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Abstract--A Knowledge-Based System for the on-line supervision of activated sludge processes in wastewater 
treatment is presented. The system performs on-line data acquisition from the sensors installed in the plant, off- 
line data management of results from analytical determinations in the plant laboratory, and qualitative 
information supplied by the supervisors of the process. All these elements are integrated in the Intelligent System 
for Supervision and Control of WAste water treatment Plants (ISCWAP), which includes a set of diagnosis, 
detection, prediction and operation rules, making the system capable to handle with several usual situations 
(where mathematical control can be useful) and also with some unusual situations (where quantitative and 
qualitative information must be considered). Copyright © 1996 Elsevier Science Ltd 

l. INTRODUCTION 

Wastewater is a combination of the water-carried wastes 
produced from domestic, commercial and industrial sources. It 
has a very complex composition, containing many forms of 
polluting matter, dissolved impurities and a heterogeneous 
dispersion of organic and inorganic solids, both colloidal and 
suspended. If wastewater is not effectively treated, several 
problems can occur: pollutants will be returned to the 
environment; decomposition of organic components evolves 
malodorous gases; disease may be spread by microorganisms 
present in the water or by poisoning due to toxic compounds; 
the organic nutrients in the wastewater may stimulate growth of 
aquatic plants. 

Activated sludge process is, nowadays, the most used 

biological treatment for domestic waste water treatment. 

In this process, a mixture of  several microorganisms 

tansforms the biodegradable pollutants (used as sub- 

strate) into new biomass, with dissolved oxygen sup- 

plied by aerators. It is of widespread use but, in practice, 

its operation is still carried out with an important manual 

operation. Taking into account the objective of these 

plants, the main objective control is to maintain a 

prefixed level in the water quality at the output of the 

plant. These levels are defined by water authorities. The 

values of Biochemical Oxygen Demand (nOD) and 

Suspended Solids (SS) are the most usually established, 

being these the controlled variables. Its control is still 

not solved due to a set of operational problems, mainly: 

the complexity and number of factors involved, the 

strongly nonlinear characteristics of the process, the lack 
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of sensors for on-line measurement of some relevant 

process variables (such as biomass or organic material); 

the mathematical models describing the process cannot 

explain its behaviour as well as required and, frequently, 

the needed actuations to regulate the manipulated 

variables (aeration, recycle, and purge flows) are not 

automated. 

Nevertheless, control loops that operate properly have 

been implemented successfully in real plants, such as the 

dissolved oxygen (DO) (Ko et al., 1982). Also, waste 

water plants seem to work well during most of the time, 

if nothing unusual happens (Beck, 1986). It could be said 

then, that they can function unattended. This normal  

situation (usually the closest to the design one) can be 

treated mathematically and analytical control can be 

achieved. However, some uncontrollable situations may 

arise, such as bulking or loading of toxic substances, 
which compels a management based on the operators 

experience and background. In these cases, control 

cannot be performed satisfactorily using analytical 

control methodologies alone. 

In order to overcome these difficulties, the use of 

Knowledge-Based Systems (KBS) has been proposed 

recently. KBS are computer applications that solve 

complicated problems that would otherwise require 

extensive human expertise or elaborated calculations 

(Stephanopoulos and Stephanopoulos, 1986). For this 

purpose, the human reasoning process is simulated by 

applying specific knowledge and logic inferences, The 

use of KBS allows for the application of qualitative 

information into the plant management. As an example, 
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in a wastewater treatment plant, the bad odour in an 
aeration basin issues an important piece of information 
for the plant operator, but this information cannot be 
considered in a mathematical treatment. Also, the 
suspicion that a pipe is plugged or that a weir is not 
completely closed, or even that a valve is broken but still 
sending an electric signal, are situations that can be 
identified by a KBS, and in this way, the operators can be 
warned to take appropriate actions. 

Among those described in the literature, many KBS 
are used for off-line consulting, typically in discrete 
sessions. This feature is useful at the design or diagnosis 
levels, but it is not applicable for continuous process 
control purposes. Those KBS do not have the ability for 
on-line data acquisition and they are not able to work 
with real-time processes. KBS related to waste water 
treatment have been developed, for diagnosis (Lapointe 
et al., 1989, Krichten etal., 1991, Belanche etal., 1992), 
design (Krovvidy et al., 1991, Krovvidy and Wee, 1993), 
as a decision aid (Maeda, 1985, 1989, Patry and 
Chapman, 1989) or for process optimization (Huang et 
al., 1991). Recently, KBS have been applied for process 
control of waste water purification processes (Capoda- 
glio et al., 1991, Couillard and Zhu, 1992). 

The objective of this paper is to present the develop- 
ment of a knowledge-based system for the supervision 
and control of the activated sludge process (ISCWAP). 
The paper is organized as follows: first, the ISCWAP 
objectives and architecture are described; next, the 
reasoning strategy (rules) is reported; following, the 
components of the system (facts, variables and object 
classes) developed to achieve the proposed goal are 
presented. Finally, a case study for an actual wastewater 
treatment plant is presented, showing the advantages of 
this approach compared against manual operation. 

2. ISCWAP SYSTEM 

2.1. Description and architecture. 

The work has been implemented using G2. G2 is a 
shell for the development of real-time expert systems, 
produced by Gensym Corp. (Ma. USA). It is able to scan 
the application, focusing on the relevant areas in the 
same way as a human expert. It can communicate with 
the user, many different data sources and other applica- 
tions with its G2 Standard Interface (GSI). 

Although it is expected that ISCWAP will be of 
generic scope, presented results correspond to the study 
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Fig. 1. The graphical interface of the system. 



Table I. Input water characteristics 

Parameter Value 
Flow (m3/day) 37,500 
BOD (mg/I) 190 
COD ling/I) 405 
pH 7.8 
Suspended Solids 225 
(mg/I) 
Volatile Suspended 60 
Solids (rag/I) 
Conductivity 1475 

of the water line of wastewater treatment plant (WWTP) 

in Manresa (close to Barcelona). Figure 1 shows the 
scheme of the plant, as it is presented by ISCWAP to the 
user. This plant receives 35,000 m3/day inflow from a 

town with 75,000 inhabitants. The process units con- 
sidered in the KBS are: pretreatment units (screening, 
grease and sand removers), primary settlers (that are 

presented on top of the figure), aeration basins and 
clarifiers (shown on the bottom), and also pumps, pipes, 
weirs, channels, turbines, valves, sensors and those 

elements related to the plant operation are included. 
Table I presents a summary of the characteristics of the 
input water. 

The first objective of the KBS is to diagnose at any 
moment whether the situation is normal or if any unusual 
case is occurring. It is considered that the normal 
situation is this one in which the plant is behaving well 
and the depuration goals are obtained, these referred to 
the plant effluent quality. These two situations might be 

not equivalent, so they can happen not simultaneously, 
depending on the input wastewater characteristics. For 
instance, when the inflow is relatively non polluted, the 
plant may be achieving the depuration goals, although its 
function is not appropriate due to operation problems. 
This situation is identified by some rules that compares 
the percentage of depuration in the actual situation with 
the standard values of the plant. It is also the case when 
the plant is abnormally highly loaded that the deputation 
goals cannot be achieved, although all the elements may 

be working properly. 
In order to carry out any advanced control, a 

mathematical description of the process is necessary. In 
a normal situation, a mathematical model is able to 
describe the plant evolution. A mathematical model for 

the studied plant has been developed and validated 
(Serra, 1993), showing a reasonable fitness with experi- 
mental values from the plant. Based on this model, a 
predictive control algorithm has been developed for this 
plant (Moreno et al., 1992). This algorithm is defined 
externally in ACSL (Advanced Continuous Simulation 
Language from Gauthier and Mitchell. Ma. USA) 
connected to G2 with GSI. The control module receives 
the values of dissolved oxygen, substrate and flows and 
finds the best control action following a predictive 
control algorithm. The objective function has been 
established trying to minimize the energy consumption 
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and maintaining the water quality level. Before sending 
this control action to the actuators, the KBS examines it 

with some devoted rules in order to ensure that some 

constraints related to the maintenance of aerators are not 
violated. 

On the other hand, unusual episodes are very difficult 
to model and simulation results are rather poor. Partic- 

ularly, bulking sludge or toxic substances loading 
effects on plant evolution have not been modelled 

satisfactorily in spite of different attempts (Van Niekerk 

et al., 1987, Lau et al., 1984). So, analytical control is 
not possible for these situations. In the presented work, 
during any strange (abnormal) situation, ISCWAP will 
get the control supervision and will carry out an expert 

control (the control that a human expert would do) based 
on its reasoning rules, and will deactivate the analytical 
control if necessary. 

Besides the diagnosis of the functioning of the plant, 
ISCWAP fosters two additional complementary goals. 
First, it uses the knowledge base for fault detection. It 
must be considered that the typical environment in the 
plant is very aggressive, and normally not all of its 
elements are working properly. The pipes may get 
clogged eventually, or the sensing elements may be 
losing efficiency. These disturbances change the normal 
operation of the plant. The use of numerical state 
estimation algorithms could be useful for the detection 

of some of these alterations (Fu and Poch, 1993, 1995). 
These methods could be complemented with the use of 
knowledge based systems that permits the use of 
qualitative information. 

The second goal raised is the detection of situations 
that may lead to a fault state, although they cannot be 
classified as fault yet. In this case, the system warns the 
operators that a particular anomaly has occurred in order 
to correct it. 

Figure 2 shows the architecture of the system. In order 
to get a satisfactory KBS, extensive information of the 
studied system is needed. This information may be 
originated in the plant, directly from physical sensors 
(quantitative information), or through the plant operators 

(quantitative and qualitative information). 
In the first instance, this information is sent to the 

analytical control module, where the values considered 
are determined using a predictive control algorithm, as 

presented previously (Moreno et al., 1992). The infor- 
mation from the sensors is also sent to the knowledge 

base, in order to actualize the variable values used in the 
antecedents of the rules. 

Once this information is acquired and the rules are 
evaluated, the system is defined, and the reasoning 
process can be carried out, as described under Section 
3. 

The supervising system performs as the core of the 
process, as it receives and exchanges information 
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coming from the reasoning process, the analytical 

control algorithm and the user interface, and finally it is 

forwarding a resulting action that will be done through 

the control actuators, or by a dialogue with the user. 

3 .  REASONING PROCESSES 

3.1. Diagnosis 

Diagnosis is achieved by reasoning using the method- 

ology known as decisions tree (Rolston, 1988). Using 

this approach, the knowledge base developer builds a 

tree's structure, in which the values of the attributes of 

each node are used to decide which branch to follow. 

Generally, from the beginning of the tree (in the root), 

where all situations are possible, until the end of the 

diagnosis process (that corresponds to a particular 

situation), the way crosses several nodes where the 

attributes are evaluated. Each time a branch is selected, 

this is done following a logical inference from the values 

and relations of the considered variables. It must be 

noted that ISCWAP does not ask the operator for values 

of the variables. For the ISCWAP development, we only 

considered the information readily available in the plant, 

both from on-line sensors and from plant laboratory 
analysis. On-line information is continuously stored at 

the data base and values are updated when necessary. 
Values from analysis are entered into the program 

P. SERRA e t  a l .  

Table 2. Situations considered at the system 
Normal 
Bulking 
From filamentous bacteria 
other causes 
Rising 
Foaming 
Underaeration 

- Overaeration 
- Storm 
- High plant inflow 
- Bad wasting 
- Bad clarifiers operation Bad primary settlers operation 
- Overloading 
- In-plant overloading 
- Toxic substances loading 
- Surging 

manually, once they are obtained. Information not 

available in the plant is not considered in the data base, 

unless it can be inferred from other parameters. 

The system must assign at any time the exact situation 

of the process. For its description, the most extended and 

usual situations in this kind of plants have been 

considered in this work, being presented in Table 2 and 

produced by means of a Knowledge Acquisition tool, 

LINNEO+ (B6jar and Cort6s, 1992, Serra et al., 1994) 

In Fig. 3, a set of rules that conclude a particular 

situation is shown as an example of how a diagnosis is 

carried on. These rules allow to conclude an organic 

overloading from in-plant sidestreams when it occurs. In 

the knowledge base this situation is called sidestreams. 

In this case, not only diagnosis is done but also detection 

of failures because, as COD is measured only at the 

input of the plant, organic Ioadings inside the plant (after 

the input sampling point and before the biological 

process) are not known. There are no flow sensors nor 

analyses done in these points to detect the situation. 

However, if special care were taken, estimation of COD 

loading would be possible. 

Many situations considered in the system are danger- 

ous for the plant and force to perform specific operations 

to overcome them once they are detected. This is the 

1F COD-rem.eff.valae < 0.8 
THEN conclade that 

COD-removing is bad 

IF the DO of reactor • 0.3 AND 
the DO of  reactor ~ 4.0 

THEN conclude that 
DO-state is normal 

IF the bionmss of  reactor - the simulated value of  the biomass of reactor • 
sire-err 

THEN conclude that 
biomnss-higher.thon-normal 

IF plant-inflow.state is normal AND 
the COD of inlmt ~ 4 50 

THEN conclude that 
external-conditlans are normal 

IF DO.state is normal AND 
external.conditlans are normal 

THEN conclude that 
environ-condi6ons are normal 

IF COD-removin& is bad AND 
biomass-higher-thon-normal AND 
environ.conditlans are normal 

77-1EN conclude that 
the sidestrearas situation is true 

Fig. 3. A set of diagnosis roles. 
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case of bulking or toxic substances loading, where the 

ISCWAP, after diagnosing them, will suggest starting a 

set of actions based on previous experience to arrange 

the situation. At these points, the ISCWAP will deacti- 

vate the mathematical control because the mathematical 

model is not able to describe the process under these 

conditions. In other situations, the ISCWAP can keep the 

mathematical control running and carry out either just 

particular actions taken from experience, or the change 

of any parameter of the control algorithm. This is the 

case of overloading, where the mathematical model still 

describes the process correctly. However, control actions 

could be too long, or insufficient to solve the problem. 

Consequently a complementary knowledge-based action 

can be taken. 

Finally, some rules will inform the operators to 

upgrade the in-plant processes involved to avoid new 

dangerous situations. When rules stop concluding these 

situations, advanced control will go back to the normal 

operation. In this case the ISCWAP does not deactivate 

the mathematical control, it just changes the values of 

the set points of the controlled variables in order to 

adequate de control action to the specific situation. 

Connections and data exchange between the KBS and 

the advanced control is done through GSI. 

3.2. Detection of failures 

Sometimes, during the process, the diagnosis rules do 

not establish the cause of a particular problem. Under 

these circumstances, the failure detection rules are 

performed. These rules include the heuristic knowledge 

corresponding to the particular situation produced when 

a plant element is malfunctioning. Rules have been 

defined for the detection of failures in the plant sensors, 

pipes and weirs. In Figs 4 and 5 two rules are shown as 

examples of possible disturbances, as well as their 

solving actions. 

In the first example, a pH sensor failure is observed 

taking advantage of the feature of the fungi to grow in 

acidic conditions only. This allows to conclude that if 

fungi are present, and the measured pH value is not low, 

there must be a fault with the sensing element. In the 

second case, the rule allows the operators to know if the 

wasting flow pipe is plugged. For Manresa's plant, due to 

a mistake in the design, this situation is a rather common 

lF  pH-reactor is not low AND 
presence-fungi is true AND 
the maintenance of pH.sensor is OK 

THEN conclude that 
the status o f  pH-sensor is bad 

For any sensor 
IF the sensor-status of  the sensor is bad 
INFORM the operator that 

"The sensor [the name of the sensor] is out of  order. You must 
calibrate it" 

Fig. 4. Rules for fault detection. 
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IF the biomass of reactor - the simulated value of the biomass of reactor > 
sire-error 

THEN conclude that 
biomass-higher.than-nbrmal 

IF COD-rem-eff-value ~. 0.8 
THEN conclade that 

COD-removing is good 

IF biomass-higher*thanmormal AND 
COD-removing is good AND 
wasting.flow > 10 m3/h 

THEN conclude that 
wasting.pipe-plugged is true AND 

INFORM the operator that 
"The wasting pipe is plugged" 

Fig. 5. Rules for fault detection. 

failure. If the biomass in the reactors is greater than the 

normal value, and COD removal efficiency is normal or 

high, then the cause must be a bad wasting schedule, As 

the wasting flow is read on-line in the data-base, being 

the bad wasting operation situation rejected, then the 

cause inferred is a plugged pipe. 

It can happen that the rules can conclude neither a 

cause nor a failure. Here a message to the operator will 

show that a new situation, which must be identified, is 

taking place. 

3.3. Prevention 

One characteristic of an expert is the ability to predict 

possible future problems when a specific situation 

occurs. ISCWAP tries to imitate human experts in this 

case also. Causes for many waste water plant upsets are 

known. However, it can take a long time, days or even 

weeks, for the revealing of the malfunction since the 

causes are present. So, it can happen that nobody detects 

that the plant is going to be in a problematic situation. 

Bulking is a typical plant problem where all the above is 

specially true. There are different causes that can lead to 

bulking. Most of these causes do not lead to this state 

immediately, but the effect appears with a long-term 

delay. Possible causes leading to the bulking situation 

are low pH at the inflow, extreme low or high F/M 

values (food/microorganisms ratio), or extreme low or 

high dissolved oxygen. Moreover the appearance of 

these values does not lead directly to a bulking situation, 

as they are not a sufficient condition, but it is necessary 

to watch their evolution in order to inform that the 

conditions for bulking are being reached. 

A third set of rules in the KB try to avoid these 

situations; their aim is to detect and to prevent possible 

trouble. They scan the process looking for any situation 

that could lead to malfunction. When a possible upset is 

detected, ISCWAP tries to conclude the variable that 

must be changed and what must be corrected to avoid it. 

If the plant is automated enough, a control action is sent 
to the actuator. If not, a message is sent to the operators 

telling the actions to be carried out. 

Two examples are presented in Figs 6 and 7. A high 

variability of pH values at the inflow causes bulking. 

The variable pH-in-margin is set according to experi- 

CACE 21:Z-C 
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IF  the maximum value of  the p H  of  input during the last 3 hours > 
the minimum value of  the p H  of  input during the last 3 hours + 
T2~.~H-in-margin 

conclude that 
Fear-of bulking is true 

Fig. 6. Prevention rules. 

mental (historical) data. Usually, there are two channels 

opened at the plant entry, and a third one is closed. If 

there is an inflow's increase, the third channel needs to 

be opened to avoid an overflow. In Manresa's case the 

gate must be opened manually because it is not 

automated, but this could be done automatically follow- 

ing an ISCWAP order if there was an engine to open it. 

Care must be taken also to avoid the plugging of the 

input screens, as the inflow may carry several objects 

and material (dead animals, vegetables, branches or 

plastic wastes). 

4. COMPONENTS 

In order to achieve the proposed objectives the 

supervisor system contains the following elements: 

1. Facts, parameters or variables of the system, ca 250 

facts. 
2. Object classes to define the system, ca 470 objects. 

3. Formulae, tables, equations, simulation formulae (24 

items) and descriptive rules (63 rules) to describe the 

process. 

4. Heuristic and expert control rules. They carry on the 

diagnosis (140 rules), detection of failures (70 rules), 

prevention (35 rules) and expert control (20 rules). 

5. Graphical interface to communicate with the oper- 

ator. 

4.1. Facts, parameters and variables 

These correspond to the elements needed to define the 

system. It is important that the selected facts or attributes 

must be relevant for the characterization of the domain. 

The definition of an attribute specifies its type (numeric, 

boolean or fuzzy). This definition can be accompanied 

with a short description of the attribute. An example is: 

(DISSOLVED-OXYGEN IS 

Dissolved oxygen is used by the microorganisms to 

consume substrate NUMERIC) 

where the attribute DISSOLVED-OXYGEN is defined 

as numeric, that will be used later to characterize the 
aeration basins. Also, a short description is attached. 

The set of facts is like a dictionary that describes the 

domain features. Facts and objects will be used as 

components in the rules of the reasoning strategy. 

Variables can be: quantitative, such as the dissolved 

oxygen (DO), biochemical oxygen demand (BOD), 

chemical oxygen demand (COD), suspended solids (SS), 

or the sludge volumetric index (SVI); symbolic or 

qualitative, as water-colour, turbines-state, kind-of- 

microorganism; or logical, motors switched on or off, 

weirs open or closed. Certainty values have been 

assigned to qualitative variables, which allows to operate 

with approximate reasoning, and also to assign variables 

such as rather, a lot, quite or correct. The values of the 

variables can be obtained in three different manners: 

from formulae, tables and/or functions; from external 

sources through GSI, such as the variables measured on- 

line from the plant (i.e. DO, inflow, recirculation flow, 

wasting flow, turbines on-off, pumps on-off) or data 

from files; and finally, with end-user control inputs in the 

screen (buttons and type-in boxes). The latter is the case 

with the off-line results from the analytical determina- 

tions in the plant laboratory (such as biomass, substrate 

or SS) and also the symbolic variables. 

4.2. Object classes 

The most common units and objects present in the 

plant have been stored into the object base. Initially, it is 

necessary to define the classes of objects that are present 

in the model, their attributes and icons to represent them. 

Defining a hierarchy of objects saves time and space, as 

subclasses can inherit attributes from the superior class. 

For example, on the Manresa plant, there are two types 

of aeration turbines, Archimedes screws to convey 

recycled activated sludge and various pumps. All of 

these types of equipment are used to impel flow, and so 

a superior class of liquid impeller could be defined. 

Many attributes (eg. whether the equipment is running or 

stopped, a maintenance schedule, power consumption) 

are common to these objects, so they only need to be 

defined once in the superior class definition. As it is 

shown in Fig. 8, the liquid impeller class would have a 

superior class, for example engine class, which would 

have as superior class object, that could be the highest 

level defined. This means that a few powerful rules can 

be written which apply to a wide range of objects 

avoiding duplication. Besides, new attributes can be 

added to any class if more aspects about the class are 

considered or deleted otherwise. An example of defini- 

tion is: 

IF storm is true during the last hour AND 
the flow of input > the flow of input as of 1 hour ago * 1.5 

THEN conclude that 
Fear-of overflow is true AND 

1NFORM the operator that 
"Open the third channel at the input and clear the screenJ to avoid ove~llow" 

Fig. 7. Prevention rules. 

(AERATION-BASINS 

(Attributes 
INFLOW 

OUTFLOW 
BIOMASS 
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Fig. 8. A scheme of a possible hierarchy of the object classes. 

SUBSTRATE(COD) 

DISSOLVED OXYGEN 

BIOMASS-AT-THE-INPUT 

SUBSTRATE-AT-THE-INPUT 

DO-AT-THE-INPUT 

OXYGEN-UPTAKE-RATE (OUR) 

pH 

GATE-OPEN-OR-CLOSE 

FULL-EMPTY)) 

Table 3 depicts the classes of objects that have been 

finally considered in ICSWAP. Once the classes are 

defined, different instances of them are created and 

interconnected to build the scheme of the plant. 

4.3. Process description module 

The use of formulae is one available method to get 

values for the variables. Mass balance in a reactor is 

defined with a formula; the oxygen saturation concentra- 

tion (DO) in the mixed liquor is a function of 

temperature and salinity. Simulation equations are also 

used to assign values to variables. As it has been noted, 

a mathematical model giving the evolution of biomass, 

COD and DO in the reactors and the biomass in the 

recirculation line has been implemented (Serra, 1993). 

The model is a modification of a rather known one 

(Marsili-Libelli, 1989), calibrated with experimental 

data from Manresa's waste water treatment plant. 

Apart from the simulated values, these variables are 

also experimentally measured. Thus, referring to the 

particular variable its real value is obtained, while 

referring to the simulated value of  the variable the value 

calculated from simulation is obtained. This will allow 

to compare the actual values against those predicted by 

the model. 

Rules have also been used to describe the process. The 

use of rules easily explains specific aspects of the plant 

that are difficult to express quantitatively (for instance 

the description of the sequence to fill or empty a 

reactor). 

4.4. Heuristic rules 

Rules containing the qualitative knowledge of the 

process must be defined into the knowledge base to 

allow the ISCWAP to reason about what happens in the 

plant as a human expert would do. Heuristic knowledge 

is used in diagnosis of plant situation, detection of 

failures and prevention of possible upsets. 

Knowledge stored in the Knowledge Base comes from 

different sources as books, manuals and papers referred 

to waste water treatment and, mainly, from experimental 

work and through interviews with experts, designers and 

plant operators. A great amount of information has been 

obtained from the waste water plant of Manresa. 

Examples of heuristic rules are presented in Figs 3-7, 

where they are used in the reasoning process. 

Table 3. Object base for the Manresa's plant 

-Process Equipment 
- Bassins 
- Settlers 
- Primary settlers 
- Clarifiers 
- Pools 
- Sources 
- Screens 
- Narrow 
- Wide 
- Manuals 
- Sand removers 
- Manual valves 
- Exterior 
- Thickeners 
- Rotation units 
- Digesters 
- Tanks 
- Belt filter presses 
-Motors 
- Turbines 
- I speed - 2 speed 
- Arquimedes screw 
- Pumps 
- Electrovalves 
-Biomass 
- Fungi 
- Microorganisms 
- Protozoa 
- Flagellates 
- Free-swimming ciliates 
- Ciliates 
- Vonicella 
- Aspidisca 
- Rotifers 
-Floc 
-Microorganism-characteristics 
-Situation 
-Color-button 
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4.5. Graphical interface 

The operator communicates with ISCWAP through a 
graphical interface. In the screen a scheme of the plant is 

shown (see Fig. I), with readouts of the values of the 

most important variables (sludge age, plant inflow, 
recireulation flow, input COD, output COD, etc.). The 

object Situation with its attributes (normal, bulking, 
foaming or other) is also present to display at any 

moment the diagnosis result. Different colours are used 

to indicate if the engines are stopped or running, if the 
weirs are open or closed. Alarms or messages appear in 
one side of the screen. If a fault is detected for any 
operation unit, a visible sign as a red cross, draws the 
operator's attention. 

The operators enter the off-line information (water 
colour, odour, and also data obtained in laboratory 

analysis) with buttons and type-in boxes. These end-user 

buttons are all in a specific worksheet. This worksheet 
appears on the screen when called (with an action 
button). 
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Fig. 9. Sample evolution of the system's variables along time, 
expressed as a deviation variables. 

Access control features have been added to give some 
protection level to the system, depending on the type of 

user considered. Operators cannot modify the knowl- 
edge base, they just enter the values for the off-line 
variables. Some parameters evolving with time can be 

accessed by the manager to update them if necessary (i.e. 
more reactors were built, input water characteristics 
changed due to new factories). Although probably, in 

these cases, also rules ought to be changed. A whole 
KBS revision should then be done, but its validation can 
be a laborious task (Meseguer, 1992). 

5. A CASE STUDY 

As an example of all the elements working together, 
the supervision of a sidestreams situation is described. 

This example shows how the system works to manage a 
problem from the diagnosis to the control phase. 

The diagnosis process now follows the next steps. 

First a deficient COD removal is observed by a 
procedure that evaluates all the efficiency parameters of 
the plant. Historical data shows that usually, more than 
80% of the inflow waste water COD is removed. So the 
deficiency will be detected if COD uptake scores less 
than 80%. Just one day of bad efficiency makes this 
procedure not to activate the specific rules (Fig. 3), as it 
is considered that important problems last for more than 
one day. Many possible causes lower the COD depura- 
tion efficiency, so more information is necessary. 

Next step is to know the DO concentration in the 
aeration basins. Upsets in the DO level, both over- 
aeration and underaeration, can lead to a bad removal of 
organic material. If the DO level was different from the 
desired one, the KBS would focus on DO problems, and 
arriving to the final conclusion, it will finish the 
diagnosis process. On the other hand, if DO values are 
normal the diagnosis must continue. 

The following step is to observe the plant inflow. A 
high plant inflow also lowers the plant efficiency, as the 
detention time in the basins is reduced. In this situation 
the KBS uses the variable plant-inflow-state, instead of 
plant-inflow. Plant-inflow gets numerical values (m3/h), 
while plant-inflow-state is a symbolic variable with 
possible values high, normal or low. These values are 
assigned by rules depending on the inflow and the 
particular conditions of Manresa's plant. In general, the 
normal values of inflow are within 800 and 1600 m3/h. 
Occasionally, inflow can suddenly increase during just 
two or three hours, caused by focused Ioadings of 
factories. As they are short in time, they do not affect the 
plant behaviour, even if they exceed the value of 1600 
m~/h. The KBS realizes that these peaks belong to the 
tolerated change rate of the plant inflow, which simulates 
the sudden increase. The rule that gives values to plant- 
inflow-state takes this fact into account; if plant-inflow is 
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bigger than 1600 m3/h but factories loading is concluded, 

plant-inflow-state will still be normal. 

If plant inflow is normal, biomass concentration in the 
aeration basins is checked. The biomass concentration 
depends on many factors (recirculation and wasting 
flows, temperature, COD at the input, etc.), making it 

difficult to ascertain if there is a normal, low or high 
level of biomass. Our knowledge base considers two 
aspects for its determination. As the plant usually works 

within a known range for the values of the variables, 

normal values of biomass concentration are defined by 
the plant technicians. They specify as normal for 

Manresa's plant, biomass levels between 1500 and 3000 
mg/l. Because of this, the KBS will conclude that 

something unusual occurs if biomass is not included in 
this range of concentrations. However, these values 

(1500-3000) could be abnormal in specific situations, as 
during an unexpected very hot weather or an organic 

overloading. To allow for that, these values are not 
absolute and they may vary in particular conditions. The 
knowledge base has an alternate way to decide if the 
biomass concentration level is correct for the plant 

performance. It consists on the comparison of the actual 
values of biomass against the simulated ones, obtained 

from the mathematical model previously mentioned. The 
model uses as inputs the real values of all the flows, 
temperature and aerators schedule, and gives biomass, 
COD and DO as outputs. If the difference between the 

real value and the simulated one is larger than a prefixed 
error, then the KBS concludes a positive difference for 
the biomass in the reactors (biomass is high), or vice 
versa, a negative difference (biomass is low). 

If the biomass concentration was normal, the COD 
removal failure would be caused by inhibitors, the 
presence of toxic substances in waste water (combined 
with standard DO and inflow values). The effect of toxic 
substances is the qualitative change of biomass, such as 
its aspect, motility, cilia's movements and so on. As an 
assumption, toxic substances do not alter quantitatively 
the biomass amount. If the biomass concentration level 

is low, other possible causes must be found, as a bad 
wasting schedule or the bad operation of clarifiers. 

In the presented case, it is considered that the biomass 
level has a high value. A low wasting flow increases the 
biomass level in the reactors, but here, the COD uptake 
efficiency is not low. So, toxic substances loading is not 
the situation. If overloading is rejected as a possible 

cause, because COD at the input is not high (COD 
analyses are carried out daily in the plant), the only 
cause left for this situation is in-plant sidestreams; 
finally, the situation under which the plant is running is 
diagnosed. 

Continuing with the previous example of side- 
streams, once the KBS has diagnosed the situation, the 
following control actions are taken. First, the COD 
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concentration actually coming into the reactors must be 

known, asking for a laboratory analysis if necessary. 

Next, this real value replaces the COD value used in the 

mathematical COD control. Due to the big growth of 
biomass caused by the increase in organic material, the 
oxygen consumption in the mixed liquor will be greatly 
enlarged, leading to a possible shortage of DO. The KBS 
then modifies the DO control algorithm, providing it 
with a new biomass value, calculated as the expected 

from the biomass--COD yield. Finally, some rules will 

inform the operators to upgrade the in-plant processes 

involved to avoid a new sidestreams situation. When the 
rules stop concluding the sidestreams situation, the 
advanced control will be restored to its normal opera- 

tion. Schematically, the KBS does not deactivate the 
mathematical control, but it just changes the value of 

selected variables in order to accommodate the control 
state to the specific situation. 

This case study is a good example for the comparison 
of the performance of the plant using ISCWAP against 
manual operation. Schematically, the ISCWAP takes 
advantage of three intrinsic features of this kind of 

systems. First, ISCWAP conveys a systematic examina- 
tion of the variables. Therefore, the system starts 
detecting possible alterations affecting the evolution of 

COD just when the values of the laboratory analyses are 
introduced. With manual operation, the plant's staff 
cannot be simultaneously evaluating these values and 
carrying out the calculations on how the plant operation 
is evolving. 

In a second term, the values from the laboratory 
analyses are continuously compared against the remain- 
der variables in the process (DO in the aeration basins, 
input flow, etc.). With this procedure, the system is using 
the heuristic knowledge included in the rules to avoid a 

systematic comparison of all the variables with all their 
possible values. The system is acting in an intelligent 
manner, and searches according to the rules defined for 
the comparisons that can lead to a more efficient 
estimate of the situation. Using manual control, when the 
number of variables increases, it results more difficult 
for the operator to establish the relationships among the 
different variables. 

Another stated feature is the discrimination among 
possible situations, by using the results provided by a 
mathematical model. Here, the differences with the 

manual control are clear. Though the operator may have 
a qualitative idea of how the system is going to evolve, 
he is not able to foresee the exact change of certain 
variables. The combination of expert information, in the 
form of rules, with the quantitative information, speci- 
fied by a mathematical model of the process, makes 
ISCWAP a more proficient alternative to the control of 
wastewater treatment plants. 

The benefits of the proposed system are increased if 
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the abnormal situation occurs in the absence of the 

plant's manager. Thus, in plants functioning 24-hours a 

day, normally with reduced number of operators (and 

also their qualification) at night, the operator may be in 

a lack of preparation and/or background to cope with the 

situation. In this sense, one of the conclusions for the 

design of KBS is that the number of dialogues present 

must be kept to a minimum. The number of questions 

must be reduced, and questions are placed only in the 

case that the situation cannot be identified using on-line 

and off-line information. Also, the questions placed must 

be short and specific. In our case, queries placed by 

ISCWAP have been agreed with the management of the 

plant. 

6. CONCLUSIONS AND FUTURE WORK 

A Knowledge-based system for waste water treatment 

plants supervision in real-time operation has been 

developed. In order to obtain the knowledge-base, the 

experiences from different people with distinct back- 

grounds (Microbiology, Chemical Engineering and Con- 

trol Engineering) have been used. Biological, qualitative 

and quantitative information available from the plant is 

used to supervise the process. Thanks to this system, the 

plant can be controlled in both normal (mathematical 

control) and unusual (expert control) situations. 

The final ISCWAP system is expected to be as generic 

as possible, applicable to many plants. Those details that 

can lead Manresa's plant to any problem have been 

considered because they can be critical for this specific 

plant (although equivalent episodes can be less relevant 

for other plants). In order to apply the system to another 

plant, it will be necessary to integrate specific knowl- 

edge from the new plant. Nowadays, our experience is 

limited, but the application to a second plant, with 

different characteristics, is under development. 

There is much work to be done in the future for the 

improvement of the proposed system. Two examples are 

the development of an automated pattern recognition 

methodology of microbial images to provide this useful 

qualitative information to the system (Dellepiane et al., 

1992), and to apply the data sets and knowledge base as 

retrofitting information for the optimization of the design 

of waste water treatment plants (Bafiares-AIc~intara and 

Ponton, 1992). 
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