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A B S T R A C T

Background and objective: Ectopic pregnancy is an important cause of morbidity and mortality worldwide. An
early diagnosis, as well as the choice of the most suitable treatment for the patient is crucial to avoid possible
complications. According to different factors an ectopic pregnancy must be treated from surgery, using a
pharmacological treatment or following a conservative treatment. In this paper, a clinical decision support
systems based on artificial intelligence algorithms has been developed to help clinicians to choose the initial
treatment to be followed by the patient.
Methods: A decision support system based on a three stages classifier has been developed. Each stage acts as a
filter and allows re-evaluation of the classification made in the previous stage in order to find diagnostic errors.
This classifier has been implemented and tested for four different aid algorithms: Multilayer Perceptron, Deep
Learning, Support Vector Machine and Naives Bayes.
Results: The results prove that the evaluated algorithms Support Vector Machine and Multilayer Perceptron can
be useful to help gynecologists in their decisions about initial treatment, especially with Support Vector Machine
that presents accuracy, sensitivity and specificity outcomes about 96.1%, 96% and 98%, respectively.
Conclusions: According to the results, it is feasible to develop a clinical decision support system using the al-
gorithms that present a higher precision. This system would help gynecologists to take the most accurate de-
cision about the initial treatment, thus avoiding future complications.

1. Introduction

An ectopic pregnancy is a pregnancy outside of the uterine cavity.
High rate of ectopic pregnancies is located on the fallopian tube (84%)
[1], although other sites are also possible (cervical, cornual, hyster-
otomy scar, intramural, ovarian or abdominal). Ectopic pregnancy is a
potentially life-threatening condition, so early diagnosis and treatment
is desirable. With the routine use of transvaginal ultrasonography, lo-
cation of a pregnancy and diagnosis of ectopic pregnancy can be stab-
lished earlier [2]. Quantitative measurement of the beta subunit of
human chorionic gonadotropin (beta-hCG) is also helpful in both di-
agnosis and follow up of these patients [3].

Treatment need to be started as soon as the diagnosis is confirmed to
reduce the risk of rupture of the fallopian tube or another structure and
subsequent haemorrhage. The three approaches to the management of
ectopic pregnancy are surgery (salpingostomy or salpingectomy),

medical treatment or expectant management. While surgical ap-
proaches are the gold-standard treatment, the use of medical manage-
ment of these patients has become an accepted and cost-effectiveness
alternative to surgical options [4]. Methotrexate is a folic acid an-
tagonist that interferes with DNA synthesis and is the most widely used
agent in the medical treatment of ectopic pregnancies. For appro-
priately selected patients, methotrexate is a non-invasive option that
has comparable efficacy, safety, and fertility outcomes with surgery.
The most commonly used protocol consists of a single planned dose of
intramuscular methotrexate (50mg/m2 per body surface), followed by
assessment of beta-hCG levels on days 4, 7 and weekly. Repeat meth-
otrexate dosing is performed at day 7 for beta-hCG drops< 15%.
Contraindications for methotrexate therapy include hemodynamically
unstable patients, those with abnormal renal or hepatic function, or low
white blood count. The overall success rate of medical treatment in
properly selected women is nearly 90% [4][5]. In select cases of early
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ectopic pregnancy in which the risk of tubal rupture is minimal, ex-
pectant management might be an option [6]. Surgical indications have
to be considered in case of hemodynamically unstable patient, signs or
symptoms of current or impending tubal rupture, contraindication of
methotrexate therapy or failed medical treatment. The advantages of
surgical treatment are less time for resolution of the ectopic pregnancy
and avoidance of the need for prolonged monitoring.

Some authors have reported that approximately one-third of women
with ectopic pregnancies are candidates for methotrexate treatment
[7], while the remaining two-thirds will require surgery. However, if
early diagnosis is made, more patients with ectopic pregnancy could be
successfully treated with methotrexate.

How to choose the best treatment for each patient in case of ectopic
pregnancy continue to be a challenge. Although many scores to predict
successful medical treatment has been design, some patients undergone
surgical treatment after having been treated with methotrexate. This
could be due to treatment failure or to a misclassification of the pa-
tients.

The objective of this work is to study the feasibility of developing a
clinical decision support system that allows gynecologists to decide
with greater reliability the best treatment for a patient with an ectopic
pregnancy. To do this, several decision-aid algorithms will be im-
plemented, tested with a database of real cases and the results will be
analysed in terms of accuracy, sensitivity and specificity.

This paper has been organised as follows: After presenting related
literature in Section 2, the methods used to build up our classifier are
described in Section 3. Section 4 presents the results and their discus-
sion. Finally, the conclusions are shown in Section 5.

2. Related literature

In the field of obstetrics, and more specifically in relation to ectopic
pregnancies, sometimes it is difficult to obtain an early diagnosis. The
high number of conditions that share symptoms with ectopic pregnancy
makes this task difficult. Currently, there are different techniques that
can help detect an ectopic pregnancy, such as a pelvic exam [8], a blood
test to measure different markers (e.g. beta-HCG) [9] or the analysis of
the inner tissue of the uterus [10]. Testing with medical diagnostic
technology, such as ultrasound and laparoscopy, also allows and sim-
plifies the early detection of this type of pregnancy. However, at pre-
sent, to the traditional diagnostic techniques, the one that offers the
information and communication technologies (ICTs) is being added.
Artificial Intelligent (AI) is having a great impact today in any research
area, and its use in the clinical field is having a great growth. AI al-
gorithms are computational models that try to solve problems that
cannot be solved with statistical methods. Thus, the development of AI
algorithms that help predict or classify diseases from a knowledge base
has meant a great advance in different areas of application [11], be-
having as clinical decision support systems (CDSS).

In recent years, CDSS based on computational techniques for the
prediction of pregnancies, risk factors and other information of interest
have been developed. Most of these CDSS were implemented using
artificial neural networks (ANNs). ANNs are computational algorithms
whose structure is organised into layers of interconnected neurons,
which are responsible for adjusting the algorithm. In [12], a CSSD de-
veloped with a neural network, the multilayer perceptron (MLP), was
able to predict whether pregnancy had been desired or not based on
five predictors (age of woman, woman's education, husband's educa-
tion, number of children and use of contraceptives) with an average of
sensitivity and specificity of 85.8% and 95.2% respectively.

In the case of [13], two decision support systems based on ANNs and
multivariate logistic regression (MLR) were developed and compared to
predict possible complications during pregnancy due to hypertension.
To do this, it was experimented with women with high-risk of pre-
eclampsia and intrauterine fetal growth retardation as a risk group. The
accuracy, sensitivity, and specificity outcomes were 95.2%, 86.2% and

95.4% respectively for the ANN, and 96.2% 79.3% and 97% for the
MLR, so they were an adequate and useful tool for the early detection of
complications. Related to this pathology, in 2011 [14], a CDSS based on
ANN was developed to classify and predict if the woman will suffer
hypertension or preeclampsia or on the contrary will maintain a normal
tension during pregnancy, from values of heart rate variability, ma-
ternal history and blood pressure. The metrics of sensitivity and spe-
cificity were around 80% and 90% respectively.

Other example of the use of ANN in obstetrics is the work of Paydar
et al. [15], who experimented with two types of neural networks, MLP
and radial basis function (RBF) for predicting pregnancy success in
women with systemic lupus erythematous. From a sample of 149
women and the evaluation of 16 predictors, they were able to predict
the success of pregnancy with an accuracy of 90.9%. Finally, the study
of [16] evaluated 16 risk factors (age, bad habits, pregnancy compli-
cations, early antibiotic therapy, …) in pregnant women that can in-
fluence that children can develop autism. Considering these risk factors
before and during pregnancy, the CSSD was able to classify children
with or without autism with an accuracy higher than 80%.

However, nowadays, we have not found research works related with
decision support systems focused on ectopic pregnancies. In this study,
different types of artificial intelligent algorithms have been evaluated in
order to develop a model to predict and classify the most suitable
treatment to be followed during ectopic pregnancy.

3. Methods

To develop our proposal, we have analysed four different methods
based on artificial intelligence and we have tested them with a real
database of patients with ectopic pregnancy.

In the following subsections, first, we explain the algorithms im-
plemented and next, the architectures proposed to design the decision
support system are described; finally, the database used to train and test
the system is also presented.

3.1. Aid decision algorithms

3.1.1. MLP (Auto MLP)
Artificial neural networks (ANNs) are algorithms based on compu-

tational models, which allow solving complex regression and classifi-
cation problems that cannot be solved by traditional statistical methods
[17].The use of ANNs provides features such as nonlinearity, high
parallelism, robustness, failure tolerance, learning and ability to handle
imprecise and fuzzy information [18]. The multilayer perceptron (MLP)
is one of the most implemented supervised ANNs in medical decision
support systems. Its architecture is based on a network of nodes (neu-
rons) grouped into three or more structural units called layers (see
Fig. 1). These layers are classified as:

1. Input layer: In this layer, the nodes represent each one of the input
variables (binary or analog) that intervene in the process and have
an influence on the output result.

2. Hidden layers: The intermediate layers are responsible for adjusting
the intensity of interaction (synaptic weight) between each node of
the previous layer (presynaptic) and those of the next layer (post-
synaptic). The number of hidden layers and neurons in each of them
remain controversial. In general term, one or two hidden layers are
sufficient to solve any non-linear problem. However, if a greater
precision is required, a third hidden layer can be considered, al-
though this will increase the complexity of the network and the
necessary training time.

3. Output layer: In this layer, the nodes represent each one of the
output variables (dependent variables). The transfer function more
used in the MLP for the neurons in the hidden layers is the sigmoid
transfer function. It reduces an infinite input range into a finite
output range. Sigmoid function is characterised by the fact that their
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slopes must approach zero [18].

Recently, a variant of this neural network known as Auto MLP has
arisen. It is a simple algorithm for both learning rate and size adjust-
ment of neural networks during training. It maintains a small ensemble
of networks that are trained in parallel with different rates and different
numbers of hidden units. The algorithm combines ideas from genetic
algorithms and stochastic optimization. This algorithm automatically
finds the optimal parameters of the network configuration (e.g. number
of hidden layers, number of neurons in each layer), the most suitable
preprocessing method (e.g. normalization) and also optimal training
parameters (e.g. number of epochs) [19].

3.1.2. Deep Learning
Deep Learning is a subfield of ANNs that is having a great impact

nowadays. Deep learning methods are formed by a set of automatic
learning computational algorithms that use multiple nonlinear trans-
formations with the purpose of modeling representations with a high
level of abstraction [20]. As described above, ANNs are structured into
layers of neurons interconnected with each other. Neurons get activated
through weighted connections from previously active neurons. The
learning of the network is based on finding those weights that get the
network to show the expected behavior. However, depending on the
number of layers and intermediate neurons, and how they are con-
nected to each other, this adjustment of weights may require long
causal chains of computational stages. In these models with several
successive nonlinear layers of neurons, the aggregate activation of the
ANN is modified in each stage through multiple nonlinear transfor-
mations. Deep Learning is about accurately assigning credit across
many such stages.

Deep Learning classifier is based on a multi-layer feed-forward ar-
tificial neural network that is trained with stochastic gradient descent

using back-propagation. The network can contain a large number of
hidden layers consisting of neurons with tanh, rectifier and maxout
activation functions. Each compute node trains a copy of the global
model parameters on its local data with multi-threading and con-
tributes periodically to the global model via model averaging across the
network.

3.1.3. Support Vector Machine (LibSVM)
Support Vector Machines (SVM) are a set of supervised machine

learning algorithms developed by Vladimir Vapnik [21]. SVM allow
solving classification and regression problems by constructing a hy-
perplane or set of hyperplanes in a high-or infinite-dimensional space.
Given a set of data belonging to two different categories, SVM model
represents each of input data as points in space and finds all those
hyperplanes capable of separating and classifying them according to
their class, as well as it is able to predict whether a point will belong to
one category or another (see Fig. 2). SVM seek to solve an optimisation
problem, since the optimal solution will be given by the hyperplane that
maximizes the distance or margin between the different classes or ca-
tegories (so-called functional margin), since in general the larger the
margin the lower the generalization error of the classifier.

However, not all problems can be represented in a two-dimensional
plane and neither perform a correct classification from a vector, straight
plane or n-dimensional hyperplane. This may be the case of those
problems that have more than two predictor variables, classifications in
more than two categories, non-linear separation curves or where the
data set cannot be completely separated. This limitation can be over-
come through the Kernel functions, which are responsible for projecting
the data set to a space with a larger dimension, thus increasing the
computational capacity of the SVM (see Fig. 3). For this purpose, Chih-
Chung Chang and Chih-Jen Lin [22] developed in 2001 a powerful li-
brary for SVM (LibSVM), that supports internal multiclass learning,
overcoming the limitation of linear support vector machines.

3.1.4. Naive Bayes classifier
Naives Bayes classifier is a probabilistic classifier based on the

Fig. 1. MLP architecture.

Fig. 2. Classification in a two-dimensional plane by using hyperplanes.

Fig. 3. Representation of a tridimensional classification by using Kernel func-
tions.
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theorem enunciated by Thomas Bayes in the theory of probability in
1763, where the Bayes formula or rule is established. It allows calcu-
lating the probability of an event A occurring, given a condition B:

=
P

P(A|B) P(A)P(B|A)
(B)

However, this classifier takes initial hypotheses of independence
between the different predictor variables (attributes) that simplify the
problem, contrary to the Bayesian classifiers, which establish de-
pendency representations between variables (Bayesian networks) with
probabilistic reasoning. In other words, this classifier assumes that the
presence or absence of a certain attribute is not directly related to the
presence or absence of any other, and therefore, all the variables that
influence the final result are independent of each other [23]. The ad-
vantage of the Naive Bayes classifier is that it requires only a small
amount of training data to estimate the mean and variances of the
variables necessary for classification.

3.2. Decision support systems

Using the algorithms previously explained, we propose two different
architectures for the decision support system. The first one is using
classifiers individually to decide which treatment will be better; the
second one is the combination of the classifiers in one integrated clas-
sifier. In the following subsection the architectures are explained and
next the design parameters used are presented.

3.2.1. Decision architectures
As it was explained previously, there are three alternatives for the

treatment of a patient who has developed an ectopic pregnancy.
According to the characteristics of the patient and the variables de-
scribed above, an ectopic pregnancy can be treated through expectant
management, medication (pharmacological treatment) or surgery.
While expectant management does not involve any risk for the patient,
and surgery is presented as an irreversible and definitive option, the
pharmacological treatment, if it is not adequate, may finish leading to a
subsequent intervention. These cases constitute the worst possible
scenario, since in addition to cause a greater psychological impact on
the patient, delaying and making more expensive the clinical process.
Initial treatment is decided according to medical criteria. Thus, pa-
tients’ treatment is assigned with a single consensual decision by the
medical team (see Fig. 4). In this study, we have simulated this pro-
cedure by using a single classifier (SC) developed for each of the four
aid decision algorithms describe above, in order to compare the metrics
of right and wrong treatment classifications.

However, there are enough cases where initial treatment must be
changed due to the evolution of the patient or misclassification. To
solve misclassification cases and improve the ratio of initial right
classifications, we have also developed a three-stages classifier (3SC) as
a result of the concatenation of three sub-classifiers C1, C2 and C3, as it
is shown in Fig. 5. This new classifier pretends to improve the accuracy
through the reclassifications in that cases where the surgery is not
decided as initial treatment. The first classification (C1) is established

between those patients whose case requires a surgical intervention and
those who do not. Next, our procedure is focused on patients who do
not require surgery, to classify them among those who must follow an
expectant management and those who should receive some type of
pharmacological treatment (C2). However, as mentioned above, certain
cases in which the patient was initially treated through medication may
end up leading to surgery, either because the treatment has not taken
effect or because it is a wrong initial diagnosis. This is a scenario to be
avoid. Therefore, a third classifier (C3) is responsible for reanalysing all
those cases proposed for medication and reclassify these cases among
those that require surgery or medication. Thus, C3 acts as a corrective
classifier of the classifications made by C1 and C2.

3.2.2. Design parameters
The experimental phase consisted in the development of the clas-

sifier using the four previously described algorithms. Next, these algo-
rithms were trained and tested using the database provided. With this
purpose, we have used a data mining software called RapidMiner
Studio©. Table 1 shows some of the design parameters of the different
algorithms that we established empirically. Cross validation has been
used for the training of the model. This technique consists of using for
the validation, the same part of the database used for the training of the
model. The training database is divided into a k equal parts or subsets.
Each subset is used for validation, while the model is trained with the
remaining k− 1 subsets, which implies a total of k iterations. The final
performance is obtained when calculating the average performance of
all iterations. For the training and validation of our models we used
90% of the dataset and a 10-fold cross-validation (k=10). The algo-
rithm is tested with the remaining 10%.

3.3. Clinical database

The ectopic pregnancies database used in this study consists of 406
cases of tubal ectopic pregnancies collected at the Department of
Obstetrics and Gynecology of the University Hospital “Virgen de la
Arrixaca” in the Murcia Region (Spain) from November of 2010 to
September 2015. Women involved were patients attended to the
emergency room or to the first-trimester-pathology unit, with ages
between 16 and 46 years. Personal and medical variables were obtained
from each patient. In addition, a 2-D transvaginal ultrasound were
performed using a Voluson E-8 with 4–9 MHz transducer (General
Electric Healthcare, USA) by an expertise trained gynaecologist. The
original database has a total of 33 attributes as it is described in Table 2.
Initial treatment were decided according to medical criteria (clinical
status, ultrasound findings and beta-hCG levels).

In the preprocessing of our database, we had to face three common
and recurrent problems in the clinical databases: unbalanced classes,
data entry mistakes and missing data. The first overcome was solved by
using the “Random Over-Sampling technique” [24]. It consists of ran-
domly replicating the records of the minority class until to obtain a
greater representation.

There are different methods to work with missing data based on
statistical or computational models. However, the simplest and most

Fig. 4. Single classifier (SC).
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realistic approach is to ignore them, as in the case of records with data
entry mistakes. By applying these considerations, it was possible to
expand the sample and the number of registrations up to 732 records of
patients registered correctly. The number of patients whose final
treatment was “Surgery” is 240, while 266 received “Medical
Treatment” and 226 “Expectant management”. On the other hand, not
all the attributes could be used in our study. Some of them (e.g. height,
weight, …) did not exist in a large number of records. Others (e.g. beta-
HCG 4, beta-HCG 7, …) were registered when the treatment had al-
ready been decided, which cannot help to predict it. Finally, some of
these variables were discarded because they had no impact on the type
of treatment (e.g. diagnostic date, NHC, name,…). In total, 12 variables
from the original database were selected (age, G, P, C, A, E, IVE, lo-
cation, ectopic mm1 at diagnosis, ectopic mm2 at diagnosis, free liquid
and initial beta-HGC) and an additional one calculated as:

″

=
″− ″

”Gestional age (weeks)
”Diagnostic date ”Last menstrual cycle date

7

4. Results and discussion

During the experimental phase, we established the following ob-
jectives to study the implemented models: (1) assessing if our three-
stage classifier improves the results of the single classifier for each aid
algorithm; (2) analysing which of them was able to classify and predict
the most suitable treatment with greater accuracy. For each possible
treatment (surgery, medical treatment and expectant management),
two parameters have been evaluated from the metrics provided by the

confusion matrix: sensitivity (SE) and specificity (SPE). The sensitivity
indicates the ability to predict or classify as positive/true those cases
that really are. It calculates the percentage of true positive classifica-
tions (TP) made over the total amount of real cases, that is, TP and false
negatives (FN):

=
+

×Sensitivity(%) TP
TP FN

100%

For its part, the specificity indicates the ability to predict as nega-
tive/false those cases that really are, in other words, the percentage of
negative true classifications (TN) made over the total amount of real
cases, that is, TN and false positives (FP):

=
+

×Specificity(%) TN
TN FP

100%

Moreover, we have calculated an additional global metric, the

Fig. 5. Three-stages classifier (3SC).

Table 1
Design parameters.

Auto MLP Value

Training cycles 10
Number of generations 10
Number of esemble MLPs 4

Deep learning Value

Activation function Rectifier
Number of epochs 10
Hidden layer sizes 50
Epsilon (learning rate) 1.0E−8
Rho (momentum) 0.99

SVM Value

SVM type C-SVC
Kernel type RBF
Epsilon (tolerance) 1.0E-3

Naive Bayes Value

Laplacian correction True

Table 2
Database attributes.

Attribute Description

Name –
Date of birth –
Age –
Weight (kg) –
Height (cm) –
CRN Clinical record number
Diagnostic date –
Last menstrual cycle date –
G Number of previous gestations
C Number of previous cesarean deliveries
A Number of previous abortions
E Number of previous ectopics pregnancies
VIP Number of voluntary interruptions of

pregnancy
Location Location of fertilised egg: Fallopian tube,

cervical, abdominal, or cornual
Size 1 (mm) Fertilised egg size 1
Size 2 (mm) Fertilised egg size 2
Free Liquid Presence of free liquid: yes, no or scarce
Number of visits Number of visits to medical consultation
Number of Methotrexate doses –
Initial beta-HCG Initial beta-HCG level
beta-HCG 4 beta-HCG level on day 4
beta-HCG 7 beta-HCG level on day 7
beta-HCG 21 beta-HCG level on day 21
beta-HCG 28 beta-HCG level on day 28
beta-HCG 35 beta-HCG level on day 35
beta-HCG 42 beta-HCG level on day 42
beta-HCG 49 beta-HCG level on day 49
Hospitalisation reason Surgery, observation, pain, MTX dose or control
Entry date Hospitalisation date
Surgery reason Accident, live embryo, MTX failure or other

reason
Initial treatment Surgery, medical treatment or expectant

management
Final treatment Surgery, medical treatment or expectant

management
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accuracy (ACC), as the percentage of correct predictions:

=
+

×Accuracy(%) TP TN
Total cases

100%

Regarding the first objective, the comparison between Tables 3 and
4 show that our classifier improved the accuracy, sensitivity and spe-
cificity for SVM and MLP algorithms. However, Naive Bayes algorithm
hardly improved the results obtained with the single classifier and
worsened with Deep Learning algorithm in terms of accuracy and
sensitivity.

For the second study target, as shown in table 4, the best classifi-
cation results were obtained with SVM, with values of accuracy, sen-
sitivity and specificity about 96,1%, 96% and 98% respectively. The
MLP also presents good results in the classification, although its metrics
was lower than with the SVM. On the other hand, the results offered by
the classifiers developed with Naive Bayes and Deep Learning models
were significantly lower than those obtained with SVM and MLP.
Particularly striking is the poor results obtained with Deep Learning. A
more detailed analysis of the results of this algorithm showed that the
classifier tended to classify as “surgery” all those cases that did not
correspond to “medical treatment”, offering a very low accuracy in the

cases that corresponded to “expectant management”.
At this point, it should be noted that from our database, the initial

treatment was correctly assigned by the medical team in the 87.6% of
the cases. This accuracy is slightly lower than best results of our single
classifier (SVM, 89.7%). However, is greatly improved with two of
three-stages classifiers, especially in the case of SVM algorithm.

Finally, Table 5–8 shows the confusion matrices for a two categories
classification (surgery, no surgery) of the algorithms implemented. For
this type of classification, SVM algorithm was also the one with the
highest precision, improving both sensitivity and specificity. In general
terms, the rest of the algorithms improved the sensitivity and worsened
in terms of accuracy and specificity.

5. Conclusions

Ectopic pregnancies can present important complications if they are
not diagnosed in time, such as the rupture of the fallopian tube or other
structure, causing internal hemorrhages. That is why the treatment
should start as soon as the diagnosis is confirmed. However, the choice
of treatment may be controversial. Several factors come into play when
deciding which treatment is the most suitable. A wrong initial diagnosis
may increase the risk to the patient. In this paper, a clinical decision
support system is presented to classify the initial treatment to be fol-
lowed by a woman suffering an ectopic pregnancy. This clinical deci-
sion support system has been evaluated with four different algorithms:
MLP, SVM, Deep Learning and Naive Bayes. The decision support
system has been designed for a single classifier and a multiple classifier
(3 stages). The single stage classifier presented lower accuracy than the
obtained by the medical criteria (87.6%), except for the one developed
with the SVM that slightly improved the classification accuracy
(89.7%). However, the results were significantly better in the case of
the three-stage classifier, both in the case of MLP and SVM reaching

Table 3
Single classifier metrics (SC).

Auto MLP RP TP FP TN ACC SE SPE

Surgery 240 210 33 430 87.4% 87.5% 92.8%
Medical treatment 266 232 29 408 87.2% 93.3%
Expectant management 226 198 30 442 87.6% 93.6%
Average 87.4% 93.2%

Deep learning
Surgery 240 171 103 250 57.5% 71.2% 70.8%
Medical treatment 266 248 208 173 93.2% 45.4%
Expectant management 226 2 0 419 0.8% 100%
Average 55% 72%

SVM
Surgery 240 199 24 458 89.7% 82.9% 95%
Medical treatment 266 232 27 425 87.2% 94%
Expectant management 226 226 24 431 100% 94.7%
Average 90% 94.5%

Naive Bayes
Surgery 240 138 39 361 68,2% 57.5% 90.2%
Medical treatment 266 188 56 311 70.6% 84.7%
Expectant management 226 173 138 326 76.5% 70.2%
Average 68.2% 81.7%

Table 4
Three stages classifier metrics (3SC).

Auto MLP RP TP FP TN ACC SE SPE

Surgery 240 224 40 441 90.8% 93.3% 91.6%
Medical treatment 266 237 19 428 89% 95.7%
Expectant management 226 204 8 461 90.2% 98.2%
Average 90.8% 95.2%

Deep learning
Surgery 240 236 278 172 55.7% 98.3% 38.2%
Medical treatment 266 166 46 242 62.4% 84.7%
Expectant management 226 6 0 402 2.6% 100%
Average 54.4% 81.7%

SVM
Surgery 240 226 10 478 96.1% 94.1% 97.9%
Medical treatment 266 262 6 442 98.4% 98.6%
Expectant management 226 216 12 488 95.5% 97.6%
Average 96% 98%

Naive Bayes
Surgery 240 160 64 342 68.5% 66.6% 84.2%
Medical treatment 266 188 54 314 70.6% 85.3%
Expectant management 226 154 112 348 68.1% 75.6%
Average 68.4% 81.7%

Table 5
AUTO MLP confusion matrix.

Auto MLP true surgery True no surgery ACC SE SPE

Three stages classifier
Surgery 224 51 90.8% 93.3%
No surgery 16 441 89.6%

Single classifier
Surgery 212 30 92.7% 88.3%
No surgery 28 462 93.9%

Table 6
Deep Learning confusion matrix.

Deep learning True surgery True no surgery ACC SE SPE

Three stages classifier
Surgery 236 320 55.7% 98.3%
No surgery 4 172 34.9%

Single classifier
Surgery 165 52 82.6% 68.7%
No surgery 75 440 89.4%

Table 7
SVM confusion matrix.

SVM True surgery True no surgery ACC SE SPE

Three stages classifier
Surgery 226 18 96.1% 95.7%
No surgery 10 478 96.3%

Single classifier
Surgery 212 30 92% 88.3%
No surgery 28 462 93.9%
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accuracy values in initial diagnosis of 90.8% and 96.1% respectively.
The results prove that Deep Learning and Naive Bayes algorithms were
ineffective models but the SVM and MLP can be useful to help doctors
in their decisions about initial treatment.
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