A Reference Architecture for Multi-Agent Simulation of Derivatives

Markets

Olga Streltchenko

Department of Computer Science

and Electrical Engineering,
University of Maryland
Baltimore County,
1000 Hilltop Circle,
Baltimore, MD 21250, USA.
streltch@cs.umbc.edu,

Nanjangud C. Narendra
Hewlett Packard
India Software Operations Ltd.,
29 Cunningham Road,
Bangalore - 560 052, India.

ncnaren@india.hp.com,

Yelena Yesha
Department of Computer Science

and Electrical Engineering,

University of Maryland

Baltimore County,
1000 Hilltop Circle,
Baltimore, MD 21250, USA.

yeyehsa@cs.umbc.edu

A modern financial market is a society of inter-
acting self-interested agents governed by their pref-
erences. The emerging complexity of the system de-
fies analytical study of the dependencies between the
individual behavior of the market participants and
the global trends of the market. Multi-agent systems
provide an experimental environment to study the
price formation resulting resulting from the various
mathematical models underlying market participants
decision support. However, design of a multi-agent
simulator of a financial market is a challenging task
due to the interaction complexity and computation-
ally costly decision support. This paper will describe
a step-by-step analysis and design process that iden-
tifies atomic actions of the market participants and

further combines them to obtain a valid agent model.

The analysis is done with the goal of studying the
derivative price formation mechanism, but the design
issues and the reference architecture discussed in the
paper are generic enough to accommodate a variety

of microeconomic models.

1 Introduction

A derivative security is a financial contract contingent
on the price of a basic security or commodity, called
the underlying asset. For example, oil is a commodity
while options to buy or sell oil are derivatives. A
financial market offering such contracts for trading
is called a derivatives market. Derivative pricing is
a vibrant research area in the mathematical finance

community.

Multi-agent systems (MAS) can provide an exper-
imental environment to observe global consequences
of existing market practices as well as the patterns
arising from the various mathematical models un-
derlying financial agents’ decision support. Software
agents emulate flexible, autonomous problem solving
behavior of real market players and their interactions.
Therefore, an MAS can elucidate the key processes of
modern financial markets, like price formation and
evolution. This fact has been recently recognized
by the research community. The Santa Fe Artificial
Stock Market (see [7], [1], [5]), is the first agent-based
system that explores the price formation process for
basic securities in a stock market. To the best of our
knowledge, there have been no attempts to simulate

price formation for derivative securities.

Modern financial theories model all market partic-
ipants as having essentially the same powers in the
market, e.g. access to money, short selling, etc [4]. In
reality, market participants are highly heterogeneous
with respect to their power to quote price, engage
in short sales and borrow money. Market partici-
pants are governed by different preferences. While
analytical study of heterogeneous agents appears to
be highly complicated, a number of papers relying on
the agent-based experimental approach have treated
this problem. For instance, [3] explores consequences
of technical trading (i.e. buying or selling stock
based solely on its time series properties) as the deci-
sion support mechanism for individual heterogeneous
agents in a simulated stock market. An emphasis
on individual behavior is a prominent feature of the
agent-based approach. In this paper, we recognize
the broker, or market specialist, who has the unique
power to quote a price, and who provides liquidity
to the market. It is conceivable to distinguish other
basic types of the market participants.

Modern financial markets differ in their price dis-
covery mechanisms (for example, auction markets vs.
dealer markets), communication infrastructure, and
other aspects. The overall complexity of the real fi-
nancial market interactions and functionality, as well

as complex behavioral patterns of market partici-

pants, has to be decomposed into relatively simple
tasks and processes. The market entities, like a bro-
ker, an investor, etc., need to be singled out and
defined as software objects. The interaction proto-
cols and the communication infrastructure have to
be designed. The integrity and security of individual
transactions has to be implemented. The above list
of software development challenges is by no means

comprehensive.

This paper presents a design of a multi-agent sim-
ulation environment to explore the process of deriva-
tive securities price formation in a dealer market. In
this type of a market, a market specialist is a dealer,
i.e. he or she trades the assets that they own. This
model differs from an auction type of a market, where
a market specialist does not own the securities but fa-
cilitates the trading achieved through a double auc-
tion. The price formation for the underlying assets
is transparent to the agents, and the price process
is modeled via a stochastic process. The agent com-
munity is heterogeneous with respect to their prefer-
ences. The goal of such simulation is to study system
properties emerging as a result of a variety of decision
support techniques used by individual agents, as well
as to gauge individual performance of the agents.

The design is based on Gaia methodology devel-
oped in [10] and follows the philosophy of develop-
ing high-level abstraction to model complex systems.
The ideas described below can be applied to study
various processes in a stock market, like the price
formation for the underlying, etc. The separation of
the roles that we propose in this work is instrumental
for different interaction scenarios among the market
players.

The rest of the paper is structured as follows. Sec-
tion 2 discusses the basic properties of a financial
market simulator. To facilitate our further discus-
sion we include a brief review of Gaia methodology
in Section 3. Section 4 presents the design for the
simulation environment exploring financial contract
price formation. Section 5 presents the conclusions
and further work.

2 Conceptual properties of the

simulated environment

The following discusses several key issues in finan-
cial modeling and their realization in a multi-agent
system simulating a financial market. The issues are
environment (discrete vs. continuous); time horizon

(finite vs. infinite); and preference structure.

Discrete vs. Continuous Time and Space. In
the real world, the price of an asset changes discretely
(by a tick) after a fixed time interval since the last
price adjustment (also called a tick). However, one
cannot incorporate all possible discrete states into a
simulated environment: the model size grows expo-
nentially and the computation becomes intractable.
Mathematically, continuous time/continuous space
models serve to emulate the real world granularity.
These models work if a closed-form analytical solu-
tion exists. An alternative approach is to employ
a discrete time/discrete space model which bundles
several events into one. The discrete setting is of
coarser than the real-world granularity, which makes
the model amenable to computational techniques.

Finite vs. Infinite Time Horizon. Infinite
time horizon is appropriate for long term investment
strategies, especially when one needs to determine an
optimal consumption (withdrawal of money from the
market) plan. However, when studying price forma-
tion problems, one needs to keep in mind that brokers
close their positions fast to avoid exposure to changes
of the risk properties of the market. This suggests a
finite (fixed) time horizon for the simulation.

Financial simulation is nondeterministic. It is
driven by some stochastic process, like order arrival
rate for stock trading (when studying the price forma-
tion process for the underlying, see, for example, [6])
or the evolution of price of the underlying (when con-
sidering price formation for the derivative contracts
see, for example, [4]). Statistically meaningful re-
sults are achieved though multiple runs of the sim-
ulator. At the same time, computational resources
are bounded. The number of simulator instances run
in parallel is bounded by a constant. This leads to the

necessity of sequential runs, in which case the num-
ber of trading dates or the time horizon becomes a
crucial factor.

Preference Structure A market agent has a set
of preferences (a partial order) that, under certain
conditions, can be expressed as a utility function [9].
For computational purposes, preference structure of
an agent has to be expressible through a utility func-
tion. A player in a financial market strives to opti-
mize his utility function while making changes in his
portfolio in response to every observation. The risk
preferences of an investor are expressed through the
utility function as well. An agent is risk-averse if he
will reject a fair game. In the utility maximization
setting risk aversion is equivalent to the concavity of

the von Neumann-Morgenstern utility function.

3 Gaia Methodology

Gaia methodology [10] offers software engineering
techniques for large-scale applications in which het-
erogeneous agents make use of significant computa-
tional resources. No assumptions are made concern-
ing the implementation platform. The organization
structure of the system and the agent properties are
assumed to be fixed during run-time.

Gaia recognizes abstract and concrete entities. Ab-
stract entities are used during analysis stage to con-
ceptualize the system, while concrete entities are used
within the design process and typically have direct
counterparts in the run-time system.

The topmost abstract entity in Gaia concept hier-
archy is the system. Gaia views the system (orga-
nization) as a collection of roles that interact with
each other. Roles are defined by their responsibili-
ties, permissions, activities, and protocols. Responsi-
bilities determine role functionality. Roles correspond
to atomic or elementary responsibilities. In order to
realize its responsibilities, a role possesses a set of
permissions or rights associated with the role. Access
to information sources, like information generation,
modification or reading, is under the purview of per-

missions. Computations associated with a role are

called activities. Roles can interact according to a
set of protocols.

The dependencies and various relations among the
roles are captured by the interaction model. The in-
teraction model is essentially a directed graph with
roles as nodes.

Once the analysis produces a fully elaborated roles
and interactions models, the goal of the design stage
is to transform the analysis models (abstract entities)
into concrete entities having implementation coun-
terparts. The agent model defines the agent types
present in the system. The service model defines
the actions performed by agents. The acquaintance
model represents the communication channels among
the agents.

The agent model can combine several closely re-
lated roles as a single agent type for efficiency. It is
convenient to think of an agent type model as a tree
with the roles being leaf nodes.

The service model expresses agent functionality.
The services are derived from the protocols, activities
and responsibilities of the individual roles combined
into an agent type.

The acquaintance model is a directional graph with

its arcs corresponding to communication pathways.

4 Multi-agent Simulator De-

sign for a Derivatives Market

The following architecture aims to explore price for-
mation for derivative securities under market forces.
To simplify the model and concentrate only on the
aspect of the price formation for derivative securities,
the architecture does not reproduce the price forma-
tion mechanism for the underlying assets. Instead, it
models the evolution of the prices on the underlying
via a discrete stochastic process (a scenario tree).
An example of a scenario tree for a discrete stochas-
tic process with a finite time horizon is given in fig-
ure 1. Each node represents a possible state of the
price process for the underlying at a particular time
step. Every state except the initial one has a unique
parent, and every non-terminal state has a set of child

states. The outgoing edges of a particular state in the
tree connect it to all possible states of the price pro-
cess evolution for the next time step, provided that
the given state occurs. Each path from the root to a
leaf node corresponds to a single scenario. The proba-
bility of each scenario is a product of the probabilities
on the edges corresponding to it. For further details
of the mathematical modeling of market processes we
refer the reader to [2].

S(w=1{3,4,5,6})=9
S(w={7,89})=6

Figure 1. A sceanario tree.

The simulated market is a dealer market, and func-
tions as follows. At each trading date a broker-dealer
observes the state of the world, i.e. the prices of the
underlying, and decides on the contract prices ac-
cording to its private valuation algorithm. Investors
obtain price quotes for both the underlying assets
and the contracts written on them (derivatives) from
the brokers, and transact only though them. The
brokers provide liquidity to the market, i.e. satisfy
the investors’ requests. The simulation is over when
the trading date reaches the time horizon, and every
agent realizes his gains or losses at this point.

We assume that all the agents are rational and
portfolio decisions are made based on the agents’ pri-
vate valuation of their positions. However, the archi-
tecture described below leaves a variety of modeling
choices open. The decision-making process may or
may not be synchronized with the market ticks (price
changes). The agents may or may not possess ac-
curate information about the stochastic process gov-
erning the system. In general, the level of agents’
intelligence is left for a user to decide.

4.1 Analysis

The analysis of the system aims to segregate atomic
actions performed by the entities. It results in a roles
model that describes the system. For modeling pur-
poses, we have separated transaction processing from
decision making. Thus the roles will be responsible
for either one of these components.

4.1.1 Roles Model

The simulated environment is nondeterministic. The
uncertainty is brought about by price movements of
the underlying assets. The price formation for the
underlying is modeled via a stochastic process with
a finite time horizon. The Underlying Market (UM)
role generates a market scenario or a price path. This
calculation, the role’s activity, is done according to a
predefined probabilistic model. The role’s responsi-
bility is to provide the brokers with the prices of the
underlying. Thus its protocols govern the underlying
quote posting to the broker community. The per-
missions associated with the role are to generate the
underlying price quote and to post it to the broker
community.

The two types of market participants are brokers
and investors. Brokers establish prices, provide lig-
uidity and act as intermediaries in the market. In-
vestors are price-takers. They are virtually transpar-
ent to each other since they transact only through the
brokers.

The Broker role is responsible for obtaining the
contract prices from its decision-making counterpart,
Broker Utility Function, posting the current price
vector to the investor community and satisfying their
requests. The protocols associated with the role are
the following: obtain the underlying prices, obtain
the contract prices, post prices, buy and sell. These
actions are enabled by corresponding read and modify
permissions.

The Investor role is responsible for serving a Bro-
ker with the stock and contract volumes it wants
to exchange. Investors obtain transaction volume
data from their decision-making counterpart, Investor
Utility Function. The protocols supported by this

role are the following: obtain the underlying volume,
obtain the contract volume, buy, sell. Corresponding
read and modify permissions enable the above.

A broker exercises control over both the portfolio of
the underlying assets and the contract prices. The in-
vestors influence the contract price evolution though
their purchasing activity. The Investor and Broker
roles are provided with their decision making coun-
terpart, Utility Function (UF), whose responsibility
is utility maximization or other optimal decision sup-
port.

The Broker UF role supplies the price quotes for the
contracts as well as the underlying portfolio holdings
to the Broker. Its activity is the computation provid-
ing the above data, and the protocols it supports are:
provide the contract price, provide the underlying vol-
ume. The Investor UF is analogous to the Broker UF,
but the computation it performs supplies the volume
quotes for the contracts and portfolio holdings.

4.1.2 Interaction Model

The interaction model specifies message interchange
in the system. At each trading date, UM broadcasts
the underlying price vector to the Brokers. The Bro-
kers request and obtain contract price quotes from
their respective Utility Function. The Brokers then
broadcast the complete price vector for to the investor
community. The Investors request and obtain their
volume quote from their corresponding Utility Func-
tions, and serve a chosen broker with their requests.
The Broker then satisfies those request, and the sim-
ulation proceeds to the next trading date.

4.2 Design

Implementation entities are reached by certain unifi-
cation of abstract entities.

4.2.1 Agent Model

We will differentiate three types of agents: the Un-
derlying Market Agent, the Broker Agent, and the In-
vestor Agent. The Underlying Market Agent encom-
passes only the Underlying Market role. The Broker

and the Investor agents combine the transaction pro-
cessing component , the Broker or the Investor role,
and the decision-making component, the correspond-
ing Utility Function.

4.2.2 Service Model

The service model is derived directly from the Inter-
action Model for the roles. The Underlying Market
Agent (UMA) supplies a price quote for the underly-
ing and delivers it to the Broker Agents. A Broker
Agent observes the prices and derives a price quote
for the contract vector. A complete price vector is
then broadcast to the investor community. Each In-
vestor Agent then servers a chosen Broker Agent with
a transaction volume obtained through its valuation
algorithm. The Broker satisfies the requests.

4.2.3 Acquaintance Model

This model represents communication channels in the
simulated market. Observe that individual investors
do not communicate with each other. All the mes-
sage passing happens between the Underlying Market
agent and the Broker agents, and between a Broker
agent and an Investor. The graph corresponding to
this model is presented in figure 2.

Underlying Market
Agent

Broker Agent |, ,| Broker Agent
Investor Agent I Investor Agent

Investor Agent Investor Agent

Figure 2. Acquaintance Model Graph.

b
.>

4.2.4 Reference Architecture for Simulation

The user interface is responsible for agent initiation
and running the simulator. The overall architecture
is depicted in figure 3. A user instantiates a model
by specifying the broker and investor agents using the

Creation/Modification module. Further, the simula-
tor requires a set of initial data which is supplied at
a Data Generation step:

1. The user specifies the discrete market model or
the scenario tree using Scenario Definition mod-
ule. This will assign the prices for the underly-
ing to the states specified by the scenario tree,
including the initial prices.

2. Using the Utility Function module, the user spec-
ifies for each broker the utility function and other
parameters, like borrowing or short-selling con-
straints. If applicable, the user chooses a pricing
(and, possibly a learning) algorithm to be used
by the agent.

3. The same is done for each investor agent.

4. For each broker, the user specifies the initial
portfolio using the Portfolio Definition module.

5. The same is done for each investor agent.

Notice, that every agent in the system is initialized
individually. This implies that even within the same
type of agent, like a broker or an investor agent, a
great variety of personal features can be implemented,
like distinct utility functions and market constraints,
different pricing algorithms, and so on.

The user then starts the simulation. The Recorder
component performs the necessary data capture and
visualization. The simulation stops when the time
reaches the time horizon or the user stops the simu-
lation.

As one can see from figure 3, the architecture is
generic enough to represent any type or number of
investors and brokers as well as to accommodate a

variety of market models.

5 Conclusions

An agent approach to financial markets allows one
to implement a greater heterogeneity of market par-
ticipants with respect to their constraints and utility

‘ User Interface ‘ Ul Level
Creation/ Utility Portfolio Scenario
Modifica-| Function Definition| Definition|
tion

Scenario Generation Simulation

] STARTing Recorder Layer
e STOPing

Figure 3. Reference Architechture.

function than known theoretical models do. Such va-
riety reflects the real world market with greater ac-
curacy.

The multi-agent simulation presented above allows
one to experimentally study performance of a partic-
ular pricing model for the next trading date contract
price adjustment. A variety of pricing algorithms
and learning techniques for the broker can be im-
plemented and tested within the given design. Our
design can be extended to represent more complex
markets, e.g. having several levels of intermediaries.

Multi-agent simulation of financial markets is a
burgeoning field. We see two main directions of future
work. One direction concentrates on the economic re-
search of simulated markets with a particular atten-
tion to the differences that those exhibit comparing
to the real-world environments. The other direction
will elaborate on the agent architecture and proper-
ties with the goal of incorporating them into real-
world markets.

BIBLIOGRAPHY

1. Arthur, W. B., Holland, J. H., LeBaron, B.,
Palmer, R. G., Tayler, P., Asset Pricing under
Endogenous Expectations in an Artificial Stock

10.

. O’Hara,

Market, in Arthur, W. B., Lane, D., Durlauf,
S. N., eds., The Economy as an Evolving Com-
plex System II, Adisson-Wesley, Menlo Park, CA,
1997.

. Harrison, J. M., Pliska, S. R., Martingales and

Stochastic Integrals in the Theory of Continuous
Trading, Stochastic Processes and their Applica-
tions, Vol. 11, 215-260, 1981.

. Joshi, S., Parker, J., Bedau, M. A., Techni-

cal Trading Creates Prisoner’s Dilemma: Results
from an Agent-based Model, in Abu-Mostafa, Y.
S., LeBaron, B., Lo, A. W., Weigend, A. S., eds.,
Computational Finance, The MIT Press, Cam-
bidge, MA, 1990.

. Karatzas, 1., Shreve, S.E., Methods of Mathemat-

ical Finance, Springer-Verlag, New York, 1998.

. LeBaron, B., Arthur, W. B., Palmer, R. G.,Time

Series Properties of an Artificial Stock Mar-
ket, Journal of Economic Dynamics and Control,
1998.

M., Market Microstructure Theory,
Blackwell Publishes, Massachusetts, 1995.

. Palmer, R. G., Arthur, W. B., Holland, J. H.,

LeBaron, B., Artificial Economic Life: a Simple
Model of a Stock Market, Physica D 75, 264-274,
1994.

. Streltchenko, O., Modeling of Brokers’ Be-
havior in Financial Markets: Ph.D. Pre-
liminary Proposal, 2000, available from

http://www.cs.umbc.edu/~streltch/.

. Von Neumann, J., Morgenstern, O., Theory of

Games and Economic Behavior, Princeton Uni-
versity Press, Princeton, NJ, 1944.

Wooldridge, M., Jennings, N. R., Kinny,
D., The Gaia Methodology for Agent-
Oriented Analysis and Design, available

from http://www.ecs.soto.ac.uk/~nrj/download-
files/jaamas2000.ps.

