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a b s t r a c t

This paper presents an intelligent decision support system for evaluating and selecting specific ships
under uncertainty. A task-oriented procedure is developed for determining the relative importance of
the evaluation and selection criteria with respect to a specific shipping task. A fuzzy multicriteria analysis
algorithm is developed for determining the overall performance of each ship across all the selection cri-
teria and their associated sub-criteria. An intelligent decision support system capable of integrating the
developments above is proposed for facilitating the ship evaluation and selection process. An example is
presented to demonstrate the effectiveness of the proposed intelligent decision support system.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

With the increasing globalization and the rapid growth in inter-
national trade exemplified by the growth of almost 70% from 1990
to 2004 (United Nations Conference on Trade, 2006), cargo ship-
ping in marine transportation becomes increasingly important to
all the stakeholders in international trade. This is especially the
case in Australia due to its geographic location and its status as a
major supplier of mineral materials in the world (Ang, Cao, & Ye,
2007). As a result, evaluating and selecting the most suitable ship
from many available ships for a giving shipping task becomes a
critical decision to be made in marine transportation.

Evaluating the suitability of individual ships for a specific task
in marine transportation is complex and challenging. The complex-
ity of the evaluation and selection process is due to: (a) the multi-
dimensional nature of the problem (Deng & Wibowo, 2008), (b) the
presence of multiple, often conflicting evaluation criteria and their
associated sub-criteria (Balmat, Lafont, Maifret, & Pessel, 2009;
Eleye-Datubo, Wall, & Wang, 2008), and (c) the existence of subjec-
tiveness and uncertainty in the human decision making process
(Wibowo & Deng, 2009; Zimmermann, 2000). The challenge of
the evaluation and selection process comes from the need for mak-
ing transparent and consistent decisions in a timely manner based
on a comprehensive evaluation of the suitability of individual ships
with respect to a specific shipping task (Ang et al., 2007; Meyrick
and Associates, 2007).

Many approaches are developed for solving the ship evaluation
and selection problem from different perspectives (Ang et al.,
ll rights reserved.
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2007; Celik, Deha Er, & Fahri Ozok, 2009; Kandakoglu, Celik, &
Akgun, 2009). Ang et al. (2007), for example, propose an integer
programming approach for solving the ship evaluation and selec-
tion problem. Their approach focuses on maximizing the profit in
evaluating and selecting individual ships while simultaneously
considering the uncertainty on the shipping capacity in the deci-
sion making process. A weighting factor is introduced in assessing
the overall suitability of individual ships for accommodating the
fact that various objectives in a given situation are of different pri-
orities. This approach is proved to be effective for addressing the
ship evaluation and selection problem with limited resources
(Gabriel, Kumara, Ordoneza, & Nasseriana, 2005). The approach,
however, requires considerable computational effort due to the
use of integer programming in the ship evaluation and selection
process.

Celik et al. (2009) apply the analytical hierarchy process (AHP)
(Saaty, 2007) for solving the ship evaluation and selection problem
under uncertainty. With the use of this approach, multiple evalua-
tion and selection criteria are simultaneously considered. To re-
duce the cognitive burden on the decision maker in the decision
making process, pairwise comparison is used for assessing the
performance of individual ships and the relative importance of
the selection criteria. The approach is shown to be effective for
solving the ship evaluation and selection problem. It, however,
becomes cumbersome, and may lead to inconsistent decisions
being made when the number of alternatives and criteria increases
(Yeh, Deng, & Chang, 2000).

Kandakoglu et al. (2009) develop a hybrid approach by integrat-
ing business analysis, AHP (Saaty, 2007), and the technique on
ordered preference by similarity to the ideal solution (TOPSIS)
(Deng, Yeh, & Willis, 2000) for solving the ship evaluation and
selection problem. Business analysis is used for adequately
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determining the evaluation and selection criteria through a
comprehensive consideration of the interest of various stakehold-
ers in the decision making process. AHP is used for assessing the
relative importance of these evaluation and selection criteria.
TOPSIS is adopted for determining the overall performance of indi-
vidual ships across all the evaluation and selection criteria. The
approach is found to be intuitively easy to understand and imple-
ment. This approach, however, is questioned on its modeling of the
uncertainty and subjectiveness of the human decision making
process.

This paper presents an intelligent decision support system (DSS)
for effectively evaluating and selecting ships under uncertainty in
marine transportation. To effectively handle the multi-dimensional
nature of the problem, the methodology of multi-criteria is used. To
adequately determine the relative importance of the evaluation and
selection criteria with respect to a specific shipping task in the
weighting process, a task-oriented procedure is proposed. To deter-
mine the overall performance of each ship across all the selection
criteria and their associated sub-criteria on which the selection
decision is made, a fuzzy multicriteria analysis algorithm is
developed based on the concept of ideal solution and the degree
of dominance. To demonstrate the applicability of the proposed
intelligent DSS for solving the ship evaluation and selection prob-
lem under uncertainty, an example is presented.

In what follows, we first present the ship evaluation and selec-
tion problem in the context of multicriteria analysis, followed by a
task-oriented procedure for determining the weightings of the
selection criteria. We then develop a fuzzy multicriteria analysis
algorithm for solving the ship evaluation and selection problem
on which an intelligent DSS is proposed. Finally we present an
example for demonstrating the applicability of the proposed intel-
ligent DSS for solving the ship evaluation and selection problem
under uncertainty.
2. Formulating the ship evaluation and selection problem

RightShip is formed as a joint venture company by two biggest
producers of mineral resources in Australia including BHP Billiton
and Rio Tinto. The objective of the company is to improve the deci-
sion making process of evaluating and selecting available ships
with respect to a specific shipping task in the two companies
respectively, and at the same time to offer its ship evaluation
and selection services to their global customers involved in marine
transportation. Since being formed in 2001, RightShip has grown
substantially to serve a global client base far beyond its parent
companies.

The challenge that RightShip faces in evaluating and selecting
ships is to make timely and consistent recommendations to its cus-
tomers on the selection of specific ships by adequately considering
the interest of various stakeholders in the ship evaluation and
selection process (Guneri, Cengiz, & Seker, 2009; Kandakoglu
et al., 2009). To assign the most suitable ship to a specific task,
the decision maker needs to evaluate the overall performance of
each available ship with respect to the specific conditions of indi-
vidual ships and the requirements of a given task (Deng & Wibowo,
2008; Vis, 2006). With the multi-dimensional nature of the ship
evaluation and selection problem, multicriteria analysis provides
a systematic framework for effectively solving the ship evaluation
and selection problem (Yeh, Deng, Wibowo, & Xu, 2010).

A typical ship evaluation and selection problem is usually char-
acterized by the availability of various ships and the presence of
multiple, usually conflicting evaluation and selection criteria and
their associated sub-criteria if existent. The ship evaluation and
selection process consists of: (a) identification of the requirements
for a specific shipping task, (b) assessment of the task require-
ments, (c) evaluation of the overall performance of all the available
ships, and (d) selection of the most suitable ship.

Identifying the requirements of a shipping task for solving the
ship evaluation and selection problem involves in determining
the interest of various stakeholders in a given situation. These
stakeholders may include the ship owner, the ship manager, the
financial institution, and the insurance company (Barnhart & La-
porte, 2007; Guneri et al., 2009). They often have different interests
on the selection of a specific ship for a given task, reflected by the
specific requirements on the selection of individual ships. For
example, ship owners concern more about the overall efficiency
of the ship (Balmat et al., 2009). Ship managers care more about
the shipping cost and compliance with international regulations
(Ang et al., 2007). Financial institutions are more interested in
the return on their investment (Barnhart & Laporte, 2007). Insur-
ance companies are concerned with the safety of each ship.

Task requirements as a reflection of the expectations of the
stakeholders on a given task are usually assessed subjectively by
the decision maker. This often leads to different weightings being
given to various evaluation and selection criteria in the multicrite-
ria decision making process. For example, a ship manager who con-
cerns about the cost of the ship will give a higher weighting on the
operating efficiency criterion. On the other hand, the insurance
company who is more concerned about the safety of each ship will
allocate a higher weighting to the ship risk potential criterion (Bal-
mat et al., 2009; Kandakoglu et al., 2009).

The performance rating of individual ships with respect to each
criterion or its associated sub-criterion is usually determined by
the decision maker subjectively. With the determination of the
performance of individual ships and the weightings of the evalua-
tion and selection criteria, the overall performance of each ship
across all the criteria and their associated sub-criteria can then
be calculated on which the most suitable ship can then be selected.

A typical ship evaluation and selection problem usually involves
in the evaluation and selection of one or more ships (alternatives)
from a set of n available ships (alternatives) Ai (i = 1,2, . . . ,n). These
alternatives are to be assessed based on m evaluation and selection
criteria Cj (j = 1,2, . . . ,m). Each criterion Cj may be broken down into
pj sub-criteria Cjk (k = 1,2, . . . ,pj). Fig. 1 shows the hierarchical for-
mulation of the ship evaluation and selection problem in the con-
text of multicriteria analysis, in which the evaluation and selection
criteria and their associated sub-criteria are discussed in the
following.

The operating efficiency (C1) is used for reflecting the subjective
assessment of the decision maker on the financial feasibility of the
ship with respect to the budget situation of an organization (Xie
et al., 2008). It is measured by the fuel efficiency (C11), the mainte-
nance efficiency (C12), the insurance cost (C13), and the ship crew
cost (C14).

The ship capacity (C2) reflects on the subjective perception of
the decision maker on the features and specifications of each avail-
able ship (Xie et al., 2008). It is assessed by the size of the ship
(C21), the gross tonnage of the ship (C22), the net tonnage of the
ship (C23), and the speed of the ship (C24) (Balmat et al., 2009).

The level of risk (C3) that each ship has reflects the decision ma-
ker’s subjective assessment on the potential of failure of the ship
during its journey (Barnhart & Laporte, 2007; Sambracos, Paravan-
tis, Tarantilis, & Kiranoudis, 2004). This is measured by the weather
condition and traffic density (C31), the route near shallow waters
(C32), navigator failure (C33), and machinery failure (C34).

There are a large variety of cargoes including manufactured
consumer goods, unprocessed fruits and vegetables, processed
food, livestock, industrial equipments, processed materials, and
raw materials in marine transportation (Barnhart & Laporte,
2007). The nature of the cargo therefore has a direct impact on
the selection of a specific ship. As a result, the characteristics (C4)



Fig. 1. The hierarchical structure for ship evaluation and selection.
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of cargo are used for reflecting the decision maker’s concern on the
type of cargo to be transported by the ship. This is measured by the
level of corrosiveness (C41), the level of explosiveness (C42), the le-
vel of toxicity (C43), the level of radioactivity (C44), and the level of
flammability of the cargo (C45).

To evaluate the overall suitability of individual ships for a given
task across all the evaluation and selection criteria and their asso-
ciated sub-criteria, it is desirable to have a structured approach
capable of: (a) adequately determining the weightings of the eval-
uation and selection criteria and their associated sub-criteria with
respect to a specific task, (b) effectively aggregating the weightings
of the criteria and the performance ratings of individual ships for
determining the overall suitability of each ship across all the selec-
tion criteria and their associated sub-criteria, and (c) appropriately
providing an interactive mechanism that allows the decision ma-
ker to interact with the system for exploring the implications of
various decision making behaviors on the selection decision being
made. As how to determine the criteria weightings consistently
with respect to various task requirements in a timely and transpar-
ent manner is critical for making effective selection decision, the
next section presents a task oriented procedure for determining
the criteria weightings in the ship evaluation and selection process.
3. A weighting procedure

Criteria weighting is a preference elicitation process for deter-
mining the relative importance of the criteria with respect to the
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specific requirement of the task in multicriteria analysis (Yeh, Wil-
lis, Deng, & Pan, 1999). This process is usually used for reflecting
the interest of the stakeholders in the decision making process
with respect to the overall objective of the problem. Due to the
multi-dimensional and often conflicting nature of the evaluation
and selection criteria, consistently criteria weighting is critical for
effectively solving the multicriteria evaluation and selection prob-
lem (Yeh et al., 2000).

There are many approaches developed for criteria weighting in
multicriteria analysis. Saaty (1980), for example, develops the AHP
for criteria weighting. A reciprocal pairwise comparison matrix is
constructed along a subjective scale of 1–9. The criteria weightings
are obtained by synthesizing various assessments in a systematic
manner. This approach, however, may become cumbersome when
the number of alternatives and criteria increases.

Tabucanon (1988) proposes a direct ranking and rating ap-
proach for criteria weighting. The decision maker is required to
first rank all criteria according to their importance, then to rate
them by giving each of them an estimated number such as 10 to
indicate their relative degrees of importance. Criteria weightings
are obtained by normalizing these raw estimations. The approach,
however, obviously suffers from several limitations including the
inadequacy in modeling the subjectiveness and imprecision of
the human decision making process and the cognitive demanding
on the decision maker in the subjective decision making process.

Wang and Luo (2010) propose a mathematical programming
approach for criteria weighting based on the standard deviation
of each criterion and their corresponding correlation with the over-
all assessment of the alternative. The approach is capable of incor-
porating the decision maker’s subjective preference in determining
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Fig. 2. Membership functions for de
the criteria weights. The weighting process, however, may become
tedious and difficult to manage as the number of criteria increases.

In solving the ship evaluation and selection problem for accom-
plishing a specific task, the decision maker is usually required to
consider all task requirements simultaneously in assessing the cri-
teria weightings. This often places a heavy cognitive burden on the
decision maker to assess precisely how and to what extent these
task requirements influence the criteria weights due to the limita-
tions on the amount of information that humans can effectively
handle (Deng, 2005; Yeh et al., 2000). The presence of imprecision
and subjectiveness in describing the task requirements further
complicates the criteria weighting process. To effectively deal with
this issue, a task oriented weighting procedure capable of produc-
ing consistent and reliable criteria weightings is proposed in the
following.

A shipping task is usually characterized by four requirements
including daily cost (T1), ship condition (T2), safety condition (T3)
and cargo type (T4). The daily cost reflects on the allowable average
cost for operating the ship. The ship condition is a measure of how
efficient the ship is in handling the specific task (Balmat et al.,
2009). The safety condition concern reflects on the possible failure
of the ship during its operation. The cargo type is a measure on the
type of the cargo being transported. For example, the concern of
the decision maker on the daily cost (T1) makes the decision maker
give a higher weighting to the operating efficiency criterion (C1).
The concern about the safety condition of the ship (T3) leads to a
higher weighting being given to the risk potential criterion (C3).

In the ship evaluation and selection process, experienced
experts usually use their intuition and knowledge for making the
decision in an ad hoc manner. This rule-of-thumb approach,
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however, is not always reliable and consistent, due to the impre-
cise nature of human decision making and the information avail-
able (Hong, Lin, & Wang, 2003; Kandakoglu et al., 2009). To
facilitate the weighting process, a production rule based approach
is adopted.

To adequately model the uncertainty and imprecision of the
weighting process, linguistic terms approximated by fuzzy
numbers are used in knowledge representation and reasoning. To
effectively reduce the cognitive demanding on the decision maker,
individual production rules are developed for explicitly reflecting
the effect of individual task requirements on the relative impor-
tance of the criteria.

A reasoning process is then followed in a given situation for
determining the criteria weightings. Due to the presence of uncer-
tainty, subjectiveness and imprecision in the evaluation process,
fuzzy production rules are used (Guo, Zhu, Gao, Li, & Zhou, 2009;
Zimmermann, 2000). A fuzzy rule is a conditional statement: IF
(fuzzy proposition) THEN (fuzzy proposition) (Chen & Li, 2011;
Hong et al., 2003). It is expressed by the decision maker in terms
of linguistic statements according to the importance of the factors
involved. These IF-THEN rules explicitly reflect the effect of the
task requirement on the relative importance of the criteria in han-
dling the multicriteria evaluation and selection problem. Each rule
takes the form of: IF hrequirementi THEN houtcomei where require-
ment describes the requirement of the task and outcome represents
the impact of this requirement on the relative of individual criteria.
This leads to the development of the fuzzy knowledge for
determining the relative importance of the selection criteria with
respect to a specific task.
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Fig. 3. Membership functions for re
For computational efficiency and ease of data acquisition, trian-
gular fuzzy numbers are used for approximating the linguistic
terms used (Chen & Hwang, 1992). These linguistic terms are used:
(a) to describe the states of the corresponding task requirement,
and (b) to represent the weightings of the corresponding criterion.
Fig. 2 shows the membership function of the term set {Very Low
(VL),Low (L),Medium (M),High (H),Very High (VH)} based on
extensive consultations with the industry experts.

The membership functions of the term set {Very Unimportant
(VU),Unimportant (U),Medium (M), Important (I),Very Important
(VI)} are used for representing the criteria weightings as shown
in Fig. 3. In this study, the basic relative weights for criteria C1,
C2, C3, and C4 are given as 0.4, 0.3, 0.2, and 0.15, respectively
through consultations with the experts when no specific task
requirements are specified. This is the ratio of criteria weights to
be obtained when the same linguistic term or value is assessed
for all four criteria.

Extensive consultations and interviews with the industry ex-
perts are conducted for developing the fuzzy knowledge base in
criteria weighting. A set of 23 fuzzy rules is therefore constructed
as shown in Table 1.

With the use of Table 1, the weightings of individual criteria can
be determined based on assessing the specific situation of the task
requirements. For example, Rule 1 states that IF task requirements
T1 is VL AND T2 is VH AND T3 is VH AND T4 is VH THEN C1 is U AND
C2 is VI AND C3 is VI AND C4 is VI. Rule 15 shows that IF task
requirements T1 is L AND T2 is M AND T3 is VH AND T4 is L THEN
C1 is U AND C2 is M AND C3 is VI AND C4 is M. These fuzzy rules
are easily understood and can be readily modified by the decision
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Table 1
A summary of the fuzzy rules for criteria weighting.

Rule IF THEN

Daily cost (T1) Ship condition (T2) Safety condition (T3) Cargo type (T4) C1 C2 C3 C4

1 VL VH VH VH U VI VI VI
2 VH VL VH VH VI U VI VI
3 VH VH VL VH VI VI U VI
4 VH VH VH VL VI VI VI I
5 VH VH VH VH VI VI VI VI
6 H H H H I VI I I
7 M M M M M M M M
8 VL VL VL VL VU VU U U
9 VL L M H VU U I I

10 L VL VH M U VU VI M
11 M H VL VH M I U VI
12 VH L H VL VI I I U
13 H VH L L I VI U M
14 H VH L M I VI U M
15 L M VH L U M VI M
16 M L L VH I U M VI
17 VH H M H VI I M I
18 L M H L U M I M
19 L H L VH U I U VI
20 H L VH L I U VI M
21 L L H L U U VI I
22 L H L L U I U M
23 L L L L U VU U U
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maker, if necessary, to reflect a specific problem situation. To illus-
trate the effectiveness of the fuzzy rules for criteria weighting in
relation to a specific task, an example is presented in Section 5.

4. A fuzzy multicriteria analysis algorithm

To effectively aggregate the criteria weightings and the subjec-
tive performance ratings, this section develops a fuzzy multicrite-
ria analysis algorithm for evaluating the overall suitability of each
ship against multiple criteria with multi-level hierarchies as shown
in Fig. 1. The proposed algorithm integrates three important con-
cepts in multicriteria analysis, including: (a) the multi-attribute
utility theory (Keeney & Raiffa, 1993), (b) the degree of dominance
(Deng, 1999), and (c) the degree of optimality (Yeh et al., 2000).

To model the subjectiveness and imprecision present in the
multicriteria decision making problem, linguistic terms repre-
sented by triangular fuzzy numbers are used to facilitate the sub-
jective assessment to be made by the decision maker. For a
linguistic term represented as (a1,a2,a3), a2 is the most possible
value of the term, and a1 and a3 are the lower and upper bounds
respectively used to reflect the fuzziness of the term. In practical
applications, triangular fuzzy numbers are commonly used to char-
acterize linguistic information (Deng, 1999; Yeh et al., 2000). The
popular use of triangular fuzzy numbers is mainly attributed to
their simplicity in both concept and computation.

The fuzzy multicriteria analysis algorithm calculates an overall
performance index for each ship across all the evaluation criteria
and their associated sub-criteria if existent. The proposed algo-
rithm starts with the determination of the performance rating of
each ship Ai (i = 1,2, . . . ,n) with respect to each criterion Cj

(j = 1,2, . . . ,m). As a result, a decision matrix for all the alternative
ships can be obtained as follows:

X ¼

x11 x12 � � � x1m

x21 x22 � � � x2m

� � � � � � � � � � � �
xn1 xn2 � � � xnm

2
6664

3
7775; ð1Þ

where Xij represent the linguistic assessments of the performance
rating of ship Ai (i = 1,2, . . . ,n) with respect to criterion Cj

(j = 1,2, . . . ,m).
The weighting vectors W and Wj (j = 1,2, . . . ,m) for the criteria
and their associated sub-criteria respectively can be represented
based on the weight procedure discussed above as:

W ¼ w1;w2; . . . ;wj; . . . ;wm
� �

; ð2Þ

Wj ¼ wj1;wj2; . . . ;wjk; . . . ;wjpj

� �
; ð3Þ

where wj and wjk are the fuzzy weights of criteria Cj and sub-criteria
Cjk.

If sub-criteria Cjk (k = 1,2, . . . ,pj) are existent for criterion Cj, a
lower-level decision matrix can be determined for all the ships,
given as in (4) where yik are the decision maker’s linguistic assess-
ments of the performance rating of ship Ai with respect to sub-cri-
teria Cjk of criterion Cj:

YCj
¼

y11 y21 � � � yn1

y12 y22 � � � yn2

� � � � � � � � � � � �
y1pj

y2pj
� � � ynpj

2
66664

3
77775: ð4Þ

The weighted fuzzy performance matrix that represents the overall
performance of each ship on each criterion can be determined by
multiplying the fuzzy criteria weights (wj) by the ships’ fuzzy per-
formance ratings (xij). If criterion Cj consists of sub-criteria Cjk, the
decision vector (x1j,x2j, . . . ,xnj) across all the ships with respect to
criteria Cj can be determined by

ðx1j; x2j; . . . ; xnjÞ ¼
WjYCjPpj

k¼1wjk

ð5Þ

Given the fuzzy vector (wjx1j,wjx2j, . . . ,wjxnj) of the performance ma-
trix for criterion Cj, a fuzzy maximum (Mj

max) and a fuzzy minimum
(Mj

min) can be determined as in (6) which represent respectively the
best and the worst fuzzy performance ratings among all the ships
with respect to criterion Cj:

lMj
max
ðxÞ ¼ x� xj

min

xj
max � xj

min

; lMj
min
ðxÞ ¼ xj

max � x

xj
max � xj

min

; ð6Þ

where

xj
max ¼ sup

[n
i¼1

ðwjxijÞ; xj
min ¼ inf

[n
i¼1

wjxij
� �

: ð7Þ
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The degree to which the fuzzy maximum (Mj
max) dominates the

weighted fuzzy performance (wjxij) of ship Ai with respect to crite-
rion Cj can be calculated as:

dþij ¼ d Mj
max �wjxij

� �
¼
Z

D Mj
max�wjxijð ÞðaÞda; ð8Þ

where

DMj
max�wjxij

ðaÞ ¼
dLa

Mj
max�wjxijð Þþ dRa

Mj
max�wjxijð Þ

2 ; 0 6 a 6 1;
0; otherwise:

8<
: ð9Þ

Similarly, the degree of dominance of the weighted fuzzy perfor-
mance (wjxij) of ship Ai over the fuzzy minimum (Mj

min) with respect
to criterion Cj is given as:

d�ij ¼ d wjxij �Mj
min

� �
¼
Z

D wjxij�Mj
minð Þ að Þda; ð10Þ

where

D wjxij�Mj
minð ÞðaÞ ¼

dLa
wjxij�Mj

minð ÞþdRa
wjxij�Mj

minð Þ
2 ; 0 � a � 1;

0; otherwise:

8<
: ð11Þ

in which dLa
ðwjxij�Mj

min
Þ and dRa

ðwjxij�Mj
min
Þ are the lower bound and upper

bound of the interval respectively, resulting from the cut on the dif-

ference set ðwjxij �Mj
minÞ.

Zeleny (1982) first introduces the concept of the ideal solution
in decision analysis as the best or desired decision outcome for a
given decision situation. Hwang and Yoon (1981) further extend
this concept to include the negative ideal solution in order to avoid
the worst decision outcome in the decision making process. This
concept has since been widely used in developing various method-
ologies for solving practical decision problems (Deng et al., 2000;
Zeleny, 1982). This is due to: (a) its simplicity and comprehensibil-
ity in concept, (b) its computation efficiency, and (c) its ability to
measure the relative performance of the decision alternatives in
a simple mathematical form.

In line with the above concept, the positive fuzzy ideal solution
consisting of the fuzzy maximum with respect to each criterion
across all ships and the negative fuzzy ideal solution consisting
of the fuzzy minimum in regard to each criterion across all ships
can be determined as follows:

Amax ¼ M1
max;M

2
max; . . . ;Mm

max

� �
; Amin ¼ M1

min;M
2
min; . . . ;Mm

min

� �
:

ð12Þ

Using the fuzzy ideal solutions as the common base for comparison,
the degree of dominance that the positive ideal solution is on ship Ai

(i = 1,2, . . . ,n) can be calculated as follows:

dþi ¼
Xm

j¼1

dþij : ð13Þ

Similarly, the degree of dominance that each ship Ai (i = 1,2, . . . ,n)
has on the negative ideal solution can be determined as:

d�i ¼
Xm

j¼1

d�ij : ð14Þ

A ship is preferred if it is dominated by the positive fuzzy ideal
solution by a smaller degree, and at the same time dominates
the negative fuzzy ideal solution by a larger degree (i.e. farther
away from the negative fuzzy ideal solution; Deng et al., 2000;
Yeh et al., 2000). Following this principle, an overall performance
index for each ship Ai (i = 1,2, . . . ,n) across all the criteria can be
calculated by
Pi ¼
d�i
� �2

dþi
� �2 þ d�i

� �2
: ð15Þ

The larger the performance index Pi, the more preferred the ship Ai.
5. An intelligent DSS framework

A DSS is a computer based information systems used to support
decision making in situations where it is not possible or not desir-
able to have an automated system for performing the entire deci-
sion making process (Turban, Aronson, Liang, & Sharda, 2007). A
DSS uses computers to: (a) assist decision makers for solving
semi-structured problems; (b) support, rather than replace, mana-
gerial judgments; and (c) improve the effectiveness of decision
making (Deng & Wibowo, 2008; Turban et al., 2007).

There are numerous applications of DSS for solving various
problems in different industries due to their capacities in: (a) effec-
tively addressing the needs of multiple decision makers (Yeh et al.,
2010), (b) adequately modeling the subjectiveness and imprecision
of the human decision making process (Zimmermann, 2000), and
(c) greatly reducing cognitive demand on the decision makers in
the decision making process (Wibowo & Deng, 2009). With the
flexible and interactive characteristics of the DSS, the system helps
the decision maker adopt a problem-oriented approach for solving
the ship selection problem effectively and efficiently. This is
achieved by allowing the decision maker: (a) to express their pref-
erences linguistically and (b) to examine the relationships among
the evaluation criteria, the available alternatives and the selection
outcome.

This section presents an intelligent DSS framework for solving
the ship evaluation and selection problem. The DSS is designed
to help the decision maker choose the most suitable ship in a
user-friendly manner by allowing the decision maker to express
their requirements linguistically, and to fully explore the relation-
ship between the criteria and the ships available in the selection
process. Through an interactive exchange of information between
the decision maker and the DSS, the decision maker can adopt a
problem-oriented approach in the problem solving process (Deng
& Wibowo, 2008). This problem-oriented approach is vital for
effectively and efficiently solving the ship evaluation and selection
problem.

The proposed DSS consists of six sub-systems, namely: (a)
knowledge base, (b) working memory, (c) inference engine, (d)
user interface, (e) knowledge acquisition, and (f) explanation. The
knowledge base sub-system comprises of a database and a rule
base. The database contains the membership function for approx-
imating the linguistic terms commonly used, such as ‘‘the level
of toxicity is low’’ or ‘‘the weather condition is very high’’. The rule
base contains a set of linguistic statements with antecedents and
consequents respectively, connected by AND/OR operator. The
knowledge base stores the domain knowledge acquired from ex-
perts. These knowledge and experience are represented in the form
of IF–THEN rules. Together with an inference engine, intelligent
guidance can be provided to: (a) interpret and evaluate the perfor-
mance of available ships and (b) determine the course of action in
the iterative planning process (Deng & Wibowo, 2008).

The working memory sub-system stores the input data and the
information generated in the decision making process. The infer-
ence engine performs the function of reasoning, which is usually
called fuzzy reasoning. This fuzzy reasoning is used for deriving
conclusions from a set of fuzzy IF–THEN rules and from one or
more given conditions (Zadeh, 1996).

The user interface sub-system serves to integrate various sub-
systems for facilitating user friendly communications between
the DSS and the decision maker. This sub-system provides the
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means for the decision maker to interface with the DSS including:
(a) accessing the database and knowledge base; (b) inputting infor-
mation such as the task requirements and the available ships; (c)
displaying and evaluating alternative decisions; and (d) viewing
the decision outcome. To provide the decision maker with the flex-
ibility for customizing the system, the interface is designed in such
a way that the decision maker can create, modify or eliminate task
requirements, criteria, and available ships (Wibowo & Deng, 2009).

In the knowledge acquisition sub-system, a human expert inter-
acts with the system for creating a knowledge base of what he/she
knows in a particular subject area. The knowledge acquisition facil-
ity provides the decision maker with appropriate tools useful in
knowledge acquisition. The explanation sub-system allows the
system to present its reasoning outcomes.

The explanation sub-system is to enable the system display the
motivation for all its actions and conclusions. The purpose of this
sub-system is to: (a) explain to the decision maker that the sys-
tem’s conclusions are reasonable and (b) show how it reached
those conclusions.

The application of the DSS consists of four phases, including: (a)
identifying the decision maker’s requirements including task
requirements, criteria, ships available, and defining the member-
ship functions; (b) constructing fuzzy rules; (c) determining the
performance ratings of ships with respect to each criterion; and
(d) selecting the most suitable ship. Fig. 4 shows the overall DSS
framework for solving the ship evaluation and selection problem.

The first phase starts with identifying the task requirements,
criteria, and ships available based on in-depth interviews with
industry experts and analysis of the historical data and the concur-
rent environment. For ease of data acquisition and computational
efficiency, triangular fuzzy numbers are used for representing lin-
guistic terms.

The next phase focuses on developing the fuzzy rules. The DSS
makes recommendations based on knowledge provided by the ex-
pert in the form of IF–THEN rules. The number of input variables
Fig. 4. A DSS framework for ship evaluation and selection.
and their associated membership functions determine the number
of rules. Based on these rules, the DSS can process the task require-
ment and determine the relative importance of the selection crite-
ria in relation to a specific task.

The performance rating of each ship with respect to each crite-
rion is then subjectively assessed. In practical applications, both
crisp and fuzzy data are often present in multicriteria analysis
(Deng, 2005). As a result, the performance rating assessment can
be represented by a crisp number or a linguistic term. In case the
decision maker is not sure which linguistic values to choose, a de-
faulted linguistic value scale is presented. If the terms used in the
scale are different from the terms the decision maker wants for cri-
teria weighting, the proposed DSS tries to match the scale the deci-
sion maker wants with the existing scale in the knowledge base
according to the number of terms used.

The next phase in the proposed DSS is designed to assess the
overall suitability of each ship with respect to specific evaluation
criteria and their associated sub-criteria for a given task. The over-
all performance of each ship is determined by aggregating the cri-
teria weightings and ship performance ratings using the fuzzy
multicriteria analysis algorithm discussed above. The most suitable
ship in a specific situation will then be recommended to the deci-
sion maker. This leads to effective decisions being made (Deng &
Wibowo, 2008).
6. An example

To demonstrate the applicability of the proposed intelligent DSS
for solving the ship evaluation and selection problem, an example
of the ship evaluation and selection problem is presented. Four
evaluation criteria with respect to the four task requirements dis-
cussed above are identified, including operating efficiency (C1),
ship capacity (C2), risk potential (C3), and cargo characteristics
(C4) as shown in Fig. 1.

The ship evaluation and selection process starts with the DSS
requesting the decision maker to choose either: (a) running a series
of what-if scenarios or (b) solving the ship selection problem. If the
decision maker chooses to run what-if scenarios, he/she is pro-
vided with a list of possible what-if scenarios and related options.
If the decision maker selects to solve the ship selection problem,
he/she will go through a series of dialog boxes which raises
questions such as the sub-criteria weights, the performance assess-
ments of available ships, and additional information to be included
for processing. This leads to the use of the fuzzy multicriteria anal-
ysis algorithm for solving the problem.

In this case, the decision maker decides to perform a what-if
scenario and test the impact of daily cost (T1) on the criteria
weights. Based on the option selected by the decision maker, the
system requests the decision maker to enter the task requirements
and criteria. The decision maker enters four task requirements (T1,
T2, T3, and T4) and four criteria (C1, C2, C3, and C4) for the simulation.
To facilitate the making of subjective assessments, the term set
{Very Low (VL),Low (L),Medium (M)),High (H)),Very High (VH)}
is used whose membership functions are given in Fig. 2.

The DSS carried out a simulation by adjusting one task require-
ment at a time while keeping the other task requirements un-
changed. The state of the daily cost (T1) is changed from the
lowest to the highest and from the highest to the lowest respec-
tively. In case of condition changes from the lowest to the highest,
the daily cost is increased from 0 (VL) to 100,000 (VH). Based on
the state and condition changes obtained in the simulation process,
the system applies fuzzy rules stored in the knowledge base for
determining the weightings of individual criteria with respect to
the daily cost (T1). Fig. 5 shows the impact of changing daily cost
(T1) on the criteria weightings after the simulation.
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Fig. 5. Effect of daily cost (T1) on criteria weights.

Table 2
Performance assessments of available ships.

Criteria and sub-criteria Alternatives

A1 A2 A3 A4 A5

Fuel efficiency (C11) M L VH M H
Maintenance efficiency (C12) M VL M VH M
Insurance cost (C13) L VL VH M VH
Ship crew cost (C14) M M M VH M
Size of the ship (C21) L VL VH M VH
Gross tonnage of the ship (C22) VH M VL M VL
Net tonnage of the ship (C23) M L VH M H
Speed of the ship (C24) M VL M VH M
Weather condition and traffic density (C31) L VL VH M VH
Route near shallow waters (C32) VH M VL M VL
Navigator failure (C33) M L VH M H
Machinery failure (C34) M VL M VH M
Level of corrosiveness (C41) VH H H VL VH
Level of explosiveness (C42) VH M H VL L
Level of toxicity (C43) M M M VH M
Level of radioactivity (C44) H H VL M H
Level of flammability (C45) VL VL H H VH
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Fig. 6. Membership functions for representing sub-criteria weights.

Table 3
Weighting vectors for sub-criteria.

Weighting vector (Wj) Fuzzy weights for sub-criteria (Wjk)

W1 (M,VI,VI,M)
W2 (I,M,VI,VI)
W3 (VI,M,U,VI)
W4 (M, I,VI,VI,U)

A 3

A 1

A 2

A 4

1.0

0

0.2

753

Pe
rfo

rm
an

ce
 in

de
x

2 6 84
Daily cost (T1)

1

0.4

0.6

0.8

9 10

Fig. 7. Performance indexes under various daily cost requirements.
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The system provides three options for the decision maker to
choose, on whether the decision maker would like to: (a) perform
another what-if scenario, (b) continue and determine the perfor-
mance of each ship, or (c) end the consultation process. In this case,
the decision maker decides to use the criteria weightings obtained
as in Fig. 5 to determine the overall performance of each ship under
various daily cost requirements. This process begins with the deci-
sion maker choosing the second option from the DSS. Once the op-
tion is selected, the system instructs the decision maker to enter
the performance assessments of available ships. Table 2 shows
the result for the performance assessments of available ships.
The system would ask the decision maker for additional infor-
mation. In this case, the sub-criteria weightings, which are not af-
fected by task requirements, are included by the decision maker
using the term set {Very Unimportant (VU),Unimportant (U),Med-
ium (M), Important (I),Very Important (VI)} with membership
functions defined in Fig. 6. Table 3 shows the weighting vectors
for sub-criteria.

The system then retrieves the fuzzy multicriteria analysis algo-
rithm from the knowledge base for determining the overall suit-
ability of each ship under various daily cost requirements. Using
the fuzzy multicriteria analysis algorithm illustrated as in (1)-
(15), the overall performance of each ship is determined by the
DSS in a computational efficient manner. Fig. 7 shows how the per-
formance indexes are affected under various daily cost require-
ments. It also shows that changes in task requirements may
affect the relative criteria weightings, resulting in a different ships
being selected.

Sensitivity analysis can be conducted through changing the
subjective assessments of the decision maker with respect to the
decision variables when no clear-cut decisions are present. With
the simplicity in concept underlying the DSS, the decision maker
can interactively explore the problem in different manners so that
a better understanding of the problem and the relationships be-
tween the decision and its parameters can be obtained. This would
further improve the confidence of the decision maker in the selec-
tion process.

It is evident that the intelligent DSS is capable of assisting the
decision maker in determining the criteria weightings and the
overall performance of each ship in an effective and systematic
manner. In particular, the use of the DSS for solving the ship eval-
uation and selection problem greatly reduce the decision maker’s
cognitive burden and further improve the consistence of the deci-
sions being made.
7. Conclusion

This paper addresses the ship evaluation and selection problem
under uncertainty. A task-oriented procedure is developed for
determining the relative importance of the evaluation and selec-
tion criteria with respect to a specific task. A fuzzy multicriteria
analysis algorithm is developed for calculating an overall perfor-
mance index for each ship across all the selection criteria and their
associated sub-criteria on which the selection decision is made. An
intelligent DSS capable of integrating the developments above is
proposed to facilitate the ship evaluation and selection process.

An example is presented for demonstrating the applicability of
the proposed intelligent DSS for facilitating the evaluation and
selection of available ships. It shows that the proposed DSS has a
number of advantages for solving the ship evaluation and selection
problem including the ability to help the decision maker better
understand the problem and the implications of their decision
behaviors, the flexibility to respond quickly to the decision maker’s
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questions, and the capability to accommodate various task require-
ments in a given situation.
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