
Waveform Transition Graphs: A designer-friendly

formalism for asynchronous behaviours

Jordi Cortadella∗, Alberto Moreno∗, Danil Sokolov†, Alex Yakovlev†, David Lloyd‡
∗Universitat Politècnica de Catalunya, Spain; †Newcastle University, UK; ‡Dialog Semiconductor, UK

I. INTRODUCTION

The paper proposes a new formal model for describing asyn-

chronous behaviours involving the interplay of causality, concurrency

and choice. The model is called Waveform Transition Graphs. Its

main aim is simplifying the learning process for industrial engineers

in accessing powerful synthesis tools provided for Signal Transition

Graphs by sacrificing some of the expressive power of the latter. This

formalism is developed based on feedback from engineers of Dialog

Semiconductor.

Asynchronous design is now seen as a promising solution in new

application areas such as analogue and mixed-signal (AMS) systems.

It offers extra value to such systems, going beyond the traditional

scope of pure digital domain, namely better power conversion effi-

ciency, lower output ripple, faster response time to analogue events,

reduced inductor size and so on [1]. Furthermore, asynchronous

design, if supported by user-friendly tools, is an attractive option

for engineers who accept the nature of ‘continuous time’ inherent in

asynchronous designs. While the success in applying asynchronous

logic to AMS systems demonstrates the win-win situation for asyn-

chronous methodology, the main challenge is currently in making the

entry path for the electronic designers easier. Indeed, the availability

of the Signal Transition Graph (STG) model and powerful modelling

and synthesis tools such as PETRIFY [2] and WORKCRAFT [3]

facilitates design automation for asynchronous controllers. However,

the main stumbling block is concerned with the complexity of

handling concurrency and choice inherent in STGs, whose underlying

model is Petri nets. Most of the electronic designers are not familiar

with Petri nets and the key aspects of modelling concurrency and

choice in them, viz. places, transitions, tokens, conflicts, persistency

etc. Those are typically better understood by computer scientists.

We formulate the following requirements for a new behavioural

model of circuits for easier adoption by practical engineers:

• Powerful expressiveness (maybe a little bit less than the STGs).

• Efficient (use logic synthesis, not syntax-directed translation).

• Reuse of the existing infrastructure for STGs.

• Simple strategies for synthesis and verification (with delays).

Addressing the expressiveness, which is the main focus of this

paper, we would like to separate the two major modelling aspects:

1) Order of events, i.e. the causality and concurrency relations.

2) Choice between different modes of operation, such as for

example read and write modes in interface specifications.

We thus forbid concurrency to take place during the states in which

we have choice and merge between different modes.

Regarding aspect (1), the use of signal transition labels and causal

dependencies between them in STGs is a good stepping stone. This

feature has strong notational connections with signal waveforms,

or timing diagrams, the language that practical designers usually

feel very comfortable with. Those naturally capture causality and

concurrency and, informally, correspond to the subset of STGs called

Marked Graphs.

Regarding aspect (2), the use of places for choice and merge is

another stepping stone for us. It has a strong link with the notion of

states in finite state machines, which are also familiar to electronic

designers, both digital and analog. In this work we are proposing to

build on these links and come up with a new model of Waveform
Transition Graphs (WTGs).

Examples of related work include the following. With respect

to aspect (1), perhaps the most notable was the Waves model and

synthesis method of [4]. The model lacked a path towards generating

a complete synthesizable model of the control circuit behaviour. It

was targeted at synchronous implementation through the syntax-direct

synthesis process, implemented in the JANUS tool, and hence lacked

efficiency compared to what is now possible for STGs. With respect

to aspect (2), the main reference point would be Burst Mode and

eXtended Burst Mode (XBM) automata, supported by the synthesis

tools MINIMALIST and 3D [5]. The limitation of those for our

purposes is in the restricted forms in which causality and concurrency

was captured in the transitions between states.

II. INTRODUCING WTGS BY MEANS OF AN EXAMPLE

For those familiar with the specification of asynchronous con-

trollers, WTGs can be informally described as a subclass of STGs in

which concurrency and choice are mutually exclusive. From another

point of view, WTGs can also be seen as XBMs [5] in which each

arc represents a WaveForm (WF) (instead of an input/output burst),

where a WF is a set of signal events ordered by causality relations.

Fig. 1a depicts an example of WTG describing the behaviour of a

buck controller [1]. The WTG has two states (s0 and s1) and three

WFs (the three boxes in the diagram). The states in WFs are called

nodal states, representing the fact that all the events enabled in the

state were not enabled in the predecessor states.

Each WF represents a partial behaviour of the system between

two states (entry and exit). The sequencing of WFs is determined

by the arcs connecting states and WFs. State s0 represents a choice
between two partial behaviours. The selection is done by the first

entry transitions of each WF. After all the events of a WF have

occurred, the exit state of the WF is activated.

Note that WTGs are more expressive than XBMs since they allow

input/output concurrency. However, they are less expressive than

STGs since no event can be concurrent during a choice.

WTGs also allow the specification of unknown behaviour, e.g., it

is possible to specify that the value of a signal is unstable between

two events. For example, in the WF named later_or_no_zc,
the value of signal zc is unstable between the events uv↑ and uv↓
(shown as a dashed line in the figure). WTGs can also specify stable

signals with unknown value and Boolean guards for the selection of

WFs during choices (the details are omitted in this paper).

Given that WTGs are a subclass of STGs, similar implementability

conditions apply for the synthesis of speed-independent circuits, i.e.,

consistency, persistence and complete state coding [2].

Given a WTG, an STG with equivalent behaviour can be derived

by using syntax-directed translation rules. For unstable signals the
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(a) WTG.

(b) Synthesised STG model.

Fig. 1: Specification of basic buck controller.

translation rules result in more intricate Petri nets structures in which

silent events and self-loop arcs are also present. Fig. 1b depicts the

STG obtained from the WTG in Fig. 1a where silent events have

been inserted to delimit the entry and exit transitions of the WFs.

The rightmost box of the figure contains the structure that handles

the instability of signal zc in one fragment of the behaviour.

The STG is simply an intermediate form that allows to use existing

flows for synthesis and verification. The tangled structures of the STG

are not required to be shown to the designer.

III. DESIGN EXAMPLES

Restrictions imposed by WTGs direct a designer to simpler and

cleaner specifications, thus reducing the number of errors and improv-

ing productivity. The formalism is still powerful enough to express

a wide range of behaviours using a handful of design strategies.

We next discuss a couple of examples that require the use of such

strategies to fit the WTG model.

Occasionally, the initial state may not be a nodal state and cannot

be used for defining cyclic behaviours with WTGs. For example,

consider a latch controller specified by the STG in Fig. 2a. Event lr+
is enabled in the initial state, but also enabled in some predecessor

state (before firing ra-). This can be modelled by a WTG with

a WF that separates the initialisation sequence (start) from the

steady behaviour (repeat), thus leading the system from the initial

state s0 to a nodal state s1, as shown in Fig.2b. Note that this

specification still cannot be expressed with XBM formalism.

(a) STG. (b) WTG.

Fig. 2: Specification of latch controller.

WTGs do not allow concurrency between conflicting scenarios,

which is a limiting factor when exit from one operation mode overlaps

with the selection of the next mode, as in VME bus controller

example, see Fig. 3a. One way around it is to reduce the concurrency

of the system, so there is no such undesired behaviour. In VME bus

controller this can be achieved by delaying dtack- output until

ldtack- input is received, as shown by the dotted arc. The WTG

specification of VME bus controller after concurrency reduction is

shown in Fig. 3b. When reducing concurrency, care should be taken

to preserve the protocol with the circuit environment and avoid

significant performance losses.

(a) STG. (b) WTG.

Fig. 3: Specification of VME bus controller.

IV. DESIGN FLOW

The WTG formalism has been implemented as an interpreted
graph model plugin for WORKCRAFT [3]. It provides a convenient

frontend for editing WTGs and relies on a backend tool WAVER to

convert a WTG specification into an equivalent STG. This enables

the reuse of the existing design flow for interactive simulation,

formal verification, logic synthesis, and technology mapping of

asynchronous controllers.

Note: The WTG-based design flow and its CAD tools will be

demonstrated at the conference venue.
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