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IDSS description             [Barbaros 2014]

Intelligent Decision Support System for 
Trauma Care

Decision supported: 

Survival of traumatic patient 

Partners:

 School of Electronic Engineering and Computer Science
(Queen Mery University of London, UK)

 Center for Trauma Science (Queen Mery University of London, UK)
 The Royal London Hospital UK 
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Building Bayesian Network
 Expert-based structure of BYN:

– Consensus structure of common reasoning types
– Causal coherence guaranteed
– Combine expert knowledge and data when required
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Bayessian network structure

 Expert-based Bayessian network structure

Domain knowledge is used to decide nodes and archs
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Building Bayesian Network
 Expert-based structure of BYN:

– Consensus structure of common reasoning types
– Causal coherence guaranteed
– Combine expert knowledge and data when required

 Identify latent variables and add to dataset
– Exclude variables out of the scope of the model

BIC is considered outside of the scope of the current BYN
because BIC effects coagulation by a mechanism different to ATC
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Building Bayesian Network
 Expert-based structure of BYN:

– Consensus structure of common reasoning types
– Causal coherence guaranteed
– Combine expert knowledge and data when required

 Identify latent variables and add to dataset
– Exclude variables out of the scope of the model
– Label latent variables in training set:

 from deterministic expert rules (mechanistic relationships, literature review...)
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Predicting Coagulopathy
Usign BYN or a Predictive model

Predictive model [Mitra 2014]: COAST score:
entrapment, temperature <35 °C, systolic blood pressure 
<100 mm Hg,  abdominal or pelvic content injury, chest 
decompression. 

Learning: 1680 major trauma patients,  151 with coagulopathy 
Pre-hospital variables independently associated with ATC: 
• were entrapment                                        (OR 1.85; 95% CI: 1.12–3.06)
• temperature                                                 (OR 0.60; 95% CI: 0.60–0.72) 
• systolic blood pressure (OR 0.99; 95% CI: 0.98–0.99)
• abdominal or pelvic content injury (OR 2.0; 95% CI: 1.27–3.12)
• pre-hospital chest decompression (OR 4.99; 2.77–8.99). 

Prospective Validation:  1225 major trauma patients, COAST ≥ 3 
• Specificity= 96.4%, sensitivity= 60.0%, 
• area under the ROC curve: 0.83 (0.78–0.88).
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 Consensus of final label (expert review in case of inconsistency)
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 Expert-based structure of BYN:

– Consensus structure of common reasoning types
– Causal coherence guaranteed
– Combine expert knowledge and data when required

 Identify latent variables and add to dataset
– Exclude variables out of the scope of the model
– Label latent variables in training set:

 from deterministic expert rules (mechanistic relationships, literature review...)
 using clustering (EM)
 Consensus of final label (expert review in case of inconsistency)

 Learn BYN parameters with EM algorithm on extended dataset 
– Consider additional expert constraints on parameter orders if insufficient 

data is available

 Cross validate the performance of the BYN: 
Specificity= 67%, sensitivity= 80.0%, AUROC: 0.81 (0.75–0.86)



© K. Gibert

Building Bayesian Network
 Expert-based structure of BYN:

– Consensus structure of common reasoning types
– Causal coherence guaranteed
– Combine expert knowledge and data when required

 Identify latent variables and add to dataset
– Exclude variables out of the scope of the model
– Label latent variables in training set:

 from deterministic expert rules (mechanistic relationships, literature review...)
 using clustering (EM)
 Consensus of final label (expert review in case of inconsistency)

 Learn BYN parameters with EM algorithm on extended dataset 
– Consider additional expert constraints on parameter orders if insufficient 

data is available

 Cross validate the performance of the BYN

 Expert-based model refinement
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Expert based model refinement
 Consider incipient coagulopathy

– Relabel patients with incipient coagulopathy as ATC=True

– Patients with initial measurements:
Normal ATC values
severe injury burden
poor perfusion

(they will show significant ATC  values soon after)

 Retrain BYN and re-validate
M0: 
Specificity= 67%, sensitivity= 80.0%, AUROC: 0.81 (0.75–0.86)
M1: 
Specificity= 79%, sensitivity= 90.0%, AUROC: 0.92 (0.89–0.95)
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Bayessian network structure

 Expert-based refinement of Coagulopathy 
in BIC patients
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