
IRRS: Information Retrieval and
Recommender Systems

FIB, Master in Data Science

Slides by Marta Arias, José Luis Balcázar,
Ramon Ferrer-i-Cancho, Ricard Gavaldá

Department of Computer Science, UPC

Fall 2022
http://www.cs.upc.edu/~ir-miri

1 / 31

http://www.cs.upc.edu/~ir-miri

3. Implementation

Query answering

A bad algorithm:

input query q;
for every document d in database

check if d matches q;
if so, add its docid to list L;

output list L (perhaps sorted in some way);

Query processing time should be largely independent of
database size.
Probably proportional to answer size.

3 / 31

Central Data Structure
From terms to documents

A vocabulary or lexicon or dictionary, usually kept in main
memory, maintains all the indexed terms (set, map. . .); and,
besides. . .

The Inverted File
The crucial data structure for indexing.
I A data structure to support the operation:

I “given term t, get all the documents that contain it”.
I The inverted file must support this operation (and variants)

very efficiently.
I Built at preprocessing time, not at query time: can afford to

spend some time in its construction.

4 / 31

The inverted file: Variant 1

5 / 31

The inverted file: Variant 2

6 / 31

The inverted file: Variant 3

7 / 31

Postings
The inverted file is made of incidence/posting lists

We assign a document identifier, docid to each document.
The dictionary may fit in RAM for medium-size applications.

For each indexed term
a posting list: list of docid’s (plus maybe other info) where the
term appears.
I Wonderful if it fits in memory, but this is unlikely.
I Additionally: posting lists are

I almost always sorted by docid
I often compressed: minimize info to bring from disk!

8 / 31

Implementation of the Boolean Model, I
Simplest: Traverse posting lists

Conjunctive query: a AND b

I intersect the posting lists of a and b;
I if sorted: can do a merge-like intersection;
I time: order of the sum of the lengths of posting lists.

intersect(input lists L1, L2, output list L):
while (not L1.end() and not L2.end())

if (L1.current() < L2.current()) L1.advance();
else if (L1.current() > L2.current()) L2.advance();
else { L.append(L1.current());

L1.advance(); L2.advance(); }

9 / 31

Implementation of the Boolean Model, II
Simplest

I Similar merge-like union for OR.
I Time: again order of the sum of lengths of posting lists.

I Alternative: traverse one list and look up every docid in the
other via binary search.
I Time: length of shortest list times log of length of longest.

Example:
I |L1| = 1000, |L2| = 1000:

I sequential scan: 2000 comparisons,
I binary search: 1000 ∗ 10 = 10, 000 comparisons.

I |L1| = 100, |L2| = 10, 000:
I sequential scan: 10, 100 comparisons,
I binary search: 100 ∗ log(10, 000) = 1400 comparisons.

10 / 31

Implementation of the Boolean Model, III
Sublinear time intersection: Skip pointers

I We’ve merged 1. . . 19 and 3. . . 26.
I We are looking at 36 and 85.
I Since pointer(36)=62 < 85, we can jump to 84 in L1.

11 / 31

Implementation of the Boolean Model, IV
Sublinear time intersection: Skip pointers

I Forward pointer from some elements.
I Either jump to next segment, or search within next

segment (once).
I Optimal: in RAM,

√
|L| pointers of length

√
|L|.

I Difficult to do well, particularly if the lists are on disk.
12 / 31

Query Optimization and Cost Estimation, I

Queries can be evaluated according to different plans
E.g. a AND b AND c as
I (a AND b) AND c

I (b AND c) AND a

I (a AND c) AND b

E.g. (a AND b) OR (a AND c) also as
I a AND (b OR c)

The cost of an execution plan depends on the sizes of the lists
and the sizes of intermediate lists.

13 / 31

Query Optimization and Cost Estimation, II
Example

Query: (a AND b) OR (a AND c AND d).

Assume: |La| = 3000, |Lb| = 1000, |Lc| = 2500, |Ld| = 300.

I Three intersections plus one union, in the order given: up
to cost 13600.

I Instead, ((d AND c) AND a): reduces to up to cost 11400.
I Rewrite to a AND (b OR (c AND d)): reduces to up to cost

8400.

14 / 31

Implementation of the Vectorial Model, I
Problem statement

Fixed similarity measure sim(d, q):

Retrieve
documents di which have a similarity to the query q

I either
I above a threshold simmin, or
I the top r according to that similarity, or
I all documents,

I sorted by decreasing similarity to the query q.

Must react very fast (thus, careful to the interplay with disk!),
and with a reasonable memory expense.

15 / 31

Implementation of the Vectorial Model, II
Obvious nonsolution

Traverse all the documents, look at their terms in order to
compute similarity, filter according to simmin, and sort them. . .

. . . will not work.

16 / 31

Implementation of the Vectorial Model, III
Observations

Most documents include a small proportion of the available
terms.

Queries usually include a humanly small number of terms.

Only a very small proportion of the documents will be relevant.

A priori bound r on the size of the answer known.

Inverted file available!

17 / 31

Implementation of the Vectorial Model, IV
Idea

Invert the loops:

I Outer loop on the terms t that appear in the query.

I Inner loop on documents that contain term t.
I the reason for inverted index!

I Accumulate similarity for visited documents.

I Upon termination, normalize and sort.

Many additional subtleties can be incorporated.

18 / 31

Index compression, I
Why?

A large part of the query-answering time is spent

bringing posting lists from disks to RAM.

Need to minimize amount of bits to transfer.

Index compression schemes use:
I Docid’s sorted in increasing order.
I Frequencies usually very small numbers.
I Can do better than e.g. 32 bits for each.

19 / 31

Index compression, II
Why?

A large part of the query-answering time is spent bringing
posting lists from disks to RAM.
I Need to minimize amount of bits to transfer.

Easiest is to use “int type” to store docid’s and frequencies
I 8 bytes, 64 bits per pair
I ... but want/can/need to do much better!

Index compression schemes use:
I Docid’s sorted in increasing order.
I Frequencies usually very small numbers.

20 / 31

Index compression, III

Posting list is:

term→ [(id1, f1), (id2, f2), ..., (idk, fk)]

Can we compress frequencies fi?:
Yes! Will use unary self-delimiting codes because frequencies
typically very small

Can we compress docid’s idi?:
Yes! Will use Gap compression and Elias Gamma codes
because docid’s are sorted

21 / 31

Index compression, IV
Compressing frequencies

The distribution of frequencies is very biased towards small
numbers, i.e., most fi are very small
I Exercise: can you quantify this using Zipf’s law?
I E.g. in files for lab session 1: 68 % is 1, 13 % is 2, 6 % is 3,

<13 % is >3, <3 % is >10, 0.6 % is >20.

Unary code
Want encoding scheme that uses few bits for small frequencies

22 / 31

Index compression, V
Compressing frequencies: unary encoding

Unary encoding of x is
x times︷ ︸︸ ︷
111 ... 1

I E.g. unary(15) = 111111111111111

I |unary(x)| = x
I typical binary encoding: |binary(x)| = log2(x)

I variable length encoding

But..
want to encode lists of frequencies, where do we cut?

23 / 31

Index compression, VI
Compressing frequencies: self-delimiting unary encoding

I Make 0 act as a separator
I Replace last 1 in each number with a 0
I Example: [3, 2, 1, 4, 1, 5] encoded as 110 10 0 1110 0 11110

I This is a self-delimiting code: no prefix of a code is a code
I Self-delimiting implies unique decoding

24 / 31

Index compression, VII
Compressing frequencies: self-delimiting unary encoding

Recall example from lab session 1: 68 % is 1, 13 % is 2, 6 % is
3, <13 % is >3, <3 % is >10, 0.6 % is >20, the expected length
would be (approx)

1 ∗ 0.68 + 2 ∗ 0.13 + 3 ∗ 0.06 + 61 ∗ 0.13 = 1.91

Unary code works very well
I 1 bit when fi = 1

I 1.3 to 2.5 bits per fi on real corpuses
I 1 bit per term occurrence in document

I Easy to estimate memory used!

1I put it something greater than 3 as an approximation
25 / 31

Index compression, VIII
Compressing docid’s

Gap compression
Instead of compressing [(id1, f1), (id2, f2), ..., (idk, fk)]
Compress [(id1, f1), (id2 − id1, f2), ..., (idk − idk−1, fk)]

Example:
(1000, 1), (1021, 2), (1037, 1), (1056, 4), (1080, 1), (1095, 3)
compressed to:

(1000, 1), (21, 2), (16, 1), (19, 4), (24, 1), (15, 3)

26 / 31

Index compression, IX
Compressing docid’s

I Fewer bits if gaps are small
I E.g.: N = 106, |L| = 104, then average gap is 100

I So, could use 8 bits instead of 20 (or 32)

I .. but .. this is only on average! Large gaps do exist
I Will need a variable length, self-delimiting encoding scheme

I Gaps are not biased towards 1, so unary not a good idea
I Will use need a variable length, self-delimiting, binary

encoding scheme

27 / 31

Index compression, X
Compressing docid’s: Elias-Gamma code (self-delimiting binary code)

IDEA:
First say how long x is in binary, then send x

Pseudo-code for Elias-Gamma encoding:
I let w = binary(x)

I let y = |w|
I prepend y − 1 zeros to w, and return

Examples:
EG(1) = 1, EG(2) = 010, EG(3) = 011, EG(4) =
00100, EG(20) = 000010100

28 / 31

Index compression, XI
Compressing docid’s: Elias-Gamma code (self-delimiting binary code)

I Elias-Gamma code is self-delimiting
I Exercise: think how to decode uniquely

I Length of a code for x is about 2 log2(x)
I Exercise: why?

29 / 31

Index compression, XII
Compressing docid’s: easier alternative, variable byte codes

Easier alternative: byte-wise (8 bits) or nibble-wise (4 bits)
encoding that make use of first bit to say whether it is the last
byte or not (continuation bit).
I Encoding is also variable length, but much simpler
I Waste is not that much
I Better use of CPU by reading bytes instead of single bits
I First bit of byte is continuation bit, other 7 bits used to

encode in binary
I if 0, then last byte
I if 1, number continues

Example:
10101001 11100111 01100111 is code for
0101001 1100111 1100111 (continuation bits in red)

30 / 31

Index compression, XIII

Bottom line
I Ratios of 20 % to 25 % routinely achieved
I Translates to similar speed-up at query time

31 / 31

	3. Implementation

