
by using structural techniques for synthesis.

1.1 Overview

A reactive system is assumed to interact with an enviroment (see Figure 1(a)).
Both, the system and the environment have behaviors that can be described
with some model for concurrent systems.

A reactive system has an alphabet of input, output and internal events
Y = ¥;UXo U X;nr. The environment also has another alphabet ¥/ =
YUX, U X yp- A necessary condition for a system and an environment to
talk to each other is that their alphabets can be “connected”, i.e. ¥y = X7,
and Yo = X, as shown in Figure 1(a). This paper is an attempt to formalize

and answer questions such as

Which is the class of systems that can correctly dialogue with a given
environment?

How can a system be transformed so that the dialogue with its envi-
ronment is not affected?

What does “correct dialogue” mean?

To understand the rest of this section, we will give an informal and in-
tuitive idea of what “correct dialogue” means. We will say that two systems
have a correct dialogue when

e every output event produced by one of them is expected by the other as
an input event (safeness), and

e if one of them is only waiting for input events, the other one will eventu-
ally produce one of them (liveness).

Figures 1(b-d) depict an example to illustrate the main issues discussed
in this paper. The models used to describe behavior are marked graphs,
a subclass of Petri nets with no choice places, in which events represent
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Fig. 1. (a) Connection between system and environment, (b) mirrored implementa-
tion of a concurrent system, (c¢) valid implementation with concurrency reduction,
(d) invalid implementation.

rising (+) or falling (-) transitions of digital signals. The goal is to synthesize
a circuit that can have a correct dialogue with the environment. We will
assume that the components of the circuit have arbitrary delays. Likewise,
the environment may take any arbitrary delay to produce any enabled output
event.

Let us first have a look at Figure 1(b). The marked graph in the envi-
ronment can be considered as a specification of a concurrent system. The
underlined transitions denote input events. Thus, an input event of the en-
vironment must have a correspondence with an output event of the system,
and vice versa. The behavior denoted by this specification can be informally
described as follows:

In the initial state, the environment will produce the event x+. After
that, the environment will be able to accept the events y+ and z+ con-
currently from the system. After the arrival of z+, the environment
will produce x—, that can occur concurrently with y+. Next, it will
wait for the system to sequentially produce z— and y—, thus leading
the environment back to the initial state.

The circuit shown in Figure 1(b) behaves as specified by the adjacent
marked graph. In this case, the behavior of the system is merely a mirror of
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the behavior of the enviroment. For this reason, the dialogue between both
is correct.

Let us analyze now the system in Figure 1(c). In this case, the circuit
implements a behavior in which y+ and z+ are produced sequentially. Still,
the system can maintain a correct dialogue, since the environment is able
to accept more behaviors than the ones produced by the system. We can
observe that, even though the behavior is less concurrent, the implementation
is simpler.

Let us finally look at Figure 1(d), in which the events z+, y+ and z—
are produced sequentially in this order. Due to this reduction in concurrency,
two buffers are sufficient to implement such behavior. Even though the set of
traces produced by the system is included in the set of traces produced by the
environment, the dialogue between both is not correct. To illustrate that, let
us assume the events v+ and z+ have been produced from the initial state.
We are now in a state in which #— is enabled in the environment (output
event) but not enabled in the system. This violates one of the conditions
for a correct dialogue: if an output event is enabled in one component, the
corresponding event must also be enabled in the other component. In practice,
if the environment would produce z—, the circuit could react with the event
z— before y+ is produced.

The previous examples suggest that a theory to characterize the fact that
two systems can talk to each other is required. We will call Input/Qutput-
compatibility this characterization. We will show that the well-known con-
cepts of bisimulation and observational equivalence [16] are not appropriate
to analyze properties related to the dialogue between systems, since there is
no explicit distinction between input and output events.

Finally, the theory presented in this paper will be applied to a specific
area of hardware design: asynchronous circuits. We will provide a kit of trans-
formations that will assist in improving the quality of gate implementations
by either reducing the complexity of the circuit or its performance.

i

Encoding Soecification  Transform. I/O Compatible  Synthesis
with USC A specification A

Soecification Circuit

Section 8 Section 4 Sections 5-7

Section 3

Fig. 2. Synthesis framework for asynchronous circuits.

Figure 2 depicts the synthesis framework for asynchronous circuits pro-
posed in this work. Tt is also used to introduce the sections of this paper.
Initially, a concurrent specification is given to express the protocol estab-
lished between system and environment. The specification must be trans-
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formed to properly encode the states of the system and guarantee a logic
implementation. After the transformations required for encoding (Section 8),
the specification is said to have the Unique State Coding property. Synthesis
is performed by transforming the specification in such a way that the be-
havior is realizable by logic gates. In order to circumvent the state explosion
problem, the transformations are performed on the structure of the specifi-
cation, and not on its state-level representation (Section 4). In either case,
the transformations performed for encoding and synthesis must preserve the
correctness of the interaction with the environment. This correctness is called
1/0 compatibility and it is presented and discussed in Section 3. Some basic
theory on the synthesis of asynchronous circuits is presented in Sections 5
and 6. The synthesis of speed-independent circuits by using structural meth-
ods is described in Section 7. Finally, Section 9 presents the complete design
flow and some experimental results.

2 Models for reactive systems

Reactive systems [10] are systems that operate in a distributed environment.
The events observed in a reactive system can be either input events, output
events or internal events. An input event represents a change in the environ-
ment for which the system must react. In contrast, an output event can force
other systems in the environment to react to. Finally, an internal event rep-
resents system’s local progress, not observable in the environment. Typical
examples of reactive system are a computer, a television set and a vend-
ing machine. The events executed in a reactive system are assumed to take
arbitrary but finite time.

Two models for the specification of reactive systems are presented in this
section: Transition systems and Petri nets.

2.1 Transition Systems

Definition 1 (Transition System). A Transition System (TS) [1] is a 4-
tuple A = (S, X, T, sin) where

S is the set of states

XY is the alphabet of events

T C S x X xS is the set of transitions
Sin € S 1s the initial state

Figure 3(a) depicts an example of TS. The initial state is denoted by an
incident arc without source state.

Reachability in a TS The transitions are denoted by (s,e,s') or s — s'.
An event is said to be enabled in the state s, denoted by the predicate
En(s,e), if (s,e,s’) € T, for some s'. The reachability relation between
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Fig. 3. (a) Transition System. (b) Petri net.

states is the transitive closure of the transition relation 7. The predicate
s 5 s denotes a trace of events o that leads from s to s’ by firing
transitions in T'. A state s is terminal if no event is enabled in s. A TS is
finite if S and T' are finite sets.

Language of a TS A TS can be viewed as an automaton with alphabet
XY, where every state is an accepting state. For a TS A, let L(A) be the
corresponding language, i.e. its set of traces starting from the initial state.

The synchronous product of two transition systems is a new transition
system which models the interaction between both systems [1].

Definition 2 (Synchronous Product). Let A = ($4, X4, 74 s{1), B =
(S8, 2B T8, s8) be two TSs. The synchronous product of A and B, denoted

by A x B is another TS (S, X, T, sin) defined by

sin={(s,sB)e $
o X=x4yxh
S C S x SB is the set of states reachable from s;, according to the
following definition of 7.
Let (s1,s1’y € S.
—TfeeX NXB 51 5 sy €T and sy 5 sh, € TP, then (s1,5)) >
<527 5I2> €T
—Ifee X4\ X8 and 51 5 sy € T4, then (s1, %) 5 (s2,81) €T
—Tfee P\ Y4 and 5§ 5 54 € TP, then (s1,5)) 5 (s1,5) €T
— No other transitions belong to T’

When the events of a TS are interpreted as events of a reactive system,
the notion of reactive transition system arise:

Definition 3 (Reactive Transition System). A Reactive Transition Sys-
tem (RTS) is a TS (S, ¥, T, sin) where ¥ is partitioned into three pairwise
disjoint subsets of input (X7), output (¥o) and internal (Xrn7) events.
Yops = X1 U Xy is called the set of observable events.
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Properties of Reactive Systems Some definitions depending on the in-
terpretation of the events arise in a reactive transition system.

Definition 4 (Livelock). A livelock is an infinite trace of only internal
events. A RTS is livelock-free if it has no livelocks.

Definition 5 (Input-proper). An RTS is input-proper when for every in-
ternal transition s = s, with e € X;yr and for every input event i € X,
En(s’,i) = En(s,%). In other words, whether or not an input event is en-
abled in a given state depends only on the observable trace leading to that
state.

Definition 6 (Mirror operator). The mirror of A, denoted by A, is an-
other RTS identical to A, but in which the input and output alphabets of A
have been interchanged.

2.2 Petri Nets

Petri Nets [20,17] is a formal model for the specification, analysis and syn-
thesis of concurrent systems. The basis of the model is the causality relation
established between the set of events.

Definition 7 (Petri Net). A Petri Net (PN) is a 4-tuple N = (P, T, F, My)
where

P is the set of places

T is the set of transitions

F:(PxT)uU(T x P)— Nis the flow relation
My : P — N is the initial marking

An example of PN is shown in Fig. 3(b).

Paths A path in a PN is a sequence uy ...u, of nodes such that Vi, 1 <i <
7 (ujuiq1) € F. A path is called simple if no node appears more than
once on it.

Reachability in a PN Given a node « of N, the set *z = {y|(y,z) € F}
is the pre-set of z and the set 2* = {y| (2, y) € F} is the post-set of z. A
transition ¢ is enabled in marking M if each place p € *t is marked with at
least F(p,t) tokens. When a transition ¢ is enabled, it can fire by removing
F(p,t) tokens from place p € *t and adding F'(t, ¢) tokens to each place
q € t*. A marking M’ is reachable from M if there is a sequence of
firings t1t2 . . .1, that transforms M into M’, denoted by M[tity...t,)M’.
A sequence of transitions t1tq...t, is a feasible sequence if it is firable
from My. The set of reachable markings from My is denoted by [My).
A marking is a home marking if it is reachable from every marking of
[Mo). Let R C [Mp) be the set of markings where transition ¢; is enabled.
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Transition ¢; triggers transition ¢; if there exists a reachable marking M
such that M[t;)M', M ¢ R and M’ € R. Transition ¢; disables transition
t; if there exists a reachable marking M enabling both ¢; and ¢;, but in
the marking M’ such that M[t;) M, ¢; is not enabled.

Petri Net subclasses A place in a PN is redundant if its elimination does
not change the behavior of the net. A PN is place-irredundant if it does
not have redundant places. A Petri net is called ordinary when for every
pair of nodes (z,y), F(x,y) < 1. All the Petri nets appearing in this
chapter are ordinary!. If restrictions are imposed on the structure of the
net, several subclasses can be defined [17]. Three subclasses are of interest
in this paper:

e A State Machine (SM) is a PN such that each transition has exactly
one input place and one output place.

e A Marked Graph (MG) is a PN such that each place has exactly one
input transition and one output transition.

e A Free-choice Petri net (FC) is a PN such that if (p,t) € F then
*t x p* C F, for every place p.

Liveness and safeness A PN is live iff every transition can be infinitely
enabled through some feasible sequence of firings from any marking in
[Mo). A PN is safe if no marking in [Mo) assigns more than one token
to any place. In the rest of the chapter, live and safe Petri nets will be
assumed.

Free-choice decomposition A free-choice live and safe Petri net (FCLSPN)
can be decomposed into a set of strongly-connected state-machines (marked
graphs). An SM-cover (MG-cover) of a FCLSPN is a subset of state ma-
chines (marked graphs) such that every place (transition) is included at
least in one state machine (marked graph). Moreover, a FCLSPN can
be also decomposed into a set of strongly-connected one-token state-
machines, i.e. state-machines that at most contain one token at any reach-

able marking [9].

A FCLSPN is shown in Figure 4(a). A one-token SM-cover of PN of Fig-
ure 4(a) is shown in Figure 4(b).

Concurrency relations The Concurrency Relation [5] between pairs of
nodes (P UT) of a PN is defined as a binary relation CR, such that
given places p;, p; and transitions #;,%;:

(ti,tj) cCR & [HM € [Mo) : M[titj> A M[tjti>];
(p,t;) €ECR & [IM € [Mo) : M[t;)M' A M(p) >0A M (p) > 0];
(pi,pj) € CR & [3M € [Mo) : M(pi) > 0A M(p;) > 0].

! Given that we deal with ordinary nets, we will abuse language and say e € F
instead of F'(e) = 1.
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(a) (b)
Fig. 4. (a) Free-choice petri net. (b) SM-cover of PN from (a).

Polynomial algorithms for the computation of the concurrency relations

of a FCLSPN have been presented in [13].

As in the case of the TS model, a transition in a PN can represent an
event occurring in a reactive system.

Definition 8 (Reactive Petri Net). A Reactive Petri Net (RPN) is a 3-
tuple ((P,T, F, Mp), X, A) where

e (P,T,F, Mp) is a PN
e Y is a set of events defined as in the case of RTS
o A:T 5 X

A RPN A has an associated reactive transition system RTS(A), in which
each reachable marking corresponds to a state and each transition ¢ between
a pair of markings to an arc labeled with A(t). A RPN A is deterministic
if RTS(A) is deterministic. Along this paper, only deterministic RPNs are
considered.

When restrictions are imposed on the structure of a RPN, several sub-
classes can be defined. The |0-RPN class contains those free-choice determin-
istic RPNs fulfilling both that there is not an input event triggering another
input event, and the transitions in the post-set of a choice place are all input
events:

Definition 9 (I/O Reactive Petri Net). An IO-RPN is a deterministic
free-choice RPN where the following conditions hold:

1. Vt1,t2 ecT: (tg € (t;). AA(t]) cXr=> A(tz) é Z[)
2. Vpe P:(]p*] > 2= Vi€ p*: Al) € 5).

Figure 5(a) presents an example of IO-RPN. The RPN of Figure 5(b) does
not belongs to the I0-RPN class because input transition a triggers input
transition b. The I0-RPN class possesses some nice properties, which will be
discussed in Sections 8 and 9.
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a?

(b)
Fig. 5. (a) 10-RPN specification. (b) RPN which is not 10-RPN (the suffices ? and

! are used to denote input and output events, respectively).

3 Relations of reactive systems

In the first part of this section, the observational equivalence relation [16] is
introduced. Afterwards, a set of conditions that ensure a correct dialogue be-
tween two reactive systems is presented: the I/0 compatibility. Both notions
are compared and the relations among them are outlined. Finally, the 1/O
compatibility is used for defining the set of conditions establishing when an
object can be considered as a correct realization of a reactive system (I/0
preserving realization).

3.1 Observational equivalence

The observational equivalence relation between two reactive systems was first
introduced by Milner in [16]. The relation identifies those systems whose
observable behavior is identical.

Definition 10. Let A = ($4, 24,74, s/} and B = (S7, %P TB, f;) be

two RTSs. A and B are observatzonal equivalent (A ~ B) if Y454 = X5,
and there exists a relation R C §4 x S satisfying

1. sf}IRsB
2. (a) Vs € §4,3s' € SP s.t. sRs'.
()VSESB s € S4 s.t. sRs'.
3. (a) Vs; € S4, 54 € SB:if s1Rs), e € (YAps) and s 5 sy then 30,05 €

O1€02

(EFNT)* such that s{ "— s, and s, Rs}.
(b) VS‘[ S SA) Sll c SB: ifS'IRSl, € c (ZéBq) and Sll i) SI2 then 30’1,0’2 &
(Z?NT)* such that s; 23° s2, and sz Rs).

The two RTSs of Figure 6(a) are observational equivalent, because every
observable sequence of one of them can be executed in the other. Figures 6(b)-
(c) depict examples of non-observationally equivalent systems.

3.2 I/0 compatibility of reactive systems

A formal description of the conditions needed for having a correct dialogue
between two RTSs is given in this section. We call this set of conditions I/0
compatibility. The properties of the /O compatibility can be stated in natural
language:
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Fig. 6. Connection between different reactive systems (the suffixes ? and ! are used
to denote input and output events, respectively).

(a) Safeness: if system A can produce an output event, then B must be pre-
pared to accept the event.

(b) Liveness: if system A is blocked waiting for a synchronization with B,
then B must produce an oulput event in a finite period of time.

Two RTSs are structurally 1/0-compatible if they share the observational
set of events, in a way that they can be connected.

Definition 11 (Structurall/O compatibility).Let A = ($4, 24, T4, s8)
and B = (S8, X8 T8 sB) be two RTSs. A and B are structurally I/O com-

? zn

patible if ¥ = Eg, Ya=xB yAnxB . =0and XE NI, =0.

The following definition gives a concise formalization of the conditions
needed for characterizing the correct interaction of two RTSs:

Definition 12 (I/O compatibility). Let A = (S4, X4, T4, s4) and B =
(8B, 2B 1B sB) be two structurally 1/0 compatible RTSS A and B are

1/0 compatible, denoted by A = B, if A and B are livelock-free and there
exists a relation R C $4 x SP such that:

1. sitLRsE.
2. Receptiveness:
(a) If s1Rs, e € X uo and sq i) s9 then En(s},e) and Vs| = s} : 5o Rs).
(b) 1f s1Rs), e € X5 and s{ 5 s} then En(sy,e) and Vs1 > sg : 53 Rsb.
3. Internal Progress:
(a) If s1Rsy, e€e ¥ HINT and s i) s9 then sy Rsi.
(b) If s1Rs), e € XPyp and 5| 5 s, then s; Rs).
4. Deadlock-freeness:
(a) If s1Rs} and {e|En(sy,e)} C X then {e|En(s},e)} ¢ XP.
(b) If sy Rs} and {e|En(s} )}C Y. then {e|En e)} ¢ T}

Let us consider the examples of Figure 6. In Figure 6(a), the receptiveness
condition fails and therefore X and Y are not 1/O compatible. However, the
RTSs of Figure 6(b) are 1I/O compatible. Finally, Figure 6(c) presents an
example of violation of the deadlock-freeness condition.
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Condition 4 has a strong impact on the behavior of the system. It guar-
antees that the communication between A and B has no deadlocks (see the-
orem 3).

Lemma 1. Let A, B be two RTSs such that A = B, let R be an 1/0 compati-
ble relation between A and B and let AxB = (S, X, T, sin) be the synchronous
product of A and B. Then, (s,s') € S = sRs'

Proof. See appendix.

Theorem 1 (Safeness). Let A, B be two RTSs such that A = B, and a
trace 0 € L(A x B) of their synchronous product such that s;, % (s, s'). If
A can fire an output event in s, then the same event is enabled in state s’ of

B.
Proof. See appendix.

Theorem 2. Let A, B be two RTSs such that A = B, and let A x B be the
synchronous product of A and B. Then, A X B is livelock-free.

Proof. See appendix.

The 1I/O compatibility relation represents implicitly a liveness property,
stated in the following theorem:

Theorem 3 (Liveness). Let A, B be two RTSs such that A = B, and a
trace o € L(A x B) of their synchronous product such that s;, = (s, s'). If

only input events of A are enabled in s, then there exists some trace (s, s') %
(s, s") such that some of the input events of A enabled in s are also enabled
in " as output events of B.

Proof. See appendix.

3.3 A sufficient condition for I/O compatibility.

A sufficient condition for having I/O compatibility between two reactive sys-
tems can be obtained when combining the notions of observational equiva-
lence and input-properness:

Theorem 4. Let A = (SA4, X4, 74 s8), B = (SB,XB T8 sB) be two
livelock-free RTSs with X4 = X5 and ¥4 = XP. If A and B are input
proper and A &~ B, then A = B.

When considering a system A and some I/O compatible system B, any
transformation of B preserving both input-properness and observational equiv-
alence will lead to another 1/O compatible system:
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Theorem 5. Let A = (S4, X4, T4, s1), B = (SB, X8, T8 sB) and C

(8¢, 8¢, TC s be three RTSs. f A= B, B~ C, X2 = ¥¢ ¥B = %
and C' is input-proper then A = C.

oall

Proof. See appendix.

Figure 7 shows an example of application of Theorem 5. The transfor-
mation of X which leads to X’ preserves both observational equivalence and
input-properness, and then, X and X’ can safely interact.

Finally, it must be noted that /O compatibility does not require input-
properness, as shown in Figure 8. This occurs when the non-input-proper
situations are not reachable by the interaction of the two systems. For the
sake of simplicity, only input-proper systems will be considered along this

paper.

3.4 Realizations of a reactive system

In this section, it is of interest to characterize when the specification of a
reactive system is correctly realized by a given implementation. For this pur-
pose, two RTSs representing specification’s and implementation’s behavior
are compared. The 1/0O compatibility can be used to determine when a pair
(specification, implementation) represents a correct realization: for specifica-
tion A, the system A represents a model of the environment where a possible
implementation B must correctly interact.

Definition 13 (I/O preserving realization). Let A and B be two RTSs,
A representing the specification of a reactive system. B realizes A (A = B)
iff A= B.
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(a) (b)

Fig. 9. (a) Interface of system A, (b) Transition System model.

Let us illustrate the concept with the example of system A, specified
in Fig. 9. It observes events x, y, z and w, and generates events a, b and ¢
(Fig. 9(a)). The behavior of such system is specified with the RTS of Fig. 9(b).
Figure 10 depicts the RTSs of four possible realizations of system A.

Fig. 10. RTS of different implementations of system A.

The reactive transition system 10(a) violates the input-proper property
and can cause a malfunction in the entire system: if the realization of the
internal event A takes a long delay, 10(a) is imposing that after event a
has been generated, the environment must wait before generating the events
x, y and z. Therefore, if implementation 10(a) was used, the system(s) in
the environment responsible of generating events x, y and z must be re-
synthesized. However, the insertion of A in 10(b) leads to an input-proper
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RTS. Sometimes it is necessary to insert internal events in the specification,
in order to fulfill some implementability conditions (see Section 8).

The reactive transition system 10(c) is a correct realization of system
A, because it represents a modification of the specification 9(b), where the
concurrency of the output events b and c is reduced: the environment will
observe 10(c)’s events in a more restricted (but still expected) order. The
transition system 10(d) represents an erroneous realization of system A: it is
restricting the way input events must be received.

4 Synthesis of reactive systems

The action of synthesis can be defined as the process of combining transfor-
mations that preserve certain properties. In this section we are interested in
transformations applied to a reactive system that preserve the I/O compati-
bility.

Highly concurrent systems suffer from the well-known state explosion
problem: the set of states of a system can be exponentially large with respect
to its set of events. Therefore, when dealing with large concurrent systems,
state-based models like transition systems are not suitable for its represen-
tation. On the contrary, event-based models like Petri nets circumvent this
problem by representing the system as a set of causality relations between
the events. In this section we use the Petri net model as the formal model
for specifying a system.

A kit of synthesis rules is presented in this section. It is based on the
application of Petri net transformations over a RPN. The kit of transforma-
tions is defined in Section 4.1. Section 4.2 presents those transformations that
preserve the I/O compatibility.

4.1 Kit of PN transformations

Three rules are presented for modifying the structure of a FCLSPN. The rule
¢, is used for sequencing two concurrent transitions. It was first defined in [2].
Here a reduced version is presented. Rule ¢; does the opposite: it increases
the concurrency between two ordered transitions. ¢; can be obtained as a
combination of the ones appearing in [17]. Finally, rule ¢. removes a given
transition. It was first presented in [14]. All three rules preserve the liveness,
safeness and free-choiceness.

Rule ¢,

The purpose of the rule ¢, is to eliminate the concurrency between two
transitions of the PN. This is done by inserting a place that connects the two
transitions, ordering their firing. The following figure presents an example of
concurrency reduction between transitions ¢; and ;.
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The formal definition of the rule is:
Let N = (P, T, F,Mp), N' = (P',T, F', M}) be two FCLSPNs, and tran-
sitions t;,t; € T. Then, ¢,(N,t;,t;) = N’ if:

Conditions on N: Conditions on N':

LAt} = *(") = *(*1;) 1. PP=P U {p}

2. % ={pi} Alp}| =1 2. F'=F U {(t:,p), (p.1;)}
3.0 ={pi} Alp}I =1 3. My= My U {p« 0}

4. Mo(pi) = Mo(p;)

Rule ¢;

Inversely to rule ¢,, rule ¢; removes the causality relation between two
ordered transitions, making them concurrent.The following figure presents an
example of increase of concurrency between transitions ¢; and ¢;.

The formal definition of the rule is:

Let N = (P,T,F,My), N' = (P',T', F', M§) be two FCLSPNs, and
transitions t;,¢; € T. In the following definition, places pj represent new
places originated from places either in *t; (k = i) or in ¢} (k = j). Then,

¢i(N, ti,tj) = N'if:
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Conditions on N: Conditions on N':
L A{(ti,p), (p,t;)} CF 1. P' = (P\{p}) U{pilpi € *t:} U {pjlp; €t}}
2. 'pl=|p*l=1 2. F' = (F\{(ti,p), (ptj)}H U

|:
3.Vge€ *ti:]g*|=1 Wy, Py, pi) € FYUA{(pis t5)|(pis ti) € FTU
4.4 & (83)° 1(p5 9(pj,y) € FYU{(ts, pj)I(t5,p;) € F}U
{(,P))(y,p;) € F Ay # 15}
3. Mg = Mo U{p, + Mo(ps) + Mo(p)}

Rule ¢,
The rule ¢, eliminates a transition from the PN. The following figure
presents an example of elimination of transition &.

The formal definition of the rule is:
Let N = (P, T, F, My), N' = (P',T', F', M{) be two FCLSPNs, transition
¢ € T and let P. = (*¢) x (&*). Then, ¢.(N,¢) = N’ if:

Conditions on N: Conditions on N':
1. Vp:pe€ ®e:p* ={e} 1. PP=(P\(*eUe*))UP.
2. T" =T\ e}

3. F'=(F\{(a,b)]|(a,b) € FA
(a=eVb=¢)})U
{(y, {p1, p2))|(y, 1) € F}U
{«p1,p2), V)| (P2, y) € F'}

4. M= Mo|p\ (scuce) U
Up1, p2) « k[{p1,p2) € P- A
k = Mo(p1) + Mo(p2)}

where f|c represents the restriction of function f to set C.

4.2 1I/0 compatible transformations over RPN
The I/0 compatible relation operator (=) can be lifted to RPNs:

Definition 14 (I/O compatible relation over RPN). TLet A and B be
two RPNs with corresponding RTSs RTS(A4) and RTS(B). A = Bif RTS(4) =
RTS(B).
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Environment

o!

Ii?
;

Fig. 11. Different possibilities for reducing concurrency.

For each transformation of the kit presented in Section 4.1, the following
sections enumerate those situations where the transformation can be applied
to the underlying FCLSPN of a deterministic RPN while preserving the 1/O
compatible relation.

I/0 compatible application of ¢,

The application of ¢,(A,e1,e2) preserves = when neither €1 nor ey is an
input transition. In fact, it is sufficient to require only es to be non-input
for the preservation of =, but then deadlock situations may arise. Figure 11
exemplifies this: initially, both environment and system can safely interact.
Moreover, if either the environment or the system are transformed by reduc-
ing concurrency between an input and an output, the interaction can still be
safe. However, the two transformed systems can not interact. The formaliza-
tion of the transformation is:

Theorem 6. Let the RPNs A, B and C with underlying FCLSPN and cor-
responding deterministic RTSs (S4, X4 T4, sd), (S8, XB TB sB) and

) Vin ) Vin

(S€, XC, T, 5§ ), respectively. Assume X¢ = XB_ If

in

1.A=B
2. ¢.(Byer,ea) = C, with eq,eq ¢ TP

then A= C.

Proof. See appendix.

I/O compatible application of ¢;
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The application of ¢; preserves = when:

1. at least one of the transitions involved is internal, and
2. no internal transition is inserted as trigger of an input transition

The purpose is to avoid the increase of concurrency between two observ-
able transitions, in order to forbid the generation of unexpected traces either
on the environment’s or on the system’s part. More formally:

Theorem 7. Let the RPNs A, B and C with underlying FCLSPN and cor-
responding deterministic RTSs (S4, X4, T4 sft), (S8, X8, T8 sB) and
(8€, 8¢, 1¢ 55, Assume X¢ = XB_ If

1.A=B

2. ¢i(B,e1,e2) = C, with either eq € EIBNT orey € EIBNT

3. B is input-proper

4. Ve (e§)* :e¢ XP

then A= C.

Proof. See appendix.

I/O compatible application of ¢,

Rule ¢, only preserves = when applied to internal transitions.

Theorem 8. Let the RPNs A, B and C with underlying FCLSPN and cor-
responding deterministic RTSs (S4, X4, T4, sA), (S8, X8, T8 sB) and
(8€, 8¢, TC s¢). Assume E5p6 = X556 If

1. A=1B
2. ¢i(B,e) = C, withe € X'P,.,
3. B is input-proper

then A= C.
Proof. See appendix.

The transformations presented above can introduce redundant places in
the target net. For dealing only with place-irredundant nets, the kit is aug-
mented with a rule for eliminating redundant places. Linear programming
techniques exist that decide the redundancy of a place efficiently [22]. More-
over, each time a transformation is performed, it can be locally determined
the potential redundant places, and therefore the redundancy checking is only
applied to a few places.
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Bus Data .
Transceiver
dsr
Ids
D .
Device Idtack
DSr ——| LDS
VME Bus
DSW—] d
Controller |LpTack
DTACK =— dtack
(a) (b)

Fig. 12. (a) Interface, (b) Timing Diagram.

5 Asynchronous circuits

Asynchronous circuits are digital circuits that react to the changes of their
input signals according to the functionality of the gates of the circuit [3].
Synchronous circuits can be considered as a particular case of asynchronous
circuits in which some specific design rules and operation mode are imposed.

In general, any arbitrary interconnection of gates is considered an asyn-
chronous circuit. The synthesis problem consists in generating a proper inter-
connection of gates that commits a correct interaction with the environment
according to some specified protocol.

This section presents the models used in this work for the specification
and synthesis of asynchronous circuits.

5.1 State graphs

Asynchronous circuits can be modeled with a RTS, where the events represent
changes in the value of the system signals. The VME Bus Controller example
in Fig. 12 will be used for illustrating the concepts. The interface is depicted
in Fig. 12(a), where the circuit controls data transfers between the bus and
the device. Figure 12(b) shows the timing diagram corresponding to the read
cycle.

Binary interpretation A transition labeled as #;4+ (z;—) denotes a rising
(falling) of signal z;: it switches from 0 to 1 (1 to 0). Figure 13 shows the
RTS specifying the behavior of the bus controller for the read cycle. Each
state of an asynchronous circuit can be encoded with a binary vector,
representing the signal values on that state. The set of encoded states
are consistently encoded if no state can have an enabled rising (falling)
transition a4+ (a—) when the value of the signal in that state is 1 (0) (see
Section 6 for a formal definition of consistency). Correspondingly, for each
signal of a RTS representing an asynchronous circuit, a partition of the
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states of the RTS can be done by separating the states where the signal
has value one, from those where the signal has value zero. This partition
can only be done when the underlying asynchronous circuit is consistently
encoded. Figure 14(a) shows the partition induced by considering signal
1ds in the RTS of Fig. 13. Each transition from LDS=0 to LDS=1 is labeled
with 1ds+ and each transition from LDS=1 to LDS=0 is labeled with 1ds-.
A binary vector can be assigned to each state if such partition is done for
each signal of the system. The encoded transition system is called State

Graph.

Definition 15 (State Graph). A State Graph (SG) isa 3-tuple A = (A’, X, \)
where

o A'=(S,X,T,s;,)is a RTS

e X is the set of signals partitioned into inputs (Z), observable outputs
(Obs) and internal outputs (Znt), and ¥ = X x {4+, —}U{e} , where all
transitions not labeled with the silent event (g) are interpreted as signal
changes

e ): S — Bl*l is the state encoding function

Figure 14(b) shows the SG of the bus controller.

We will denote by A;(s) the value of signal z is state s. The following
definitions relate signal transitions with states. They will be used later to
derive Boolean equations from an SG.

Definition 16 (Excitation quiescent regions). The positive and nega-
tive excitation regions (ER) of signal z € X, denoted by ER(z+) and ER(z—),
are the sets of states in which 4+ and z— are enabled, respectively, i.e.
ER(x+) = {s€ 8 |3s ZH s e T}
ER(z—)={s€S|Is 55 €T}
The positive and negative quiescent regions (QR) of signal € X, denoted

by QR(z+) and QR(z—) are the sets of states in which # has the same value,
1 or 0, and is stable, i.e.

QR(z+) ={s€ S| As(s) =1 A s¢ ER(z—)}
QR(z—)={s€ S| X(s) =0 A s¢ ER(z+)}

5.2 Signal transition graphs

As in the case of the RTS model, events of a RPN can represent signal changes
of an asynchronous circuit. The model is called Signal Transition Graph [21].

Definition 17. A Signal Transition Graph (STG) is a 3-tuple (N, X, A),

where
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dsr+ dtack- ®
lds+ Idtack- Idtack- Idtack-
® dsr+ dtack- ®
ldtack+ Ids- Ids- Ids-
P dsr+ Y dtack-
d+ d-
dtack+ PY dsr-

Fig. 13. Transition System specifying the bus controller.

dsr+ PN dtack- °
LDS=0
Ids+ Idtack- Idtack- ldtack-
Py dsr+ dtack- ®
Idtack+ lds- Ids- Ids-
PS P dsr+ P dtack-
d+ LDS=1 d-
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(a)

dsr+ dtack—
.00000 € 01000
Idtack— Idtack— Idtack-
dsr+ dtack—
.10100 ‘00100 $01100
Idtack+ lds— lds— lds—
o101 @- I g dack- gop
10101 00101
d+ -
® dtack+ dsr-
10111 11111 01111
(b)

Fig.14. (a) Partition induced by signal 1ds, (b) State graph of the read cycle.
States are encoded with the vector (dsr,dtack,ldtack,d,1ds).

e N=(P,T,F, Mp) is a Petri net

e X and ¥ are defined as in the case of the SG.

o N: T XY

Adjacency Transition z;« is said ti be a predecessor of x;« if there exists
a feasible sequence z;x0z;+ that does not include other transitions of
signal z. Conversely, z;+ is a successor of x;x. We will also say that the
pair (x;=, x;+) is adjacent. The set of predecessors (successors) of z;« is
denoted by prev(z;) (next(z;+)).

An example of STG specifying the bus controller is shown in Figure 15.

Places of the STG with only one predecessor and one successor transition,

are not shown graphically as convention. The RTS associated to an STG is

an SG. The SG associated to the STG of Figure 15 is shown in 14(b).
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R
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Fig. 15. (a) Signal Transition Graph specifying the bus controller, (b) State ma-
chine cover.

Concurrency relations Concurrency relations can be naturally extended
to nodes and signals in a STG. The Signal concurrency relation between
anode u; € PUT and asignal « € A is defined as a binary relation SCR,
such that (uj,z) € SCR & Jzi«: (uj, zix) € CR .

The class of STGs with underlying I0-RPN are defined. This class will be

used in Sections 8 and 9.
Definition 18. An IO-STG is an STG with underlying IO-RPN.

Figure 15 shows an example of 10-STG.

6 Synthesis of Speed-Independent Circuits

Speed-independent (Sl) circuits is the class of asynchronous circuits that work
correctly regardless the delay of their components (gates). Currently, there
is a robust theory, design flow and some tools [7] that support the automatic
synthesis of Sl circuits.

However, one of the major problems of the methods used for synthesis is
that they require an explicit knowledge of the state graph. Highly concurrent
systems often suffer the state explosion problem and, for this reason, the size
of the state graph can be a limiting factor for the practical application of
synthesis methods.

In this section, some basic concepts on the logic synthesis of Sl circuits are
presented. We refer the reader to [7] for a deeper theory on how to implement
S| circuits. In this paper, we will focus on the main step in synthesis: the
derivation of the Boolean equations that model the behavior of the digital
circuit.
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In Sections 7, 8 and 9, a synthesis framework that only uses structural
methods on STGs to derive the Boolean equations will be provided. By only
using structural methods, the computational complexity associated to the
state explosion problem is avoided.

6.1 Implementability as a Logic Circuit

This section defines a set of properties that guarantee the existence of a Sl
circuit. They are defined at the level of SG, but can be easily extended to
STGs. Instead of giving new definitions for STGs, we will simply consider that
a property holds in an STG if it holds in its underlying SG.

The properties are the following: boundedness, consistency, complete state
coding and output persistency.

Boundedness. A necessary condition for the implementability of a logic
circuit is that the set of states is finite. Although this seems to be an obvious
assumptions at the level of SG, it is not so obvious at the level of STG,
since an STG with a finite structure may have a infinite number of reachable
markings.

Counsistency. As shown in Figure 14, each signal z; defines a partition of
the set of states. The consistency of an SG refers to the fact that the events
z;+ and z;— are the only ones that cross these two parts according to their
meaning: switching from 0 to 1 and from 1 to 0, respectively. This is captured
by the definition of consistent SG.

Definition 19 (Consistent SG). An SG is consistent if for each transition
s 5 ' the following conditions hold:

o if e = x;+, then A;i(s) = 0 and A;(s') = 1;
o if e = x;—, then X;(s) = 1 and A;(s') = 0;

e in all other cases, A;(s) = A;(s').

where )A; denotes the component of the encoding vector corresponding to
signal z;.

Complete State Coding This property can be illustrated with the example
of Figure 14(b), in which there are two states with the same binary encoding;:
10101. Moreover, the states with the same binary code are behaviorally dif-
ferent. This fact implies that the system does not have enough information
to determine how to react by only looking at the value of its signals.

The distinguishability of behavior by state encoding is captured by the
following two definitions.
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Definition 20 (Unique State Coding). [5] An SG satisfies the Unique
State Coding (USC) condition if every state in S is assigned a unique binary
code. Formally, USC means that the state encoding function, A, is injective.

Definition 21 (Complete State Coding). [5] An SG satisfies the Com-
plete State Coding (CSC) condition if for every pair of states s, s’ € S having
the same binary code the sets of enabled non-input signals are the same.

Both properties are sufficient to derive the Boolean equations for the
synthesized circuit. However, given that only the behavior of the non-input
signals must be implemented, encoding ambiguities for input signals are ac-
ceptable.

Output persistency This property is required to ensure that the discrete
behavior modeled with SG has a robust correspondence with the real analog
behavior of electronic circuits.

Definition 22 (Disabling). An event z is said to disable another event y

if there is a transition s —» s’ such that y is enabled s but not in s'.

Definition 23 (Output persistency). An SG is said to be output persis-
tent if for any pair of events = and y such that z disables y, both z and y are
input signals.

In logic circuits, disabling an event may result in non-deterministic be-
havior. Imagine, for example, that an AND gate has both inputs at 1 and the
output at 0. In this situation, the gate starts the process to switch the signal
towards 1 in a continuous way. If one of the inputs would fall to 0 during this
process, the output would interrupt this process and start moving the signal
to 0, thus producing an observable glitch. To avoid these situations, that may
produce unexpected events, the property of output persistency is required.

6.2 Boolean equations

This sections describes the procedure to derive Boolean next-state functions
for output signals from an SG. The procedure defines an incompletely speci-
fied function from which a gate implementation can be obtained after Boolean
minimization.

An incompletely specified n-variable logic function is a mapping F :
{0, 1} — {0, 1, —}. Each element {0, 1}" is called a verter or binary code. A
literal is either a variable z; or its complement Z;. A cube c is a set of literals,
such that if 2; € ¢ then Z; ¢ ¢ and vice versa. Cubes are also represented as
an element {0, 1, —}", in which value 0 denotes a complemented variable 77,
value 1 denotes a variable z;, and — indicates the fact that the variable is
not in the cube. A cover is a set of implicants which contains the on-set and
does not intersect with the off-set.
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Given a specification with n signals, the derivation of an incompletely
specified function F'¢ for each output signal z and for each v € B* can be
formalized as follows:

1 if 3s € ER(z+) UQR(z+) : A(s) =
Fo(v) =40 if 3s € ER(z—) UQR(z—) : A(s)
— if AseS:A(s) = v

The set of vertices in which F7(v) = 1 is called the on-set of signal  (ON(x)),
whereas the codes in which F?(v) = 0 is called the off-set of # ((OFF(z)).

The previous definition is ambiguous when there are two states, s; and
sq, for which A(s1) = A(s2) = v, s1 € ER(z+) UQR(z+) and s2 € ER(z—) U
QR(z—). This ambiguity is precisely what the CSC property avoids, and this
is why CSC is a necessary condition for implementability.

Figure 16 depicts an STG and the corresponding SG. Figure 17 shows the
Karnaugh maps of the incompletely specified functions for signals a and d.

abcd
¢ ER@) 100 < 1011
$ &/ N R
S o T e
ct A d- b
i T i 1010 0000 0101 0011

. ch d-
ct b b+ a- b+ / ER(a+)

\ T / 00]{\ %)100 b- OR(@)

b+
d+ o109 o111

@ (b)
Fig. 16. Example abed: (a) Signal Transition Graph, (b) State Graph

Form the incompletely specified functions, other circuit architectures can

also be derived [7].

7 Structural approximations for logic synthesis

Most of the existing frameworks for the synthesis of Sl circuits from STG spec-
ifications rely on the explicit computation of the underlying SG to check im-
plementability conditions and generate Boolean equations [6] (see Section 6).
Unfortunately, the underlying SG of a highly concurrent system can be ex-
ponential in the size of the STG specification, which leads to the well-known
state explosion problem.

This section describes how to link structure and behavior with polyno-
mial complexity if the STG specification has an underlying FCLSPN, thus
avoiding exponentiality. The method is based on the analysis of the con-
currency relations and state machine decompositions of the STG. States are
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Fig. 17. Complex gate implementation for the abed example

never generated, instead their encoding vectors are approximated by logic
functions with various degrees of accuracy. State explosion is avoided by
using a conservative approximation of the state graph, but providing com-
putationally efficient algorithms that generate minimized implementations
comparable to those generated by state-based tools. This section presents a
general overview of results developed elsewhere. We refer to [18,19] for further
details and proofs.

7.1 Structural approximations of the state graph

Initially we introduce a technique to approximate the underlying SG of an
STG. This approximation will be used to check the USC conditions in Sec-
tion 7.2, and to provide approximate logic functions for the logic synthesis
process in Section 7.4. The structural approximation of the SG is based on a
simple concept: characterize the states in which a given place is marked, this
is the so called marked region. The goal is to derive a simple logic function
to approximate each marked region.

Structural consistency verification Consistency is the necessary condi-
tion to assign binary codes to the states in the underlying SG of an STG (see
Section 6). Before providing an approximation of the SG it is necessary to
guarantee that it can be properly encoded.

Checking consistency in a STG with underlying FCLSPN can be reduced
to checking (1) the absence of auto-concurrent transitions, and (2) that ev-
ery sequence of signal transitions is switchover correct [11]. Auto-concurrent
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transitions exists when a pair of transitions z;+ and x;+ of signal « are con-
current. Switchover correctness requires the value of each signal z to switch
from 0 to 1 in response to a rising transition, and to switch from 1 to 0 due
to a falling transition. Switchover correctness of a non auto-concurrent STG
is verified by checking that all adjacent transitions of the same signal have
alternating switching directions.

The adjacency of a pair of transitions of the same signal can be determined
by finding a particular path in the STG connecting both transitions. The
following property characterizes the relation between the formal definition of
adjacency (see Section 5) and its structural computation on the structure of

the STG, thus linking the feasible sequence concept to structural paths in the
STG.

Proposition 1 (Structural characterization of adjacency). [Necessary
condition] In a STG with underlying FCLSPN, a transition x;+ € next(x;«) if
there is a simple path L between xijx and xj+ such that:

1. no place p € L is concurrent to signal z; and
2. L contains no other transitions of signal x except x;+ and x;x.

To obtain sufficient conditions to determine the adjacency between tran-
sitions of the same signal it is necessary to distinguish which concurrency
relations are not relevant for adjacency. Additional details can be found in

[19].

Marked regions and cover cubes A set of markings, named marked re-
gion, define the correspondence between the basic structural elements of an
STG and its underlying SG. We will introduce this basic region, derive its
fundamental properties, and show how to approximate its state encoding by
using a single cover cube.

Definition 24 (Marked region). Given a place p, its marked region, de-
noted MR(p), is the set of markings in which p has at least one token, i.e.
MR(p) = {M € [My) : M(p) >0} .

With an abuse of notation we introduce the operator 7 to define the
characteristic function of the binary codes A(s) of all states in the underlying
SG equivalent to a set of markings. Table 1 show the main objects used in
the synthesis process. The first column refers to sets of markings in a STG,
the second column refers to the binary vectors that encode those markings,
and the last column refers to a logic function that includes all (and maybe
more) binary vectors in the previous object.

All states in the underlying SG of a STG are contained in the union of the
MR of places in any given SM. Additionally, if the SM satisfies the one-token
condition, then the MR of its set of places define a total partition of the SG.
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Proposition 2 (Projection of the reachability set onto a SM). The
following properties are satisfied for any State machine SM of a FCLSPN :

1. The union of the marked regions of every place in SM is equivalent to
[Mo), i.e. [Mo) = eS‘MMR(p) .

2. Additionally, if SM satisfies the one-token condition then the marked
region of places in SM define a total partition of [My), i.e. Vp,p' €
SM : MR(p)NnMR(p') =0 .

As an example, Fig. 19 highlights the marked region for place pg. Note
that MR(pg) is entered after firing transition dsr+ and it is only left when
transition 1ds+ fires. The binary codes corresponding to those markings are
characterized by K/FR(pg) = {10101, 10100, 10000}.

A cover cube for a MR must cover the binary encoding of all markings in
the region. To make the approximation more accurate this cube should be the
smallest among possible (with the largest number of literals) [12]. Any signal
that does not change in the MR of a place (is not concurrent to the place)
is represented by a corresponding literal in a cover cube. The value of this
signal can be determined by an interleave relation. Interleaving characterizes
the position of a node with respect to a pair of adjacent signal transitions.

Definition 25 (Interleave relation). The Interleave Relation is a binary
relation ZR between nodes in P U T and pairs of adjacent transitions z;«
and z;+ of a signal x such that, a node u; is interleaved with (2;+, ;%)
(uj € ITR(xi*, x;+)), if there exists a simple path from x;+ to z;+ containing
uj.

Proposition 3 (Consistent place interleaving). In a consistent STG if
a place p is interleaved with a pair of adjacent transitions (z;+, x;-) then p
cannot be interleaved with any other adjacent pair (x;—,x;+) and vice versa.

Property 3 guarantees that if a place p is non-concurrent to signal z and
interleaved between two adjacent transitions (z;+, #;-) ((2;-, 2;+)), then all
binary codes in M\R(p) have value 1 (0) for signal . This property is the
basis to approximating markings by computing a single cover cube for each
marked region. We can see in Fig. 19 that place pg is interleaved between
dtack- and dtack+ because the path dtack- — dsr+ — lds+ — ldtack+
— d+ — dtack+ exists. Furthermore, all markings in MR(pg) are encoded
with dtack = 0.

Proposition 4 (Boolean approximation for a MR [12]). The cover cube
Cp for MR(p) is the smallest cube that covers MR(p) such that for every signal
x:

1. if  non-concurrent to p ((p,x) ¢ SCR) then

or_ J0if b=0in MR(p),
P71 1if b=1 in MR(p).
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Fig.18. SM-cover and cover cubes for the STGin Fig. 15. Cubes encoded with the
vector (dsr,dtack,ldtack,d,lds).

2. if x concurrent to p then C; = —;

where C* indicates the x-th component bit of C.

Given a place p, a literal must appear in the cube for any non-concurrent
signal z to p ((z,p) € SCR). For any arbitrary place p the value of the signal
z in a corresponding cover cube is determined by checking if p is interleaved
between pairs of adjacent rise-fall or fall-rise transitions. Property 3 guar-
antees that the value of signal z is the same for all the adjacent pairs for
which p is in ZR. Therefore, the Interleave Relation gives a polynomial-time
algorithm (for free-choice STG) to determine the value of literal C;:

1 if 3 adjacent (z;+,z;—) : p € IR(z;+, z—) ,
C, = ¢ 0 if Jadjacent (zi—,z;+) : p € IR(zi—, zi+) ,
— otherwise .

Figure 18 shows the state machines for the STG depicted in Fig. 15. All
places in this STG are implicit, thus only place names are shown. Every place
in each state machine is annotated with its corresponding cover cube. Going
back to Fig. 19 we can analyze cube C,, = 10-0-. MR(pg) is entered after
firing dsr+ thus the positive value for this signal. Neither dtack nor d fire
inside MR(pg) thus their value remains constant. The correct value to assign
is 0 since pg is interleaved between a negative and a positive transition for
both signals. Finally, both 1dtack and 1ds fire inside MR(pg) thus their value
is undefined.
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|Marking|Binary code| Cover |
MR(pi) | MR(p:) | ev(pi)

ER(.Z‘Z*) ER(.Z'Z*) CVER(.Z‘i*)
QR(wix)| QR(wix) |cvqr(zix)

Table 1. Main objects used during structural synthesis.
7.2 State coding verification

The USC property requires that no pair of different markings share the same
binary encoding. Checking this definition requires the generation of the un-
derlying SG of the STG and all pairwise intersection of states checked to be
empty.

Chu introduced the first formal definition of the USC property at the STG-
level in [5]. Each pair of markings violating the USC condition is related to the
existence of a feasible sequence of transitions containing the same number of
rising and falling transitions for all signals (called a complementary sequence
of transitions).

Detection of Coding Conflicts The objective of this section is to pro-
vide an efficient algorithm to check USC. The methodology is based on the
approximate analysis of the underlying SG and a set of SM of the STG. The
combination of both elements allows the efficient detection of the complemen-
tary feasible sequences related to USC conflicts. Further details and proofs
can be found in [19].

In addition to marked regions, the structure of the STG is applied by
using a set of SM that completely covers the places in the STG. Such set is
called an SM-cover, and any place in the STG should be included in at least
one component of the cover.

Given the MR for all places and a SM-cover SMC, the following theorem
provides sufficient conditions to detect USC conflicts.

Theorem 9 (Sufficient conditions for USC). Given a SM-cover SMC, a
STG with underlying FCLSPN satisfies the USC property if

V SM € SMC,Vp;, p; covered by SM, i # j = MR(p;) - MR(p;) = 0.

Theorem 9 cannot be considered a necessary conditions due to the ex-
istence of state machines that contain more than one token. Assume the
existence of one SM with two places p1 and py that contain a token in
the same marking M. Then M € MR(p1), M € MR(p2), and therefore
I\//I\R(pl_) . I\//I\R(pz) # 0. Tf it can be guaranteed that all SM in the SM-cover
satisfy the one-token-per-SM restriction, then Theorem 9 is also a necessary
condition.
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Theorem 9 can be relaxed to obtain a conservative rule to check USC
violations by using cover cubes. Intersections between marked regions MR(p; )-
m(pj) # 0 can be detected as intersections between cover cubes, i.e. C,, -
Cp;, # 0. However, due to the conservative nature of the approximation,
all non-empty intersections between cover cubes (Cp, - Cp; # 0) must be
considered as a potential USC violation.

Figure 18 shows the state machines for the STG depicted in Fig. 15 anno-
tated with its coding conflicts detected following Theorem 9. SM1 contains
two coding conflicts, one between pg and p; and a second between pg and ps.
SM2 contains one coding conflict between py and pg. Conservatively we have
to assume that the STG does not satisfy the USC property.

7.3 Refinement of the SG approximations

Many cube intersections detected by Theorem 9 could be fake due to the
lossy approximation provided by cover cubes. Fake coding conflicts degrade
the quality of the results obtained by the methodology. An STG satisfying the
USC property may have to be encoded due to the existence of fake conflicts,
and the number of state signals inserted in a STG not satisfying the USC
property may be increased due to the additional conflicts to be solved.

Figure 19 shows a case of fake coding conflict. The states included in
the marked regions MR(p1), MR(p3), and MR(pg) are shadowed. The states
covered by the cover cube Cp, are grouped in the dotted region. C,, clearly
overestimates MR(pg) because it also includes MR(p; ), even though m(pl) .
I\//I\R(pg_) = 0. On the other side, Cp, also includes MR(p), but this is a real
conflict because m(p2) -m(pg) + 0.

Fake conflicts can be detected and eliminated if the information provided
by the SM-cover is correlated. Even though the process will remain conser-
vative, experimental results demonstrate that most fake coding conflicts can
be eliminated with little effort.

Fake conflict elimination relies on the observation that the information in
a SM is complemented by the rest of elements in the SM-cover. A place may
be covered by several SMs, containing coding conflicts in all or in none of
them. In that case the information provided by the SM-cover is congruent.
However, if a place has no coding conflicts in one state machine SM; but has
conflicts in a second state machine SM;, we can infer from SM; that the cover
cubes in SM; are overestimated.

Theorem 10 (Relaxed sufficient conditions for USC). Given a SM-
cover SMC, a STG with underlying FCLSPN satisfies the USC property if

Vp; € P:
ASM e SMC A pi € SM: [Vp; € SM, i #j = MR(p;)- MR(p;) = 0] .
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This result can be exported to the particular case in which the binary
codes in the marked regions are approximated by cover cubes. Note that the
empty intersection between pairs of places Cp, - Cp;, = 0 is only a sufficient
condition to determine that no coding conflict exists.

From the previous theorem we can deduce that places without coding
conflicts in one SM can be used to eliminate fake conflicts in some other
SM. The fake conflict elimination can be applied in a single step by applying
Theorem 10, thus eliminating the coding conflicts for a place p; in all state
machines that cover that place if a SM covering p; exists such that the cover
cube of no other place in SM interests with Cp,.

This restricted view of the conflict elimination technique can be extended
by iteratively applying Theorem 10. It can be considered that for a given
pair of places MR(p;) - MR(p;) = @ (even though Cp, - C,; # 0) if we have
previously eliminated all the coding conflicts for place p; or p;.

The analysis of the coding conflicts in Fig. 18 shows that the coding
conflict between places p1 and pg at SM; is a fake conflict. Note that p; has
a conflict at SMy but has no conflicts at SMy, therefore the cover cube for pg
is overestimating MR(pg).

Given that a single cube approach is clearly insufficient we introduce a
new approximation function for places, named cover function cv(p). Initially,
cover functions will take the same value than cover cubes, i.e. cv(p) = C,.
However, the value of the cover function can be iteratively refined every time
a fake conflict is eliminated.

Formally, the refinement of the cover function cv(p) by a SM is an algo-
rithm that builds a new cover as a result of restricting cv(p) to the sum of
the cover functions of any place p; € SM that is concurrent to p; that is:

cv(p) « Z cv(p;) -ev(p) -

pi€SM: (p,pi)eCcR

Place pg can be refined by using the information provided by SM,. Places
P9, pio and pqq are concurrent to ps, so cv(pg) should be refined as

cv(ps)  cv(ps) - [cv(pe) +cv(pio) + cv(p11)] = 10-00 + 1010- .

Therefore cv(pg) no longer includes MR(p;) and the fake conflict is no longer
present.

Property 2 guarantees that the refinement procedure is safe; that is, no
marking in the marked region of a place can be left uncovered after applying
a refinement because all reachable markings are covered by some cv(p) in the
SM used for refinement.

7.4 Structural approximations for signal regions

The structural generation of Boolean equations for Sl circuits that satisfy the
synthesis conditions described in Section 6 requires conservative approxima-

tions of the signal regions ER(z;+) and QR(z;+).
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Fig. 19. Real and fake USC coding conflicts.

We define cver (2;+) to be a cover function for the binary codes in El\?(af:”),
and cvqr(zi*) a cover function for the binary codes in C)\R(:L’z*) This section
will show how to build both cver(i+) and cvqr(z;+) by using the cover func-
tions of individual places previously introduced in Section 7.1.

An ezcitation region ER(z;%) corresponds to the set of markings in which
transition z;+ is enabled. ER(z;+) is easily expressed as the intersection of
marked regions for input places of z;x:

FR(zi)= ()| MR(p) .

pE (wix)

Let EPS(z;+) be the set of predecessor places of z;+, hence the binary codes
in ER(z;+) are covered by a function cvgr(z;*) created as the intersection of
the cover functions of places in EPS(z;+):

cVer(zi+) = ﬂ ev(p) .

pEEPS(.'I}l*)

A marking is in the quiescent region QR(z;+) if it can be reached by firing
a feasible sequence o1 2;+ o3 such that no successor transition z;+ € next(z;+)
is enabled in any prefix of o3. In the previous sections we have shown that
feasible sequences can be associated to simple paths in the PNHence we can
informally state that the cover functions of all places interleaved between
adjacent transitions z;x and z;+ € next(zi+) (see Property 1) can be used to
build cvqr(zi*).

Hence, the domain of places required to approximate QR(z;*) should in-
clude all places interleaved between ;+ and some transition z;+ € next(x;+).
This domain is denoted QPS(z;+), i.e.

QPS(I‘Z*) = {p | HI‘J’* € nemt(mi*) 1pE IR(ZZ'*, l‘j*) Ap ¢ .l‘j*} .
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The binary codes in C)T?(a:z*) are covered by a function cvqr(z;+) created as
the union of the cover functions of places in QPS(x;+):

cvqr(ix) = U cv(p) .

PEQPS(zix)

As an example we will build the cvgr and cvqr (see Fig. 20) approxi-
mations for signal dtack in Fig. 15. ER(dtack+) and cvgr(dtack-) is build
as cvgr(dtack+) = cv(ps) = 10111 , and cvgr(dtack-) = cv(ps) = 01-0- .
The covers cvqr(dtack+) and cvqr(dtack-) are approximated by the sets of
places QPS(dtack+) = {p4,ps} , and QPS(dtack-) = {pr, ps, p1,p2} -

The resulting covers are: cvqr(dtack+) = cv(ps) + cv(ps) = -1111 , and
cvqr(dtack=) = cv(pr) +cv(ps) +cv(p1) +cv(p2) = 00-0-+4 10-00+ 1010-+
10-01 .

Starting from this region approximations logic minimization can be ap-
plied in order to derive the final logic equations that implement signal dtack
(see Section 6). The on-set of the signal is build as:

ON(dtack) = cvgr(dtack+) Ucvqr(dtack+) = 1-111 4+ -1111
and the off-set as:
OFF(dtack) = cvgr(dtack-) Ucvqr(dtack-) = 0--0-+ 10-00 + 1010- 4 10-01

In case we choose to implement the on-set of the function we will obtain a
circuit equivalent to the following logic equation:

dtackt = (dsr + dtack) - 1dtack-d - 1ds .

8 State encoding

One of the conditions for the SI implementation of an specification is to
have a correct encoding (see Section 6). This section presents a technique
for transforming an specification in order to force a correct encoding. The
method presented guarantees a solution for the encoding problem and tackles
the problem in linear complexity for the class of FCLSPNs. The technique is
based on the insertion of a signal for each place of the STG, mimicking the
token flow on that place.

8.1 A structural encoding transformation

The method presented has been inspired on previous work for the direct syn-
thesis of circuits from Petri nets. One of the relevant techniques was proposed
in [23], where a set of cells that mimic the token flow of the Petri net was
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Fig. 20. Regions for output signal dtack.

Fig. 21. Distributor built from David cells [11].

abutted for producing a circuit structure isomorphic to the original net. This
type of cells, called David cells, were initially proposed in [8].

Figure 21 depicts a very simple example on how these cells can be abutted
to build a distributor that controls the propagation of activities along a ring.
The behavior of one of the cells in the distributor can be summarized by the
following sequence of events:

- Ci—1— - ai+ = a- —
i-th cell i-th cell setting
excitation
= disi+ = ai-1— = ¢t = ci — -
~ ———
(i — 1)-th cell resetting (i + 1)-th cell
excitation

In [23], each cell was used to represent the behavior of one of the tran-
sitions of the Petri net. The approach presented in this paper is based on
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1. Create the silent transitions €; and ¢e».

2. For each place p € °t, create a new transition

with label sp— and insert new arcs and places
for creating a simple path from &, to g2, passing
through sp—.

3. For each place p € t*, substitute the arc (¢, p) by
the arc (£2,p), create a new transition labeled as
sp+ and insert new arcs and places for creating a
simple path from ¢ to 1, passing through sp+.

Fig. 22. Transformation rule for each transition ¢t € T

encoding the system by inserting a new signal for each place with a behavior
similar to a David cell.

Let S = ((P,T, F, Mp), X, A) be an STG with underlying FCLSPN. The
Structural Encoding of S derives the STG Enc(S) in which a new internal
signal sp has been created for each place p € P, and the transformation rule
described in Figure 22 has been applied to each transition £ € T. The new
transtions appearing in Enc(S), labelled with spx, will be called E-transitions
along the paper.

Proposition 5 ([4]). Enc(S) is FCLSPN. It is consistent and observational
equivalent to S, and has the USC property.

Proposition 5 guarantees the fulfillment of the main properties needed in
the synthesis framework presented in Section 7.

8.2 I/O-preserving structural encoding transformation

The previous section presents a method for transforming a specification by
the insertion of internal signals. In order to reason about the correctness of
the method, i.e. whether the transformed specification can safely interact in
its assumed environment, we can check if the transformed specification and
the environment (the mirror of the initial specification) are I/O compatible.
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Q _(-

Fig. 23. Transformation rule for non-input signals to preserve the 1/O interface.

This is analog to checking whether the transformed specification realizes the
initial specification (see Definition 13).

However, the encoding technique presented in the previous section does
not guarantee to preserve the I/O preserving realization with respect to the
initial STG, because condition 2(a) of the I/O preserving realization can be
violated in the interaction between S and Ene(S). In this section we present
a refinement of the encoding technique presented in Section 8.1, deriving a
new encoding method closed under the I/O preserving realization. The re-
finement presented below is only valid for the I0-STG class. In that class,
the transformation rule shown in Figure 23 can be applied to any transi-
tion of a non-input signal. For input transitions, the previous transformation
presented in Figure 22 is applied. This refined encoding technique is called
IO0-Enc(S).

Note that the two transformations (Enc(S) and IO-Enc(S)) only differ
on the location of the E-transitions. For non-input signals, the E-transitions
precede the transformed transition.

The proofs for preserving free-choiceness, liveness, safeness, consistency,
observational equivalence and ensuring USC are similar to those presented in
the previous section when applied to the class of IO-STGs [4]. It is important
to note that this new technique is closed under the I/O preserving realization:

Proposition 6. Let S be an 10-STG with underlying FCLSPN and SG(S)
input-proper. Then S = I0-Enc(S).

Proof. The encoding preserves both the input-properness and the observa-
tional equivalence. Theorem 5 guarantees the I/O preserving realization be-

tween S and 10-Enc(S)

Moreover, the I0-Enc technique ensures to fulfill the speed-independent
conditions for implementability.

Proposition 7 ([4]). Let S be a consistent and output-persistent 10-STG
with underlying FCLSPN. Then 10-Enc(S) fulfills the speed-independent con-

ditions.
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X+

z+

P33 y+ y=
X—
p7
p p
22

Fig. 24. Structural encoding (x is input and y and z are outputs).

Figure 24 depicts an example of the I/O preserving structural encoding.

9 Framework for automatic synthesis. Example

Some of the structural techniques presented in previous sections can be com-
bined to derive a structural framework for the synthesis of asynchronous
circuits. The main properties of the framework presented below are:

1. Tt always guarantees to find a solution.

2. Only polynomial algorithms are involved.

3. The quality of the solutions obtained is comparable to the methods that
require an explicit enumeration of the state space.

9.1 Design flow

This section presents an automatic methodology that starts from an 10-STG
specifying the control part of a circuit and ends up with a set of Boolean
equations both implementing the specification and fulfilling the Sl conditions.
The core of the framework is the idea of Petri net transformation: in the initial
step, we apply the encoding transformation of Section 8.2 which ensures to
have a correct encoding and preserves the 1/O preserving realization with
respect to the specification. Then, Petri net transformations (those from the
kit presented in Section 4.1) are applied iteratively in order to improve the
quality of the solution. Figure 25 presents the framework.

A natural strategy that can be mapped in the framework of Figure 25 is
to try to eliminate the maximum number of signals inserted in the encod-
ing step while preserving a correct encoding. Once no more signals can be
deleted, start to apply iteratively any transformation from the kit until an
admissible solution is obtained. In this way, an exploration of the solution
space is performed iteratively, by modifying locally causal dependencies and
concurrency relations between the events of the system.
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Fig. 25. Framework for the structural synthesis of asynchronous circuits.

9.2 An example

Let us present an example of application of the framework presented in the
previous section. The example corresponds to a specification of an analog-
to-digital fast converter with three input signals (Da, La and Za) and three
output signals (Dr, Lr and Zr). The specification is shown in Figure 26(a).
This 10-STG does not have a correct encoding. Figure 26(d) shows the 10-STG
obtained after applying the structural encoding rules. The new internal sig-
nals sg...s14 correspond to the 15 places in the initial specification.

From the 10-STG in Figure 26(d), a sequence of eliminations of internal
signals have been applied, always preserving a correct encoding. The resulting
I0-STG and the corresponding circuit are shown in Figure 27(a), where only
five extra signals remain. A typical way of measuring the quality of the circuit
is to estimate the area needed for its implementation; a good heuristic is the
number of literals in the Boolean equations. In the case of the 10-STG in
Figure 27(a), this number is 35.

Figure 27(b) reports one of the intermediate solutions (31 literals) ex-
plored after obtaining the solution in Figure 27(a). The transformations of
increase and reduction of concurrency have also been applied in the explo-
ration: note in Figures 27(a)-(b) the position of transition sg— with respect
to transitions Lr+ and La+. Figures 26(b) and 26(c) depict the final I0-STG,
the Boolean equations and the circuit after applying the transformations and
doing logic synthesis. This solution, which has been obtained mechanically,
is identical to the one generated by the CAD tool petrify [6].

9.3 Experimental results

The synthesis strategy described above has been applied to a set of bench-
marks. Initially, none of the specifications had the CSC property. The results
are reported in Table 2.
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Dr = s7 (Da+ 3g)

Lr = Dase Za

Zr = 3Sg

s¢ = (Da+737)(Za+ se)
s7 = La + Da sy

LN
Pl eDplaDees
L |

Fig. 26. Case study: adfast

The columns labeled with “petrify” indicate the characteristics of the cir-
cuit obtained by the tool petrify. The number of inserted signals to solve CSC
conflicts and the number of literals of the Boolean equations are reported.

The columns labeled with “struct. encoding” report the characteristics
of the circuit after having applied first the encoding technique and then the
elimination of internal signals. It is interesting to observe that the number
of signals required to solve encoding conflicts when using the “local” encod-
ing provided by the places is significantly larger than the number of signals
required when “global” encoding methods are used.

The results of the final circuit, after having explored the design space
with the set of transformations, are reported in the columns labeled “str.
enc. + optim.”. It can be observed that the quality of the solution can be
highly improved by playing with the concurrency of the internal signals. In
many cases, the obtained result is the same as the one generated by petrify.
In other cases, the results are similar but with more internal signals than the
ones inserted by petrify (e.g. master-read2, duplicator). This corroborates a
known fact that states that the reduction of internal signals does not always
implies an improvement on the quality of the circuit.

10 Conclusions

Asynchronous circuits are just a subclass of reactive systems in which the
state is represented by a vector of Boolean variables. However, the underlying
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Fig. 27. Intermediate solutions in the design space.
petrify struct. encoding||str. enc. + optim.

benchmark |states|[#CSC [1it.[#Csc| nt. [[#csc| it
adfast 44 2 14 5 35 2 14
vme-fc-read| 14 1 8 2 14 1 8
nak-pa 56 1 18 3 35 1 18
m-readl 1882 1 38 2 43 1 40
m-read2 8932 8 68 13 95 10 70
duplicator | 20 2 18 5 36 3 18
mmu 174 3 29 7 53 3 34
seq8 36 4 47 22 147 4 47

Table 2. Experimental results.

theory to synthesize asynchronous circuits can be extended to other classes
of systems.

This work has defined 1/O compatibility as a key concept to characterize
the correct interaction between system and environment. The rationale be-
hind this concept is the following: one can always decide when an output or
internal action must be performed as long as this does not break the correct
interaction with the environment. This freedom to choose “when”, opens a
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design space that can be explored to obtain the most appropriate realization
for a behavior.

Typically, synthesis must consider a trade-off between complexity and
performance. By sequentializing concurrent behaviors, one can derive sys-
tems with less complexity, at the expense of reducing the performance. By
allowing more concurrent behaviors, the system’s cost may increase, but pos-
sibly providing more performance. It is mainly the degree of concurrency
what opens the space of solutions and drives the strategies to explore it.
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A Proofs of Sections 3 and 4

Proof. (of Lemma 1) If (s, s') € S, then there is a trace o that leads from s;,,
to (s, s'). We prove the lemma by induction on the length of o.

e Case |o| = 0. The initial states are related in Condition 1 of Definition 12.
e Case |o| > 0. Let o = o'e, with |¢'| = n, and assume that it holds for
any trace up to length n. Let {s1,s}) be the state where the event e is
enabled. The induction hypothesis ensures that s; is I/O compatible to
s1. Two situations can happen in s; depending on the last event e of o
either 1) e € Xp U Xrnr is enabled in sq, or 2) only input events are
enabled in sq. In situation 1), Conditions 2-3 of Definition 12 guarantee
that s is I/O compatible to s’. In situation 2), applying Condition 4 of
Definition 12 ensure that some non-input event is enabled in state s} of
B. Definition 2 and Conditions 2-3 on s} and the enabled non-input event
e guarantees s to be 1/O compatible to s'. a

Proof. (of Theorem 1) It immediately follows from Lemma 1 and the condi-
tion of receptiveness in the definition of /O compatibility. O

Proof. (of Theorem 2) The definition of synchronous product implies that
only livelocks appear in A x B if either A or B has a livelock. But A and B
are livelock-free because A = B. |

Proof. (of Theorem 3) By Lemma 1 we have that sRs’. We also have that
{e|En(s,e)} C Xf. By Condition 4 of Definition 12 we know that {e | En(s},¢)} ¢
YB . Theorem 2 guarantees the livelock-freeness of A x B, and therefore from
(s, s’) there exists a trace of internal events reaching a state (s, s’) where no
internal event is enabled. We know by Lemma 1 that sRs”. Condition 4 of
Definition 12, together with the fact that no internal event is enabled in s”
implies that there exists an output event enabled in s, which is enabled as
input in s. a

Proof. (of Theorem 4) Let R be the relation induced by the observational
equivalence between A and B. We will prove that R is also an /O compat-
ibility relation between A and B. R must fulfill the conditions of the 1/O
compatibility relation:

e Condition 1: s} Rs? by Definition 10.

e Condition 2(a): let sy Rs}, and assume s; — sy, with e € ¥A. Fig-
ure 28(a) depicts the situation. The observational equivalence of s; and
s} implies that a trace o of internal events exists in s} enabling e. The
event e is an input event in B, and therefore the input-properness of B
ensures that in every state s’ of o, En(s’,€) holds. In particular, it also
holds in the first state and, thus, En(s/,e). The definition of R ensures
that every sy such that si < s} is related with sy by R.
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Fig. 28. Conditions 2(a) and 4(a) from the proof of Theorem 4.
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Fig. 29. Conditions 2(a) and 2(b) from the proof of Theorem 5.

e Condition 3(a): let s;Rs| and assume s; — sz, with e € Zfyp. The
definition of R implies that sy Rs].

e Condition 4(a): let s;Rs}, and suppose {e|En(si,e)} C X7'. Fig-
ure 28(b) depicts the situation. Let e be one of the input events enabled
in s;. The observational equivalence between s; and s| requires that a
sequence o of internal events exists enabling e starting in s}, and given
that e in not input in B implies {e |En(s},¢)} ¢ ¥

An identical reasoning can be applied in the symmetric cases (conditions

2(b), 3(b) and 4(b)). O
Proof. (of Theorem 5) Let R’ be the relation between A and B, and ~ the

observational equivalent relation between states from B and C'. Define the
relation R as:

vse S s" e 5P, s e 8¢ sR R's"ANs" =5 & (s,s')eR

The conditions that R must satisfy are the ones of Deﬁnition 12. Remem-
ber that A = B implies that ¥5 = ¥& and ¥ = ¥4. Moreover, relation
B~ C implies that X5, = EOBS

e Condition 1: the initial states are related in R by definition.
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e Condition 2(a): let s;Rs, and suppose sq 5 sy with e € Zg. Fig-
ure 29(a) depicts the situation. Given that s1 R'sY, e is enabled in s{ and
for each s such that si < s4, soR'sY. The observational equivalence of
s{ and s}, together with the fact that C' is input-proper implies that e is
also enabled in s{ (identical reasoning of condition 2(a) in Theorem 4),
and the definition of ~s implies that each s} such that s} = s, must be
related in & with s§. Then each s such that s < s is related by R
with s,.

e Condition 2(b): let s;Rs}, and suppose si — s5 with e € X5. Fig-
ure 29(b) depicts the situation. The observational equivalence of s} and
s} implies that there is a sequence o of internal events starting in s¥
and enabling e, and every state of o is observational equivalent to s}.
Moreover, every state of o is also related to s; by the condition 3(b) of
R'. In particular, s; is related by R’ with the state s” of o s.t. 5" = s4;
applying Condition 2(b) of R’, En(sy, €) holds and for each e s.t. s; = sa,
soR'sY. The definition of R and & induces that each such sy is related
with sj by R.

e Condition 3(a): let s; Rs}, and suppose s; — sy with e € X\.,.. Then
Condition 3(a) of R’ ensures s;R’'s{ and then applying the definition of
R implies sy Rs.

e Condition 3(b): let 51 Rs), and suppose s} = s5 with e € X\ ... Then
s{ a2 sh, and then s1 Rs).

e Condition 4(a): let 51 Rs’, and suppose {e|En(s1,¢)} C X7. Condition
4(a) of R’ ensures that {e|En(s{,e)} ¢ XP: let a be an event such that
s{ 5 s, with a ¢ XP. If a € U5, the related pair s{ ~ s/ ensures that
in s} there is a feasible sequence of internal events (which can be empty)
enabling a, and therefore {e|En(s},¢)} ¢ Xf. If a € YPy,, applying
Condition 3(b) of R’ and the definition of =, s;R'sy and s ~ s is
obtained, respectively. The same reasoning applied to sq, s} and s| can
now be applied to s, s4 and s}. Given that B is livelock-free, the sequence
of internal events starting in s{ and passing through s§ must end in a
state s” where a observable event a’ is enabled. State s is also related by
R' with s, and by ~ with s} (applying inductively the same reasoning
applied to s4). Event a’ belongs to X5 because otherwise a violation of
Condition 2(b) in R’ arise. The previous case (a € X5, enabled in s{)
can be applied to s'.

e Condition 4(b): let s1 Rs), and suppose {e|En(s},e)} C X¢. Let a such
that sf = s4.If a € £B | then a contradiction arise because s} ~ s} and
{e|En(s},e)} C XC. If a € X¥B then identical conditions make En(s},a)
to hold. Ifa € EIBNT’ then Conditions 3(a) of R’ and s ensure that s1 R's}
and s§ & 57, and the same reasoning of s1, s| and s/ can be applied to sq,
s1 and s4 (but not infinite times, because B is livelock-free). Therefore
a feasible sequence of internal events (which can be empty) exist from
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Fig. 30. Conditions 2(a) from the proof of Theorem 6.

s reaching a state s such that {e|En(s",e)} C ¥¢, with s;R's"" and
s a s{. Condition 4(b) of R’ ensures that {€|En(s1,€)} ¢ X7 O

Proof. (of Theorem 6) (Case {e1,es} = {01,005} C X5. The other cases are
similar).
Let R’ be the relation between A and B. Define R as:

Vse 845" € SP,s' € 8 : sR's" AsP 5 5" Asi, 5 s' & sRs'

e Condition 1: taking ¢ = X implies s} Rs$ .

e Condition 2(a): let 51 Rs’, and suppose s; — s, with e € 4. Figure 30

depicts the situation. Condition 2(a) of R’ ensures that there exists s} €
SB s.t. st 5 s and sy R'sY. By definition of R, o is enabled both in s?,
and s$ . Then, each place marked by the sequence o in B is also marked
in C, because the flow relation of B is included in the flow relation of
C'. Given that the initial marking of B is preserved in C and the set of
predecessor places for each input event is also preserved, implies that e
is also enabled in s{. The definition of R makes each s} s.t. s| = s} to
be related with ss.

Condition 2(b): let s1 Rs, and suppose s; — s with e € X§. The set
of predecessor places of e in B is a subset or is equal to the one in C.
Moreover, given that both the initial marking of B is identical to the one
in C, and each place marked by the sequence ¢ in B is also marked in
C, implies that e is also enabled in s, i.e. s{ 5 sy. Condition 2(b) of
R’ ensures that En(sq,e), and each s; such that s; 5 sy is related by R/
with s4. The definition of R induces that each such s; is related with sb.
Condition 3(a): let s; Rs), and suppose s; — sy with e € X7\, then
a similar reasoning of Condition 2(a) can be applied.

Condition 3(b): let s; Rs}, and suppose s = s, with e € Xy, then
a similar reasoning of Condition 2(b) can be applied.
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e Condition 4(a): let s1 Rs, and suppose {e|En(s1,e)} C ¥4. Condition
4(b) of R’ ensures that {e|En(s{,e)} ¢ XP. If the non-input event en-
abled in sf is different from oy, then similar reasoning of previous cases
guarantees that the event is also enabled in s}. If the event enabled in s/
is 05 and no non-input event is enabled in s/, we will proof that oy is also
enabled in s{. Assume the contrary: o, is enabled in s but no non-input
event is enabled in s}. Applying the same reasoning of case 2(a) we can
conclude that the place p such that {p} = ®05 in B has a token in the
marking M corresponding to state 7. Moreover, the liveness of C ensures
that from M there is a feasible sequence ¢ (let § be minimal) reaching a
marking M’ where 01 is enabled. The minimality of J, together with the
fact that the new place p’ added by ¢, between 01 and 05 is unmarked in
M (otherwise o3 is enabled in s, because {p,p'} = *02 in C) imply that
02 ¢ ¢, and therefore M'(p) = 2, which contradicts the safeness of C.

e Condition 4(b): let 51 Rs, and suppose {¢|En(s],e)} C K¢, then sim-
ilar reasons of the previous cases ensure that {e|En(s},e)} C XP and
Condition 4(b) of R’ ensures that {e|En(sy,e)} ¢ TA.

Finally, it can be proven that the language of RTS(C) is a subset of the
language of RTS(B). Therefore, no infinite trace of internal events can exist
in C' implying that C is livelock-free. O

Proof. (of Theorem 7) Conditions 1-4 of transformation ¢; ensure to preserve
both the observational equivalence and the input-properness of B. Theorem 5
induces A = C. O

Proof. (of Theorem 8) If the observational languages of two deterministic
systems coincide, then they are observational equivalent [16]. It can be proven
that the observational language of C' is the same to the one of B. Moreover,
C' is also input proper and therefore, applying the determinism of B and
Theorem 5 implies A = C. |



