Expert Systems with Applications 37 (2010) 2815-2825

Contents lists available at ScienceDirect g 4
S
Expert Systems with Applications i

journal homepage: www.elsevier.com/locate/eswa

An intelligent music playlist generator based on the time parameter with
artificial neural networks

Ning-Han Liu *, Shu-Ju Hsieh, Cheng-Fa Tsai

Department of Management Information Systems, National Pingtung University of Science and Technology, 1, Hseuh Fu Road, Nei Pu, Pingtung 912, Taiwan, ROC

ARTICLE INFO ABSTRACT

A music hobbyist listens to different types of music at different times of the day. Thus, an automatic
music playlist generator that can adjust to the hobbyist’s daily activities on this basis is necessary in order
to generate the appropriate music to suit the user’s current activity, whether it is working or driving.
Although existing research has introduced various music playlist generators, there is yet a system that
generates the music playlist based on time. Hence, in this paper, we present a music playlist generation
system, which provides an automatic and personalized music playing service based on the time param-
eter. This system represents the characteristics of music from features extracted out of both the music’s
symbolic form and wave data. The kernel of this system is based on a modified artificial neural network.
The user’s music rating history and the associated time stamps in the user’s profile constitute the training
data of the modified artificial neural networks. A collaborative method has also been proposed to reduce
the effect of the cold start problem upon system initialization. A series of experiments have been carried
out to demonstrate the performance of this system.

Keywords:

Music playlist generator
Recommendation system
Artificial neural networks
Music database

Music features extraction

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

With technological advances that expand both online and phys-
ical storage media, the quantity of music that a person can store and
listen to increases. For example, a person can access digital audio
files from high-capacity mobile music players (e.g. the “iPod”)
and the internet. Nevertheless, although a person has access to
large volumes of digital music (either via an internet source or
shared physical storage), not all the music that the person desires
can be accessed due to the unstructured manner the music has been
stored. However, arranging a suitable playlist from vast amounts of
music is a time-consuming and difficult problem.

Generally, previous research work has addressed this problem
by generating the playlist according to user preferences and situa-
tions (Kaji, Hirata, & Nagao, 2005). These research studies have
used several kinds of metadata information (e.g. artist, title, genre,
etc.) to record a user’s profile and generate the playlist efficiently.
However, some metadata is difficult to acquire, for example, the
music genre. Furthermore, in some instances, users are required
to annotate the situation in order to facilitate the operation of
the system, which is not always possible.

In order to generate an effective playlist generator, let us con-
sider that the majority of people would vary the type of music they
listen to depending on the current time of the day. For example, a

* Corresponding author. Tel.: +886 8 7703202; fax: +886 8 7740306.
E-mail address: gregliu@mail.npust.edu.tw (N.-H. Liu).

0957-4174/$ - see front matter © 2009 Elsevier Ltd. All rights reserved.
doi:10.1016/j.eswa.2009.09.009

person might listen to soft music when they wake up in the morn-
ing and might later change the music to rock-and-roll just before
going off to work. A well-designed playlist generation system in
this case would provide the person with appropriate music at dif-
ferent times automatically. To the best of our knowledge, there is
currently no playlist generation system that has considered this as-
pect of time to produce an effective playlist generator. Such a sys-
tem should include a music-filtering engine to extract music that is
acceptable to the user. This engine should be able to filter from vast
volumes of music stored both online and in the user’s personal
storage. Thus, the resultant question to be addressed is how such
a playlist generator can be generated to account for the time
parameter and the user recommendation function.

Fig. 1 illustrates the motivating scenario. As illustrated, user A
always listens to hip-hop style music from 07:00 am to 08:00 am
and subsequently Rock & Roll music. In contrast, user B likes to lis-
ten to slow tempo music from 07:00 am to 07:30 am because this
duration represents her wake-up time. Both of them have different
preferences to music at different times as well as different prefer-
ences in music styles (e.g. user A uses the music style, while user B
uses tempo).

In this paper, we propose a novel intelligent system that pro-
vides a suitable playlist to the user depending on the time the user
listens to the music. In order to represent the musical piece, this
system extracts the necessary features from both the symbolic
and wave forms of the music files. Mixed artificial neural networks
have been proposed as the kernel of this system. The input to the

http://dx.doi.org/10.1016/j.eswa.2009.09.009
mailto:gregliu@mail.npust.edu.tw
http://www.sciencedirect.com/science/journal/09574174
http://www.elsevier.com/locate/eswa

2816 N.-H. Liu et al./Expert Systems with Applications 37 (2010) 2815-2825

[

0= Hip Hop Rock&Roll Blues
ﬂ 07:00 am 08:00 am 12:00 am " time
User A
m E . Slow Fast Medium Slow
=
dﬁ : tempo | tempo | tempo tempo
07:00 am 07:30 am 09:00 am 12:30 am time

User B

Fig. 1. An example of different users’ music listening behaviors.

artificial neural networks includes the user’s feedback and the time
stamp. After the artificial neural networks have been trained, the
system then learns the user’s preference in music and predicts
the playlist depending on the time parameter. Compared to other
systems that have been previously proposed, our novel playlist
generator generates the playlist based on the impact of time, apart
from typically music content and user’s rating feedback. The exten-
sive experimental results obtained demonstrate that time is an
important factor that influences the quality of the playlist.

The remainder of this paper is organized as follows. Section 2
discusses related work. Section 3 describes the design of the music
playlist generator and the adopted techniques. Experimental re-
sults are shown and discussed in Section 4. Finally, the conclusion
is presented in Section 5.

2. Related work

Generally, a music recommendation system serves to retrieve
music that the user might be interested in. As part of this process,
the music playlist generator in the system sorts the music playlist
arrangement according to the user’s preferences and current situ-
ations. In our system, we attempt to construct a playlist generator
that not only arranges the user’s music collection but also predicts
new music items for the user. Thus, in order to provide a general
overview, this section further details existing automatic playlist
generators and music recommendation systems.

Existing music recommendation systems address the promi-
nent problem of extracting useful information from all currently
available information. Generally speaking, content based filtering
and collaborative filtering are the most commonly used mecha-
nisms for this purpose. Some research works combine these two
approaches in order to get more accurate solutions.

The content based filtering (CBF) mechanism predicts user pre-
ferred data items by matching the representations of the data
items relevant to the user. For example, in Inforfinder (Krulwich
& Burkey, 1996), and News Dude (Billsus & Pazzani, 1999), data
items relevant to the user in the past are used as the user profiles.
These systems then recommend new data items with higher rele-
vance to the user profiles. The application of the CBF mechanism is
dependent upon the content description. The content description
describes the metadata of data items, which includes the title, art-
ist, genre and lyrics of a musical piece. When this metadata is not
available or the label of the music is not acceptable to the user (e.g.
the genre of a song is labeled as hard rock), the CBF mechanism can
be directly applied to the raw data in the media (Reed & Lee, 2007).
For example, in Chen and Chen (2005)), the musical pieces are first
categorized according to the pitch, tempo, loudness and entropy
that were extracted from the raw data of the music. These features
were used as the basis of recommendation. In effect, new music
similar to what the user had recently listened to were
recommended.

The collaborative filtering (CF) mechanism uses the correlations
between users on the basis of their ratings to predict items for
users (Rucker & Polanco, 1997). In this mechanism, users with sim-
ilar preferences or profiles are grouped together to share their
information in the profiles. New items are then recommended to
users on the basis of similar shared information by users in the
same group. Compared to CBF, CF is more likely to recommend
unexpected items by manipulating shared information. As an
example, in Chen and Chen (2005), the proposed CF technique cap-
tures user interests and behaviors from transactions in the user’s
access history. Then, the users are grouped based on these features.
Lastly, the music is recommended based on the weight of music ac-
cess frequency. The CF mechanism performs well in some practical
areas but it requires the definition of users’ distance, which can be
difficult to determine.

Several research studies have combined both the CBF and CF ap-
proaches to construct recommendation systems. For example, in
Konstan et al. (1997) and Schein, Popescul, Ungar, and Pennock
(2001), users can specify the profiles to describe the features of
data items that they are interested in. These systems allow the user
to comment data items and group users according to the similari-
ties in their ratings of data items. The recommended results are
then provided on the basis of the user’s personal interests (CBF)
and data items that are read by other similar users (CF). In Yoshii,
Goto, Komatani, Ogata, and Okuno (2006), the authors integrate
both rating (CF) and content data (CBF) by using a Bayesian net-
work to build a hybrid music recommendation system.

With regard to music playlist generation, four general methods
have typically been used in the literature. The first method allows
the user to specify some music as seeds. The playlist generation
algorithms then search similar music to form the list, for instance
the AutoD] (Platt, Burges, Swenson, Weare, & Zheng, 2002) project
developed by Microsoft Research. Another similar example is pro-
posed in Flexer, Schnitzer, Gasser, and Widmer (2008), which con-
cerns the creation of playlists with an inherent sequential order to
create a smooth transition between the start and end song that the
user has chosen. The second approach generates the playlist
according to a set of user specified constraints about the user’s de-
sired musical content, for example, the system created by Sony
Computer Science Laboratory (Aucouturier & Pachet, 2002). In
their system, constraints are specified, for instance, “the genres
of items #4 to #9 should be rock” and “the playlist should contain
at least 70% of instrumental titles”. The third method generates a
playlist according to user preferences and situations, e.g. the sys-
tem in Kaji et al. (2005). The system produces a playlist for users
in similar situations by using content-based retrieval on playlists
of other listeners in those situations. It can be noted that the three
aforementioned methods are based on examining the metadata at-
tached to the musical pieces and thus, when the metadata is miss-
ing, these approaches cannot be applied. The fourth method takes
the listening history of the user into account and generates the lis-
tener model for predicting the user’s preference. For instance, the
system proposed in Andric and Haus (2006) records the frequency
of two music pieces that have been played together to indicate the
relevance between them. A vector space is then constructed in
which each vector represents a musical piece. The vectors are then
grouped so that each grouping of the pieces may indicate the dif-
ferent listening situations. Lastly, the music playlist is generated
according to the situation indicated by the user (e.g. “party situa-
tion” or “lonely situation”).

3. Smart music playlist generator

A smart music playlist generator is proposed in this paper. As
shown in Fig. 2, this generator consists of several function blocks

N.-H. Liu et al./Expert Systems with Applications 37 (2010) 2815-2825 2817

User .
P Music file
User I
interface
Personal Playlist
* Feed back Generator Training » P ersopgl
- Module GPlayhit
Profile Manager A enerator
:
User scoring
/
records * "
Features Extractor (Playlist)
A

Users Profile - Music Database
Database Music work

Fig. 2. The system architecture of the smart music playlist generator.

which include the music player interface, profile manager, user pro-
file database, music database, features extractor, playlist generator
training module and personal playlist generator. A new user first
has to input their personal data (e.g. sex, age, job, etc.) through a
registration web page. Upon completion of the registration, the user
is then provided a playlist that is selected randomly or retrieved by
matching profile similarity to other users. Following this, the user is
then allowed to state his/her music playing preferences through our
music player interface. The preferences are recorded with a time
stamp, unlike previous playlist generation systems that only record
the playing preference. The kernel of our personal playlist generator
is an artificial neural networks (ANN) system. The ANN is trained by
features of music that the user has listened to and the associated
time parameter through the personal playlist generator training
module. After the personal ANN is built, the user is then provided
with a personalized playlist depending on the time parameter and
the user’s preference of music.

3.1. Features extraction

Due to varying individual preferences to music that we have
identified previously, our playlist generator system extracts com-
paratively more features than existing systems. Although these
additional features can result in a long training period for the arti-
ficial neural networks (i.e. the kernel of our system), this is justified
as it would enable each individuals’ music preferences to be accu-
rately captured. Our system extracts features from both symbolic
and raw audio data to provide more useful information to the user
(The reader is referred to previous research work in Lidy, Rauber,
Pertusa, and Inesta (2007) for further details). With respect to fea-
tures extraction, each music file in the database collected or built
manually includes two types of files: one is the wave file (e.g.
MP3) and the other is the associated MIDI file. For the purpose of
simplifying the system design and serving the preference of most
people (the number of pop music listeners is much more than
the one of classical music listeners), the database in our system
only contains the pop music which included hip hop, rock & roll,
blues, jazz and so on. The extracted features are explained in the
following subsection.

3.1.1. Features from symbolic form

There are several symbolic forms of digital music, such as MIDI
(MIDI Manufacturers Association, 1996) and CHARM (Wiggins,
Miranda, & Harris, 1997). We adopt MIDI in our approach due to
its popularity. It can be noted that our approach can also be applied
to other symbolic forms to provide precise representations of the
scores. A musical piece with its own style often contains particular
melodies. Therefore, only melodic information is extracted from
the MIDI files, i.e. pitch and duration to represent the music. Each

note in a MIDI file forms a triple (7, s, e), where vis the pitch scale, s
and e are the onset and offset times, respectively. Following the
MIDI standard, the pitch scale is a non-negative integer smaller
than 128. In this way, a monophonic melody with n notes can be
represented as a note string (v, S1, €1)(¢5, S2, €2)- - «(¥, Sn, €) Where
e; <Sisp, 1 <i<n.

The contents of the MIDI format not only indicate the pitches
and duration of notes in the musical piece precisely but also in-
clude abundant music forms and characteristics. From these con-
tents, we then calculate the statistics derived from the MIDI file
to represent the characteristics of the music. Here, the features of
MIDI files are extracted from the pitches and duration of notes that
are associated with the vocal sound (the main melody in the pop
music is the vocal sound). These features (including some features
that have been proposed in Chen and Chen (2005)) from the theme
are described as follows:

e Average pitch (AP)

AP indicates the music that either goes on the higher compass
or the lower compass, which is defined as follows:

AP:% 1)

where ; is the pitch scale of the note and n is the length of the notes
sequence.

o Pitch entropy (PE)

PE indicates the variation degree of the music, which is defined
as follows:

np

PE= - P;logP: (2)
i=1

where np is the number of distinct pitches that appeared in the
piece of music and P; is defined as follows:

N;
P= 3)

where N; is the number of notes with the same pitch and T is the
total number of notes.

¢ Pitch density (PD)

PD can show the abundant degree of the music, which is defined
as follows:

NP
PD = 128 (4)

where NP is the number of distinct pitches in the track and 128 is
based on the number of all distinct pitches in the MIDI standard.

e Average duration (AD)

AD can be used for describing the rhythm of the music, i.e.
either fast or slow rhythm, which is defined as follows:

n .
AD — LI;D! (5)

where D;=¢e; —s;, is the duration of note i, n is the length of the
notes sequence.

e Duration entropy (DE)

DE indicates the variation degree of the rhythm for the music,
which is defined as follows:

2818 N.-H. Liu et al./Expert Systems with Applications 37 (2010) 2815-2825

1
2
- T ; -
 n N, A——— — S - -
e = e e
Pitch string: 67, 64, 64, 65, 62, 62, 60, 62, 64, 65, 67,67,67
Pitch interval string: -3,0, +1, -3, 0, 2, +2,42,+1, 42, 0, O

Fig. 3. An example of a pitch string and a pitch interval string.

nd
DE = - PilogP; (6)
i=1

where nd is the number of distinct durations that appeared in the
piece of music and P; is defined as follows:

Pi=— 7)

where D; is the number of notes with the same duration and T is the
total number of notes.

We also extract features from the refrain of the music. The re-
frain in music can be described as the segment in the piece that re-
peats several times and which contains the melody that appeals to
the listener. In other words, this influences whether the person
would like or dislike a song. Thus, the new features also defined
are: Refrain Average Pitch, Refrain Pitch Entropy, Refrain Pitch Den-
sity, and Refrain Average Tempo.

With the exception of extracting features from the absolute
pitches and durations of notes, another expression method often
used to support approximate matching (Suyoto & Uitdenbogerd,
2005) in the music information retrieval system is pitch interval
(Hewlett & Selfridge-Field, 1998).

We define the pitch interval string as follows.

Given a pitch string vy, --v;,, the pitch interval string is
C1Cy- - -Cp, Where ¢;= vy — v;and n=m — 1.

An example of a pitch interval string is shown in Fig. 3. The
pitch values in the pitch string follow the MIDI standard. The val-
ues of the pitch interval string are the differences in pitch scales
between two consecutive pitches. For instance, the value -3
means that the pitch of the second note is three semitones lower
than the pitch of the first note.

Extracting features from a pitch interval string is meaningful
because two melodies with the same contour of pitch scales can
also be recognized as being identical even though they have differ-
ent values in pitch scales. The feature that we extracted from the
pitch interval string is termed the pitch interval entropy, defined
as follows:

o Pitch interval entropy (PIE)

PIE can be used to show the variation degree of the music under
the key invariant, which is defined as follows:

ni
PIE = —) "PilogP; (8)
i-1
where ni is the number of distinct intervals that appeared in the
pitch interval string and P; is defined as follows:

I;
Pi== 9)

where I; is the number of intervals with the same value and T is the
length of the interval string.

As the values of the average pitch intervals of individual music
pieces are not different enough to recognize different music, this
feature is not used.

3.1.2. Features extraction from vocal wave

Features from an artist’s voice data are also extracted due to our
observation that a user’s preference of a pop music piece is often
reliant upon the vocal properties of the artist. These features have
been further described below (The sampling rate of the vocal
sound from the audio files has been set to 16 kHz):

e Formants

Formants are the frequencies with the main bands of higher en-
ergy in the spectrum of sound. They are important features of the
voice signal because there are different distributions of formants
between different people’s voices (Barrichelo, Heuer, Dean, & Satal-
off, 2001). To reduce the amount of features, we only take the first
formant (F1), the second formant (F2) and the third formant (F3)
because they are more useful for distinguishing the different sound
sources.

e Mel-scale frequency cepstral coefficients (MFCC)

MEFCC is the most well known feature in the area of speech and
speaker recognition, which takes human perception sensitivity
with respect to frequencies into consideration. In our system, the
input vocal signal is segmented into frames of 20 ms, with an op-
tional overlap of 1/2 of the frame size. Only the 12 parameters of
MEFCC are selected as the features to avoid high dimensionality
data, which increases the time complexity of the system training.

In order to simplify the system design and provide a higher
accuracy of vocal features, we identified the segments with the sig-
nificant singer’s voice manually whereby existing methods (Feng,
Nielsen, & Hansen, 2008; Tsai & Wang, 2006) could only segment
vocal or non-vocal parts from the audio file. Each vocal segment
is partitioned into 20 ms frames and each frame is transformed
into a fifteen dimension vector (3 formants and 12 MFCC). A large
number of vectors have been used as the input data for the artifi-
cial neural networks. In order to reduce the complexity of this data,
two strategies have been proposed:

e Strategy one: statistics

We calculate the averages and the standard deviations of each
dimension. Here, a vector with thirty dimensions is used to repre-
sent the vocal feature of a musical piece.

e Strategy two: clustering

The use of only the averages and deviations in strategy one as
the feature of a vocal sound is too cursory to describe the data dis-
tribution. Thus, in strategy two, we use a clustering technique to
depict the distribution of vectors in the fifteen dimension space.

The most well-known and used partitioning methods are
k-means and k-medoids (Han & Kamber, 2001). Given the input
parameter k, these methods partition a set of objects into k clus-
ters. After partitioning, the intra-cluster similarity is high but the
inter-cluster similarity is low, as shown as Fig. 4. We adopt the
k-medoids to partition the vocal vector points because it is more
robust than k-means in the presence of noise and outliers. In other
words, a medoid is less influenced by outliers or other extreme

N.-H. Liu et al./Expert Systems with Applications 37 (2010) 2815-2825 2819

® Vocal vector point (30 dimensions)
0 Medoid

Fig. 4. An example of k-medoids clustering.

Table 1

Score table in user profile.
Music ID Score Time stamp (am) Date
3 10 00:06 2008/11/5
100 8 01:22 2008/11/5
10 3 01:30 2008/11/5

values compared to a mean (Han & Kamber, 2001). After using k-
medoids to partition the vector points into k clusters, the averages
and the standard deviations of each dimension for each cluster are
calculated. As shown in Fig. 4, the vector with k « 30 dimensions
becomes the representative feature of vocal sound in a musical
piece. Nevertheless, the setting of the k value represents a trade-
off problem, i.e. a bigger k value could represent the distribution
of the vectors precisely but produces larger input units of artificial
neural networks. Therefore, we have opted to select a smaller k va-
lue by considering the response time of the playlist generation
system.

The comparison of the above strategies and decision of a suit-
able k value are further discussed in the experimental results
section.

3.2. The playlist generation engine

The input data to our playlist generation engine includes the
attributes of the music features and the time parameter. After
the engine evaluates these inputs through an intelligent mecha-
nism, it outputs the predicted value that dictates the user’s prefer-
ence in the musical piece. This value can be regarded as the class
label in the prediction process as a type of classification. We have
adopted artificial neural networks as the kernel of the playlist
generator due to its ability to classify continuous values (i.e. the
value of input features).

3.2.1. Training data of artificial neural networks

In order to enable the neural networks to learn the user’s pref-
erence in music and the relationship between this preference and
the time parameter, the system collects the scores and time stamp
with the associated music file name (or id) after they have listened
to the music. Table 1 shows the user’s scores.

The user’s preference to music ranges from one to ten. A higher
score implies that the user feels the music played is suitable for
that particular time frame and vice-versa. The time parameter is
discussed below.

3.2.1.1. Time parameter. A full day is regarded as one period in the
system, while the time of a musical piece is represented in min-
utes. This is because musical pieces are typically in the length of
minutes and users do not require accuracy to seconds in this
instance. The time parameter displays the minutes counting from
00:00 am. For example, a musical piece listened to by the user at

time 00:06 am can be represented by a time parameter value of
6 units. Similarly, if the musical piece has been listened to at time
01:22 am, the time parameter value is 1 x 60 + 22 = 82.

For each user, the time parameter value of the musical piece lis-
tened to and the associated music features are the training data in-
puts to the neural networks and the scores are the output of the
training data.

3.2.2. The kernel of the playlist generator - a mixed ANN

The training time of the ANN can be higher than normal in two
cases. Firstly, when the training set data for an ANN has a higher
dimensionality or consists of a larger amount of training samples,
more time would be spent to complete the training. Secondly,
when the prediction does not satisfy the user’s need, the user’s
new feedbacks are recorded to retrain the ANN. Retraining the sys-
tem further consumes time if all of the user’s data is used as the
training samples. Thus, to reduce the retraining time, we propose
a new structure as shown in Fig. 5. This structure includes two
ANNSs: one termed as the short term ANN which indicates the user’s
recent behavior (Chen & Chen, 2005) to the music selection, while
the other ANN is termed as the long term ANN which is used to re-
cord the user’s long term preference in music.

Both long term and short term ANN are multilayer feed-forward
neural networks with two hidden layers. To predict the user’s pref-
erence to a musical piece Mx at time t, the features of Mx and time t
form the input vector of the input units for the two ANNs. Through
computations using the two ANNs, two output values are obtained
namely Outputayy; and Outputayn,. Following this, the two output
values are then combined together to form a single value by a fu-
sion function. The output of this fusion function is the prediction of
the user’s score for the music that has been played at time t. The
fusion function is defined as follows:

F(Output syng , Output yyn) = Wi x Outputyy, + Wa x Output sy,
(10)

where w; +w, = 1.

The two weight parameters w; and w, in this fusion function
can be adjusted by the user as follows. The user increases the value
of w,, if preference is given to musical pieces in which the user has
recently heard and gives higher scores to. Conversely, the user in-
creases the value of wy if preference is given to musical pieces that
the user has enjoyed in the past and gives higher scores to.

Our system builds a personal mixed ANN for each user. The
scores recorded in the user’s profile provide the basis of the train-
ing data for the personal mixed neural networks, i.e. the long term
and short term ANN. To elaborate, let us refer back to the descrip-
tion of the score record. The score record contains the music ID,
score, playing time, and date. Through a database search using
the music ID, the system first obtains the music features that are
associated with the music ID. These features provide the training
data input, which include the basic music features and playing
time of the music that the user has assigned the score to. Intui-
tively, the output is the associated score value. The date of the
training data for the long term ANN belongs to a longer time, e.g.
a half year whereas, the date of training data for the short term
ANN belongs to a shorter time and is a recent date, e.g. one week.
The training process familiarizes supervised learning and the bias
weights adjustment in networks uses error back-propagation.

However, when the trained personal mixed ANN does not sat-
isfy the user’s need and the user decides to rebuild the bias weights
in the ANNs, the short term ANN is first retrained using the user
modified score table. The long term ANN will only be retrained if
the resultant rebuilt system from training the short term ANN
cannot satisfy the user’s need. The details of this training process
(e.g. error back-propagation) will be not discussed here.

2820 N.-H. Liu et al./Expert Systems with Applications 37 (2010) 2815-2825

Input Hidden
Layer Layers

Output
Layer

Music Item Mx

Outputanni

Feature 1 o
Feature 2

Fusion function

Feature n

Time
parameter t

Outputannz

Short term ANN

Fig. 5. The structure of the mixed artificial neural networks.

3.2.2.1. Reduction of training time. It is computationally heavy for
the system to support every user with a personal mixed ANN.
Therefore, to reduce the training time, both long and short term
ANNSs use the following activation function (Guyon, 1991)

2a

Y =1iem ¢

(11)
where Y is the output of the neural unit and x is the summation of
inputs to the neural unit. The constants q, b are set to 1.716, 0.667,
respectively, which depends on the reference Guyon (1991).

We also note that, due to the subjective nature of a user’s music
preference, a user may give totally different scores to the same mu-
sical piece at different dates. In the extreme case, this can result in
the system temporarily halting due to the process stop criterion,
e.g. the constraint on sum of squared errors cannot be reached.
To avoid this situation, we adopt the random restart strategy.
Using this strategy, when the mixed ANNs are unable to finish
the training process after a preset system time, the bias weights
are reset randomly and the training process is restarted. The con-
straint on the sum of squared errors r’ is adjusted as follows:

=rx2 (12)

where r is the previous constraint on the sum of squared errors.

3.2.2.2. Continuity problem of the time attribute. The value of the
time parameter is reset to zero when the time is 00:00 am. How-
ever, this would not capture the fact that the time should be con-
tinuous and as a result, an error can arise when the score is
predicted under a special data distribution. As an example, a user’s
score table might be empty for a long segment of time from
00:00 am, though a lot of musical pieces have been rated before
and close to 00:00 am. As a result, the trained mixed ANNs will
be working on a non-representative data distribution when a user
uses the system to make a playlist after and close to 00:00 am. This
sudden and unexpected change when time passes through the
00:00 am boundary is referred to as the Cinderella phenomenon.
This phenomenon is further illustrated in Fig. 6. As shown in
Fig. 6a, a user gives high scores to three A types musical pieces be-
fore 00:00 am. The user subsequently rates a high score to one B

(A A [A B] [B]
[} 3:00 am
00:00 am

00:05 am

(@)
[A] A i B | B [B]

7:00 pm A

00:00 am
11:30 pm
(b)

Fig. 6. The Cinderella phenomenon example.

type of music at 03:00 am (i.e. no rating data appears from
00:00 am to 03:00 am). Thus, the problem arises when the user de-
cides to listen to music at time 00:05 am. In this event, the trained
playlist generator would recommend a B type musical piece to the
user, even when the time slot is closer to the A type musical pieces.
Fig. 6b shows another inverse example.

To solve the Cinderella phenomenon problem, the first step is to
check the user’s score table to determine whether there is scoring
data for a long segment of time on one side of the 00:00 am bound-
ary. If no scoring data is present, then the data on the other side of
the boundary is copied into the time segment. The data copied is
selected randomly in a specified time segment before or after the
boundary. In order to avoid producing too many simulated training
samples, the time segment and the amount of copied data are re-
stricted. In this playlist generator prototype, the length of time to
check is set to 1h to check the hour before or after 00:00 am.
The amount of randomly selected data is half of the total data in-
side the 1-h segment of the other side. Tables 2a and 2b illustrate
our example.

With reference to Table 2a, it can be observed that there is no
rating data from 00:00 am to 01:00 am in this user’s score table.
In this instance, the scoring data 1 h before 00:00 am is copied into

N.-H. Liu et al./Expert Systems with Applications 37 (2010) 2815-2825 2821

Table 2a

Original score table.
Music ID Score Time stamp Date
3 10 11:05 pm 2008/11/5
100 8 11:09 pm 2008/11/5
10 7 05:14 am 2008/11/6
5 9 11:10 pm 2008/11/6
65 8 11:09 pm 2008/11/6
20 9 05:10 am 2008/11/7

Table 2b

Extended score table.
Music ID Score Time stamp Date
3 10 11:05 pm 2008/11/5
100 8 11:09 pm 2008/11/5
100 8 00:01 am 2008/11/6
10 7 05:14 am 2008/11/6
5 9 11:10 pm 2008/11/6
65 8 11:09 pm 2008/11/6
5 9 00:01 am 2008/11/7
20 9 05:10 am 2008/11/7

the empty time segment. Particularly, the data copied pertain to
the two data items with time stamps located in the same duration
for the current day. As only half the amount of data has been se-
lected randomly, one data item is copied into the empty time seg-
ment for the other days. The duplicated data items are shown in
underline in Table 2b. The effect of scoring data before the bound-
ary is extended to the other side of the boundary.

3.2.3. Music selection procedure

After the personal mixed ANNs has been trained, the user is
then allowed to set the time interval to play the music in the play-
list. The scheduling module in the system takes the features of each
musical piece and the playing time as the inputs of the mixed
ANNS . Then, the mixed ANNs computes an output value as the pre-
dicted value of the user’s set score for each musical piece. The high-
er the value indicated, the greater is the suitability of the musical
piece to the user to be played in the time frame. However, the
selection of musical pieces, the quantity of music to play and the
orderly arrangement of the musical pieces are all difficult issues
to address. In particular, for each possible selection of music and
arrangement of schedule, there is an associated sum of the scores.
As a matter of fact, the playlist with the highest sum of the scores
should be returned as the recommendation for the playlist. Unfor-
tunately, the optimal solution will consume too much computa-
tional time. Therefore, a greedy method is used to expedite the
process of music selection and scheduling.

Firstly, the musical piece with the highest score at the starting
time of the interval is selected. Then, the starting time of the next
musical piece is the sum of the starting time of the selected music
and duration of the music. The next music piece (excluding the
music that has been selected) with the highest score is then se-
lected. These steps are repeated until the stopping time of the mu-
sical piece exceeds the end of the time interval.

However, this procedure has a serious problem in that through
the trained mixed ANNs, the playlist would always be the same at
the same time interval even on a different day. Therefore, the prob-
ability method is adopted to revise the strategy of playlist genera-
tion. In this method, the computed score of a musical piece is
formulated as the probability of being selected. This implies that
the musical piece with a higher set score has a higher possibility
to be selected into the list. Nevertheless, this value is relatively
smaller than the total number of music pieces available. In order
to formulate a probability that weights this value appropriately,

we restrict only musical pieces with a score larger than five as can-
didates to be added into the music playlist. The probability of a
music playlist candidate m, being selected at time t is defined as
follows:

S(my|t)

P(my|t) = ——————
el =S S

(13)

where m is the candidate with a score larger than 5, S(m|t) is the
score of music m at the time t and k is the number of music
candidates.

This probability method can also be used to address the prob-
lem that arises when a user typically avoids listening to the same
musical piece repeatedly in a short time period. In this event, the
selection of a musical piece can be made on the basis of the calcu-
lated probability rather than the absolute score.

Users may also change their music preference after using the
system for a period of time, which is reflected by the lower level
rating set towards the recommended music. At this point, the
mixed ANNs should be retrained using the newer user’s score ta-
ble. In this instance, the retraining time can be reduced by collect-
ing training data with mainly positive scores (i.e. score larger than
5). In other words, it should be possible to rate music that has not
been considered as candidate. Therefore, in the music selection
module, when a user always gives a low score to the recommended
music in a specific time period continuously for several days, the
module would choose some musical piece from the music database
randomly to be placed into the playlist during that time period.

3.3. Cold start problem

A common problem for music recommendation systems is the
cold start problem, whereby the number of the response data from
a new user is insufficient to produce a satisfactory answer. This is
because the time parameter divides the score table, causing the
rating data stored to become sparser than the ones of the other sys-
tems. This is also a prominent problem faced by our system, i.e.
insufficient training data results in a playlist that is generated no
different to a random selection. This problem only disappears
when the user has used the system for a prolonged time period.

In order to minimize the effect of the cold start problem, a col-
laborative method is adopted for our system. In this method, the
rating records held by similar users are treated as a part of the
training data, whereby users are deemed similar when they have
a similar background and have listened to the same musical piece
with similar rating scores.

Users with a similar background are determined via a question-
naire that requires any new user to reply to the relevant questions
upon registration with the system. These questions include the
classifications of their jobs, ages, sexes, tastes of music, etc. The
higher the number of identical answers between any two users,
the higher the degree of background similarity between them.

The background similarity measure and similar rating scores
form integral parts of the similarity degree function. In the latter,
as the rating scores for distinct users are possibly different, a pre-
defined score threshold (e.g. 5 in our previous example) has been
used to separate the score table into two portions. One portion
contains the records with scores larger than the threshold, imply-
ing that the music content is acceptable to the user while the other
portion is unacceptable to the user. Therefore, when the system
computes the similarity degree between two users, the rating of
the music is simplified within the system as either acceptable or
unacceptable. The similarity degree between user x and user y is
defined as follows:

2822 N.-H. Liu et al./Expert Systems with Applications 37 (2010) 2815-2825

Table 3a

The partial data extracted from the profile of new user x.
Question Answer | MusicID Score Time Date

stamp

Sex Female | 3 10 01:00 pm 2008/11/2
Jobs Student | 4 7 01:04pm 2008/11/2
Age 15-20 | 5 3 08:14am 2008/11/3
Devotee of rock Yes 7 4 08:05am 2008/11/5
Devotee of pop Yes 8 7 11:09am 2008/11/5
Devotee of hip hop No 10 3 11:14am 2008/11/5

Table 3b
The partial data extracted from the profile of user y.
Question Answer | MusicID Score Time Date
stamp
Sex Female | 3 10 01:05pm 2008/11/4
Jobs Student | 4 8 01:09pm 2008/11/4
Age 15-20 | 5 3 09:14am 2008/11/5
Devotee of rock No 7 2 09:05am 2008/11/6
Devotee of pop Yes 9 8 09:09am 2008/11/6
Devotee of hip hop Yes 10 3 09:14am 2008/11/6
. Same(x Num(Pos(x) N Pos
Sim(x.y) — STme(.y) | Num(Pos(x) 1 Pos(y)
n Num(Pos(x) U Pos(y))
Num(Neg(x) N Neg(y)) (14)
Num(Neg(x) U Neg(y))

where Same(x, y) is the number of identical responses between two
users x and y, n is the number of questions in the questionnaire.
Pos(x) and Pos(y) are the music objects in the users’ score table of
x and y with the scores higher than a predefined threshold. Neg(x)
and Neg(y) are the music objects in users’ score table of x and y with
scores less than or equal to the predefined threshold. Num(S) func-
tion returns the number of items in set S. The value of Sim(x,y)
ranges between 0 and 3. The value implies the similarity degree be-
tween user x and user y.

We use the following simplified table as an example:

Observing Tables 3a and 3b, the similarity degree between new
user x and user y is computed as:

Sim(x,y) = 4/6 +2/4 +3/3 = 2.17

After computing the similarity degree between the new user
and another user, the system searches k most similar users (i.e.
kNN search) and then copies the k users’ records into the new
user’s score table for those records the music IDs are not contained
in the new user’s table. The copied records are used to increase the
number of the new user’s training data. In our system, the collab-
orative method is not only provided to the new user but also to
previous users when they want to involve the other user’s opinion
into their decision mechanisms.

4. Evaluation

The implementation of the playlist generation system is illus-
trated in Section 4.1. The results of a series of experiments are
shown and explained in Section 4.2.

4.1. Implementation

The playlist generation system is installed at both the client and
the server sites. The server is based on Microsoft’s ASP.Net where
an SQL server records the user’s profiles. The user plays the music
and rates the scores of music through the program installed at the
client site. The user’s interface is shown in Fig. 7.

Automatic Music Player

Playlist

BEENS 04:33"

BE—ETNEE 0413 5
03:41" |

Score: 6

Scheduling fromnowto 09 : 35

(@4 houre formal) Rebuild personal
system

Fig. 7. The user’s interface.

I Rescheduling playlist]

I Scheduling setting]

4.2. Experimental results

In the following experiments, we have allowed the system to
run for a sufficiently long period of time in order to train the kernel
adequately for learning the relations between the user’s music
preference and the associated time parameter. Only results per-
taining to the performance of our system are shown as no other
systems in the literature has factored in the time parameter, to
the best of our knowledge.

In the initial stage of experimentation, 300 MP3 music files and
associated MIDI files are loaded into the music database. In order
to satisfy users’ demands for new music, new incoming music files
are also processed accordingly during the experimental trials.

Users are divided into two main groups. The first group consists
of graduate students who are familiar with the proposed method of
the playlist generator system. The assignment to users of group
one is to find out the suitable parameters for the extraction of wave
data. The second group consists of university students who are the
users to test the performance of the system under different param-
eter settings.

Although every user uses a different rating scale, a common rule
has been enforced to all users such that a score larger than five im-
plies that the musical piece is acceptable. We define the scheduling
quality to measure the system performance. The function of this
quality is shown as follows:

Quality = Na (15)
N

where N is the number of music objects in the playlist and N, is the

number of music objects in the playlist with a score higher than 5.

In the experiments, the weights between long term ANN and
short term ANN are decided by the user, with the time period of
training data for the short term ANN set to one week. The user also
controls the timing to retrain the personal mixed ANNs.

In the first experiment, the two strategies previously discussed
are used to extract the features of vocal waves. The k values in
strategy 2 are 2, 3, and 4. All the users do not use the collaborative
method and the experimental days are 8 weeks.

N.-H. Liu et al./Expert Systems with Applications 37 (2010) 2815-2825 2823

From Fig. 8, the result shows that strategy 2 (i.e. clustering
method) outperforms strategy 1 (i.e. only statistics). Specifically,
the higher the k value, the better the average quality. However,
the higher k value also results in a longer training time due to
the high dimensionality of the training data. We can also observe
from the experimental results that the different k values have little
divergence. Therefore, considering the load on the system, we set
the k value as 2 in the later experiments.

The experimental results also demonstrate an interesting phe-
nomenon. The average qualities are down from week 5 onwards
regardless of the strategy and the k values used. Upon questioning
the users, we find that a lot of users are tired of listening to musical
pieces in the database after a long period of time. To address this
issue, new musical pieces are added into the database in every
week for the later experiments.

In the second experiment, the collaborative method is com-
pared with the non-collaborative method. Six groups of users par-
ticipated in this experiment. The first group of users is provided a
playlist obtained through random selection while the second group
of users is provided a playlist obtained through the non-collabora-
tive method. For the rest of the groups, the collaborative method is
used to generate the playlists for the 2, 3, 4 and 5 users with similar
settings, respectively. This experiment is run for a longer duration
(12 weeks) than the first experiment due to our earlier observation
that the users, as university students, are unable to listen to music
for a long time everyday. This has been reflected in the result of the
previous experiment, which shows the number of clusters to be 2
(i.e. k = 2). The experimental result is shown in Fig. 9.

According to the curve of random selection in Fig. 9, the average
qualities are always below 0.2. It can be noted that the gradient of
the curve increases slowly in the initial weeks. The reason for this
is that the users that are initially not familiar with some musical
pieces soon become fond of these musical pieces after listening
to them for several times. Nevertheless, the same does not hold
for the average qualities when the random method is used to select
the music.

By comparing the curves of the non-collaborative and the col-
laborative methods, we discover that the average quality is the
highest in the curve at the seventh week but the average qualities
of the collaborative methods get their highest points quickly at the
fourth week. From this, we can conclude that the collaborative
method can limit the effect of a cold start. Furthermore, the aver-
age qualities of the collaborative methods are higher than one of
the non-collaborative method from the second week. The reason
is that the collaborative users could obtain other similar users’
score records, which reduces the probability of rating the user’s
unfavorable music.

09
0.8 -
0.7
0.6 -
0.5
0.4

Average quality

03

0.2 | —&— Strategy 1 —aA— Strategy 2 (k=3)

—8— Strategy 2 (k=2) —— Strategy 2 (k=4)

0.1

Weeks

Fi

g. 8. Average quality with different strategies and parameters.

—&—Random —e— Collaboration(k=3)
0.9 —m— Non-collaboration —li— Collaboration(k=4)
—a— Collaboration(k=2) —e— Collaboration(k=5)

0.8
0.7
0.6
05

Average quality

04
03
02

1 2 3 4 5 6 7 8 9 0 11 12
Weeks

Fig. 9. Average qualities of random, non-collaborative, and collaborative methods.

Fig. 9 also shows the relationship between the preference set-
tings of similar users and the average quality curves in the collab-
orative methods. We observe that the increase in the number of
similar users (i.e. k from 2 to 4) also increases the gradient of the
curve and enhances the average quality until a certain value (i.e.
k is 5). This happens when the value of k is too large, which in-
creases the number of scoring records from dissimilar users and
negatively affects the results of the playlist generation.

In the third experiment, we investigate the relationship be-
tween the average quality and a user with a regular daily life (also
termed a regular user). We determine the regular users through a
questionnaire that lets the user decide if he/she regards himself/
herself as a person with a regular daily life. According to the an-
swers we have collected from our questionnaires, 42% of the ques-
tioned individuals have a regular life while the others do not. This
data has been obtained from experiment two. In the following
experiment, we divide the data into two classes, i.e. regularity
and irregularity. For visual clarity in the graphs, only data using
the collaborative method with k = 4 has been re-evaluated. The re-
sults obtained are shown in Fig. 10.

From the curves in Fig. 10, we observe that the average quality
of users without regularity has increased to the highest point at the
third week and stabilizes at the fifth week. After the fifth week,
there are no evident differences between the two curves. As stated
earlier, the music listened to by irregular user is irrelevant with the
time parameter, the mixed ANNs only has to learn the user’s pref-
erence in music regardless of the playing time (i.e. the system be-
comes a general playlist generator without the time parameter).
Therefore, the necessary number of training data is less than the

09
0.8 |
0.7 |
0.6 |
0.5F

Average quality

0.4

03
02k —e— Regularity

o1k —=— Irregularity

1 2 3 4 5 6 7 8 9 10 11 12
Weeks

Fig. 10. Average qualities of a regular user and an irregular user.

2824 N.-H. Liu et al./Expert Systems with Applications 37 (2010) 2815-2825

—¢— No time parameter |

—=— Time parameter

0.9 —4&— Random

0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

Average quality
T T T T T T

Weeks

Fig. 11. Average qualities using no time parameter, time parameter, and random
methods.

one for the regular user and consequently reduces the training
time of the mixed ANNSs.

In the second stage of this experiment, we investigate the effect
of the time parameter on the result of playlist generation. Here, a
similar system is constructed but excludes the use of the time
parameter in the mixed ANNs. Only regular users are used and they
are divided into three groups. The first group of users uses the sys-
tem with random music selection. The second group of users uses
the system that has excluded use of the time parameter. The third
group of users uses the original complete system. The second and
third groups adopt the collaborative method (k = 4). Referring to
the previous experiments, the curve of average quality is stable
after five weeks and thus, this experiment has only been made to
run for eight weeks. The experimental results are shown in Fig. 11.

From the experimental results obtained, we observed that the
system using the time parameter outperformed the other systems
in general and that the system without the time parameter only
performs slightly better than the system utilizing random selec-
tion. Furthermore, the result of random selection is worse than
the results obtained from experiment two. One reason could be
that the regular user wanted to listen to some particular type of
music at a specified time (i.e. the number of preferred music pieces
is less due to random selection) and as a result, the probability of a
good selection is lower than the one for irregular users. Thus, we
can conclude that the time parameter is an important element
for an automatic playlist generator for regular users.

5. Conclusion

Automatic music playlist generators provide a more effective
mechanism to schedule music that the user desires to play. Never-
theless, existing systems have only scheduled the music playlist
based on certain restrictions or use some musical pieces as seeds
to find similar music. The common drawback in these systems is
that they only schedule musical pieces that are only temporarily
favorable. In this paper, we present a novel playlist generator
which is based on artificial neural networks. In this generator,
the generation of the playlist is not limited to only the user’s pref-
erence in music but also the changes in user preferences over time.
The inclusion of the time parameter in the playlist generator is
integral to the user with a regular daily life. Through utilizing the
time parameter, it enables the system to produce different playlists
suitable at different times of the day. That is the core contribution
in this paper.

Apart from this, in order to satisfy the needs of different users,
we extract multiple features from both the symbolic form and the
wave data for classification. These features are extracted from the
refrain of music due to the refrain being the impressible character-
istic to the listener. From our experimental results, we have dem-
onstrated that the proposed intelligent system can provide a
satisfactory service for users with or without a regular daily life.

Another important contribution in this paper is our definition of
the Cinderella phenomenon and the proposal of a method to re-
duce the effect of this phenomenon that generally appears in any
recommendation system that uses the time parameter. We have
also discovered that in order to comply with users that prefer lis-
tening to new pop musical pieces, the music database should con-
tinuously be updated with new musical pieces to ensure the
performance of the system is upheld.

We also note that it is time-consuming to train the artificial
neural networks and that a real time system cannot be built easily
when the user needs to retrain the kernel. Hence, in the future, we
wish to evaluate other methods (e.g. decision trees) to construct
the playlist generator and involve dimension reduction methods
to reduce the construction time. More time parameters such as
the season, festival, date and so on can also be used in the sys-
tem, which can in effect generate a more preferable playlist for
the user.

References

Andric, A., & Haus, G. (2006). Automatic playlist generation based on tracking user’s
listening habits. Multimedia Tools and Applications, 29(2), 127-151.

Aucouturier, J. J., & Pachet, F. (2002). Scaling up music playlist generation. In
Proceedings of the IEEE international conference on multimedia and expo.

Barrichelo, V. M. O., Heuer, R.]., Dean, C. M., & Sataloff, R. T. (2001). Comparison of
singer’s formant, speaker’s ring, and LTA spectrum among classical singers and
untrained normal speakers. Journal of Voice, 15(3), 344-350.

Billsus, D., & Pazzani, M. (1999). A hybrid user model for news story classification. In
Proceedings of international conference on user modeling (pp. 99-108).

Chen, H.-C., & Chen, A. L. P. (2005). A music recommendation system based on
music and user grouping. Intelligent Information Systems, 24(2/3), 113-132.
Feng, L., Nielsen, A. B., & Hansen, L. K. (2008). Vocal segment classification in
popular music. In Proceedings of the 9th international conference on music

information retrieval (pp. 121-126).

Flexer, A., Schnitzer, D., Gasser, M., & Widmer, G. (2008). Playlist generation using
start and end songs. In Proceedings of the 9th international conference on music
information retrieval (pp. 173-178).

Guyon, L. P. (1991). Applications of neural networks to character recognition.
International Journal of Pattern Recognition and Artificial Intelligence, 5,
353-382.

Han, J., & Kamber, M. (2001). Data mining concepts and techniques. Morgan
Kaufmann.

Hewlett, W., & Selfridge-Field, E. (1998). Melodic similarity concepts, procedures, and
applications. Computing in musicology (Vol. 11). Cambridge: MIT Press.

Kaji, K., Hirata, K., & Nagao, K. (2005). A music recommendation system based on
annotations about listeners’ preferences and situations. In Proceedings of 1st
international conference on automated production of cross media content for multi-
channel distribution (pp. 231-234).

Konstan, J. A., Miller, B. N., Maltz, D., Herlocker, J. L., Gordon, L. R., & Ried], J. (1997).
Grouplens: Applying collaborative filtering to usenet news. Communications of
the ACM, 40(3), 77-87.

Krulwich, B., & Burkey, C. (1996). Learning user information interests through
extraction of semantically significant phrases. In Proceedings of AAAI spring
symposium on machine learning in information access.

Lidy, T., Rauber, A., Pertusa, A., & Inesta, J. M. (2007). Improving genre classification
by combination of audio and symbolic descriptors using a transcription system.
In Proceedings of the 8th international conference on music information retrieval.

MIDI Manufacturers Association (1996). Complete Detailed MIDI 1.0 Specification,
Los Angeles, California.

Platt, J. C., Burges, C. J. C.,, Swenson, S., Weare, C., & Zheng, A. (2002). Learning
a Gaussian process prior for automatically generating music
playlists. Advances in Neural Information Processing Systems (pp. 1425-
1432).

Reed, J., & Lee, C.-H. (2007). A study on attribute-based taxonomy for music
information retrieval. In Proceedings of the 8th international conference on music
information retrieval.

Rucker,], & Polanco, M.]J. (1997). Personalized navigation for the web.
Communications of the ACM, 40(3), 73-75.

Schein, A. L., Popescul, A., Ungar, L. H., & Pennock, D. M. (2001). Generative models
for cold-start recommendations. In Proceedings of SIGIR workshop on
recommender systems (pp. 253-260).

N.-H. Liu et al./Expert Systems with Applications 37 (2010) 2815-2825 2825

Suyoto, I. S. H., & Uitdenbogerd, A. L. (2005). Effectiveness of note duration
information for music retrieval. In Proceedings of database systems for advanced
applications (pp. 265-275).

Tsai, W.-H., & Wang, H.-M. (2006). Automatic singer recognition of popular music
recording via estimation and modeling of solo vocal signals. IEEE Transactions on
Audio, Speech and Language Processing, 14(1), 330-341.

Wiggins, G. E., Miranda, A. S., & Harris, M. (1997). A framework for the evaluation of
music representation systems. Computer Music Journal, 17(3), 31-42.

Yoshii, K., Goto, M., Komatani, K., Ogata, T., & Okuno, H. G. (2006). Hybrid
collaborative and content-based music recommendation using probabilistic
model with latent user preferences. In Proceedings of the 7th international
conference on music information retrieval.

	An intelligent music playlist generator based on the time parameter with artificial neural networks
	Introduction
	Related work
	Smart music playlist generator
	Features extraction
	Features from symbolic form
	Features extraction from vocal wave

	The playlist generation engine
	Training data of artificial neural networks
	Time parameter

	The kernel of the playlist generator – a mixed ANN
	Reduction of training time
	Continuity problem of the time attribute

	Music selection procedure

	Cold start problem

	Evaluation
	Implementation
	Experimental results

	Conclusion
	References

