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Causal concepts play a crucial role in many reasoning tasks.
Organised as a model revealing the causal structure of a do-
main, they can guide inference through relevant knowledge.
This is an especially difficult kind of knowledge to acquire,
so some methods for automating the induction of causal
models from data have been put forth. Here we review
those that have a graph representation. Most work has been
done on the problem of recovering belief nets from data but
some extensions are appearing that claim to exhibit a true
causal semantics. We will review the analogies between be-
lief networks and “true” causal networks and to what extent
methods for learning belief networks can be used in learn-
ing causal representations. Some new results in recovering
possibilistic causal networks will also be presented.

1. Introduction

Reasoning in terms of cause and effect is a strategy
that arises in many tasks. For example, diagnosis is
usually defined as the task of finding the causes (ill-
nesses) from the observed effects (symptoms). Simi-
larly, prediction can be understood as the description
of a future plausible situation where observed effects
will be in accordance with the known causal structure
of the phenomenon being studied. Causal models are
a summary of the knowledge about a phenomenon ex-
pressed in terms of causation. Many areas of the ap-
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plied sciences (econometry, biomedics, engineering,
etc.) have used such a term to refer to models that
yield explanations, allow for prediction and facilitate
planning and decision making.

Causal reasoning can be viewed as inference guided
by a causation theory. That kind of inference can
be further specialised into inductive, deductive or ab-
ductive causal reasoning. Inductive causal reasoning
aims at building a causal model of the phenomenon
being observed from data. It is a widely used strategy
in statistics, econometry and the biomedical sciences.
Deductive causal reasoning provides causal explana-
tions given a causal model and a description (data)
of the phenomena that has to be explained. Predic-
tion too, could be seen as a kind of deduction from
a given model and a present known situation in or-
der to reach a future situation causally consistent with
what is presently known. Abductive causal reasoning
amounts to reasoning with a causal model in order to
find the possible causes of a given phenomenon, the
causal model being known. This could be a crude
approximation to diagnosis.

Causal concepts are, in fact, central to accepting ex-
planations, predictions, etc. as plausible. It has been
argued that causation is a basic concept in common
sense reasoning, as fundamental as time or space. We
will not discuss here such a claim because our aim
is a more modest one: describing and evaluating sev-
eral methods for building causal models through the
recovery of causal schemas from data. We will also
give some hints on how to build such models.

Causal models have been seen as meta-models by
advocates of second-generation expert systems [9].
The importance of causal models seems to lie in that
they allow for a focusing of inference on the concepts
or phenomena that are really relevant to the case; this
is why having a causal model aids in guiding infer-
ence and gives a higher-level schema of the reason-
ing task for the domain at hand. Usually such higher-
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level schemas are given by experience but they are
difficult to build. Consequently, much effort has been
devoted to devise methods for automatically building
causal models.

2. Causation and the discovery process

For the purpose of this overview, causal discovery
is equated to a learning process. This identification
does not have complete agreement within the Knowl-
edge Discovery in Database and Data Mining com-
munities, and there are some discrepant views on such
identification [50]. In any case, the level of develop-
ment of the current methods does not allow for more
sophisticated approaches. Casting discovery in terms
of learning, we will have to take as a point of depar-
ture the data about the phenomenon being studied, a
causation theory, and a learning method. The follow-
ing, then, are the components of a causal discovery
system.

– Data about the objects of interest involved in
the phenomenon whose causal structure is to
be discovered. Different kinds of objects can
be engaged in different causal relations: events,
episodes, processes, states, etc. Data are just the
syntactical description of those objects; data can
be subjective (i.e., a summarisation of an expert’s
opinion) or objective (coming from data files or
measurement records).

– The causation theory is a description of the con-
ditions that should be met by objects represented
by data in order to state that a causal relation
exists between the objects the data come from.

– Taking the causation theory as background knowl-
edge or as bias, the learning method identifies
potential causal relations that form the basis of
the model being built. We will view the learning
process as a search procedure and classify dif-
ferent learning methods in terms of the heuris-
tics and evaluation functions used and the num-
ber of models that gives as a result. Information
about the complexity of the methods will also be
considered.

– The result of the learning process is a causal
model of the phenomenon under study. Such
models are built by composing the previously
identified causal relations. The causal model can
be seen as a theory of the phenomenon being
modelled. This theory can later be used deduc-

tively or abductively to fulfil predictive or ex-
planatory tasks. The kind of tasks that can be
performed with the resulting model depends on
the properties of the causation theory used as
background knowledge during the learning pro-
cess. This implies that, although some causation
theories are more general than others, no one is
completely adequate for all reasoning tasks in all
domains, so when choosing a discovery method
it will be important to ascertain first what kind
of causation theory is more adequate to guide
it [83].

We will review discovery methods taking the pre-
ceding aspects as discriminating criteria. This will
allow us to answer the following questions:

– What kind of phenomena can be interpreted by
the method? That amounts to the question of
what causal relations can be identified with which
causation theory. Such property of a causal the-
ory will give us an idea of the area of interest of
the method, in the sense of what kind of generic
tasks can be used with what kind of objects (en-
gineered devices, general processes, etc.).

– What is the resulting model like? What kind of
knowledge representation does it use? As we
will see, there is a tendency to favour graphical
or mixed models (such as causal networks). This
will allow us to discuss what inference methods
the model can support and how they are imple-
mented.

– What are the properties of the search method?
This will allow us to pinpoint possible improve-
ments for each specific method.

– What are the properties of the data? This will
allow us to discriminate how well the discov-
ery methods adapt to data that are not ideal (i.e.,
missing data, noise, etc.).

In order to review current discovery methods in the
terms just discussed, it is necessary to make some
concepts about causation quite precise. To be more
specific we will have to know which are the parame-
ters that distinguish the different proposals about cau-
sation, the different causation theories. This is the
aim of the next section.

2.1. Causation theories

In this section some important issues for distin-
guishing theories that try to characterise the causal re-
lation will be stated. In doing so, our goal is twofold.
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Firstly, we will clarify the traits that allow for distin-
guishing causal associations from other types of asso-
ciation and, secondly, we will be able to compare how
the different causation theories formalise the common
concepts underlying causation and, so, we will be in
a position to ascertain their respective merits.

In the most abstract way, causation is understood
as a relation between two phenomena or classes of
phenomena: one, the cause, is responsible for the oc-
currence of the other one, the effect. In a sense, the
occurrence of causes “produces” the occurrence of ef-
fects.

In order to classify the different causation theories,
it is important to know which are the concepts that
form the basis of a causation theory. Causation theo-
ries differ in the following aspects [18,85].

– The way in which causation is considered to
be produced (deterministically/non-deterministic-
ally). The first consideration implies characteri-
sation of causation in terms of logical conditions;
the second in terms of valid statistical associa-
tions between events that are different from spu-
rious association.

– The agent producing causation: uniquely by
the intervention of an external agent to the ex-
perimenter or because it is a process indepen-
dent of the experimenter that implies certain
kind of regularity in nature (manipulative account
of causation/non-manipulative account of causa-
tion).

– The way in which causes and effects are distin-
guished. This is the problem of causal ordering.
Usually causes are assumed to precede their ef-
fects. So, time can be used in order to establish
precedence.

– The acceptance or not of the Principle of the
Common Cause [12]: this is a principle due to
Hans Reichenbach stating that between two re-
lated objects of interest A, B either A causes B
or B causes A or some other common cause C
exists that both causes A and B.

In a nutshell, a causation theory can be understood
as a triplet: 〈P,M, I〉, with

– P : a language for describing the phenomena of
interest: more often than not this will be variables
and constraints on variables;

– M : a language for describing valid causal mod-
els. This involves criteria for establishing causal
ordering and criteria for deciding on valid causal
association (probabilistic or otherwise);

– I: rules for inference: how to build correct expla-
nations, correct predictions, correct deductions
using the model.

3. Causation in AI

As we have already said, there is a growing interest
in causal discovery in AI, in automating the identi-
fication of causes and effects. The most fundamen-
tal motivation is in guiding inference in accord to the
known causal structure of the world.

There are many references to “causal models”,
“causal association”, etc., in the AI literature. Interest
in causation arises, for example, in common sense rea-
soning [51] and automated diagnosis [6,13,41]. There
are also references in qualitative reasoning and mod-
elling [28]. Posterior developments such as second-
generation expert systems posit also the use of a
causal model of the domain as meta-level for expert
systems [10]. The need for diagnosis appears also
in engineered devices, which resulted in the motion
of “mythical causality” [17] and theories of causal
order [45,46,82]. Several other attempts at defining
the causality principle and causal reasoning have been
contributed by other workers related to AI, most no-
tably those dealing with default and nonmonotonic
reasoning [78,79,82].

All these methods have different semantics for the
causality relation. Presently, however, the concept of
causation used in AI most agreed upon stems from the
work of Judea Pearl in belief networks [63,67,68] that
has been taken as a reference for the interpretation of
causal relations. The underlying formalism has corre-
lates in decision theory and in planning [40]. It can be
understood as a hybrid model (involving qualitative
and quantitative aspects) of causality inspired from
several sources, mainly statistical ideas on causality
as correlation but also by ideas about probabilistic
causation [75,91]. In Pearl’s formulation, causal or-
der is established atemporally in terms of direction
of association; causal association is non-deterministic
and the principle of common cause is used (see [84]
tor a discussion of this point); objects of interest are
variables and the representation language is mainly
graphical.

It is important to remark that this is the research
area where most work has been done on learning
causal schemas.

Other graphical representations tied with causality
and having some degree of equivalence with Pearl’s
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networks are: statistical association graphs [71],
path analysis graphs [9], Heckerman’s modification
of influence diagrams [36,37] and Spirtes’ causal
schemas [87,88].

Non-graphical representations of causation have
also received some attention from the point of view
of learning. Let us just mention the work by Paz-
zani [62] which is centred around the idea of us-
ing temporal frame representations to induce causal
associations and also the system developed by Pan-
durang [60] who uses criteria taken from Simon and
Iwasaki’s work [44–46] on causal ordering to build a
logical causal model.

4. Graphical representations of causality: causal
networks

The network representation for causality has some
precedents in AI. For example, Peng and Reggia [72]
developed a representation for causal links in diagno-
sis domains, the causal abductive network, and de-
veloped algorithms for reasoning with them. Similar
work can be found in statistics: causal accounts are
the centre of a whole area devoted to graphical models
in statistics [4,7,55,56,95].

Definition (causal network). A causal network is a
graph where nodes represent variables and links stand
for causal associations. Links can be directed or undi-
rected and may be weighted by a factor or combina-
tion of factors expressing the strength of causal asso-
ciation.

This is the most general definition possible. Table 1
expresses the possible combinations and the actual
formalisms.

When association between variables receives a
given direction and the strength of association corre-
sponds to conditional probability distributions, the re-
sulting representation is called a Bayesian belief net-
work. We will describe them in some detail further on.
In these representations, causal association is under-
stood as a non-deterministic relationship, more pre-
cisely a probabilistic one. It is worth noting that un-
certainty about any kind of relationship between vari-
ables can be due to reasons different from those that
make the use of probability reasonable. Other for-
malisms can be used in representing uncertainty as,
for example, possibility theory [21] or belief func-
tions. Accordingly, one can think of causal networks
that resort to possibility distributions, belief functions,

etc. in order to express the non-determinism of the
causal association among the variables in the model.
We will review some developments in these direc-
tions.

Decomposable graphical models express relation-
ships between variables by means of undirected links.
Strength of association is represented by conditional
probability distributions. There is no clear criterion
for establishing causal precedence as directionality
may or may be not present in the model. We will not
review here methods for learning such models, which
are more typical of statistical techniques. The inter-
ested reader is referred to [4] for an excellent review.

Note that these two families of models do not sup-
port a manipulative view of causation. As such, they
can be applied for the recovery of causal informa-
tion from observational data, i.e., data where no in-
formation is available regarding which variables are
amenable to manipulation and which ones are not.
Let us remark, however, that, as Pearl points out [67],
there are some patterns of association in conditional
probability distributions that suggest quite intuitively
the notion of causal association.

Path models [96] are special representations for
multiple linear regression models. Given the regres-
sion model

rYX1 = β1 + β2X2X1 + β3X3X1,

rYX2 = β1X2X1 + β2 + β3X3X2,

rYX3 = β1X3X1 + β2X3X2 + β3,

where βi are standardised partial regression coeffi-
cients, βi can be interpreted as how much Y changes
when Xi is changed one unit. Causal association is
expressed by means of regression coefficients, i.e., by
the strength of correlation between variables. There
are several ways of establishing causal order. We will
explain the way causality is represented in them in
Section 4.6.

Pearl’s causal theories [64–66] use a Bayesian be-
lief network to represent the relationships between
variables in a linear structural model. For this reason
we will describe them in the section devoted to belief
networks.

These three families of models support a manipu-
lative view of causation and, as such, they cannot be
applied in learning from observational data but they
are used for learning from experimental data. That is,
data where effect and response variables are known
in advance. Let us point out, however, that Pearl’s
causal theories’ main merit is that they can be used to
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Table 1
Possible graph causal models

Type of graph Expression of causal association Type of link

Bayesian belief network Conditional probability Directed

Decomposable graphical models Conditional probability Undirected

Path models Regression coefficients Directed

Causal theories Conditional probability and functional links Directed

establishing conditions on how causal effects can be
ascertained from observational data.

In reviewing learning methods for causal discovery
we will rely heavily on concepts tied with Bayesian
networks. This will help us in understanding the prob-
lems of inferring causal structures from data which
share most of the problems found when learning
Bayesian networks.

4.1. Bayesian networks

In a general sense, a Bayesian network can be seen
as graphical representation of a joint probability dis-
tribution on a set of variables, the domain variables.
Per se, this information is not enough to represent
causal knowledge. It has to be augmented with several
other statements that may be explicitly represented.
These statements are:

– independence statements: they represent that
some variables have an influence on the be-
haviour of other variables in the domain (depen-
dency relation) or that some other ones have no
mutual influence;

– causal statements: some [36,37,64] have argued
that the previous requirement is not sufficient for
representing wholly the (probabilistic) causation
relationships existing among variables and they
have to be augmented with stronger assumptions.

With this aim in mind, other conditions have been
put forth in order to establish causal links in ac-
cordance with an intervention model or a decision-
theoretic account of causality. We will review them
briefly later on.

Given the variables of a problem domain U =
{x1, . . . , xn}, a Bayesian network is a Directed
Acyclic Graph (DAG) where nodes represent vari-
ables in U and links stand for direct association be-
tween variables that usually are interpreted as direct
causal influences. The strength of association be-
tween variables is expressed in terms of conditional
probabilities in groups (or clusters) of parent and
child nodes in the network. It is important to re-

Fig. 1. A simple Bayesian network.

alise that there exist two different components in a
Bayesian network: a quantitative one (the conditional
probability values on the links) and a qualitative one
(the topology of the DAG). Among the properties of
Bayesian networks that are to be remarked are their
ability to factorise joint probability distributions and
their graphical criteria for establishing independence
only by taking into account the topology of a graph
(the d-separation criterion). We will discuss them
in the following. There exist several algorithms for
propagating evidence and updating belief in Bayesian
networks [86].

In Fig. 1 we give an example what kind of infor-
mation a simple Bayesian network can convey. The
corresponding functional decomposition is

p(Battery, Fuel, Motor, Start, Move) =

p(Battery)p(Fuel)p(Motor)

p(Start|Battery, Fuel, Motor)

p(Move|Start)
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Table 2
A marginal probability distribution

Start (yes) 0.78

Start (no) 0.22

Table 3
A conditional probability distribution

Start (yes) Start (no)

Move (yes) 0.75 0.05

Move (no) 0.25 0.95

Tables 2 and 3 specify the strength of association.
In general, given a DAG D and a joint distribu-

tion P over a set U = {x1, . . . , xn}, D represents P
if there exists a one-to-one correspondence between
the variables in U and the nodes in D such that P can
be decomposed recursively as the product

P
(
x1, . . . , xn

)
=
∏

P
(
xi | pai(xi)

)
where pai(xi) are the direct predecessors (parents or
direct causes) of xi in D.

That means that each variable x1 is conditionally
independent of all its other predecessors

{x1, . . . , xni−1}\pai(xi).

This can be expressed in the preceding example as
conditional independence statements:

I(Battery|�|Fuel)

I(Motor|�|Battery, Fuel)

I(Move|Start|Battery, Fuel, Motor)

Each statement of the form I(X |Y |Z) is read as
“X is independent of Z, given Y ”. This expression is
an extension of the classical concept of independence
among variables where X, Y, Z are interpreted as
simple variables with some given values. Note that
here I(X |Y |Z) is to be understood as “for all instan-
tiations of all variables in X, Y and Z”.

The notion of independence, however, can be de-
fined in such a way as to remove any relationship
with probability. Criteria for independence have been
proposed for other uncertainty formalisms [24,26,27]
as well as in other areas of interest, as databases [90].

From such studies, a possible axiomatic view of in-
dependence relations has been agreed upon. The fol-
lowing axiomatization resumes the desired properties
for a relation to qualify as a relation of independence.

(1) Trivial independence: I(X |Z|�). A null in-
formation modifies in no way the information
one already has on X .

(2) Symmetry: I(X |Z|Y ) ⇒ I(Y |Z|X). Given
a state of knowledge Z, if knowing Y gives
no information on the value that X may take,
then knowing X will give no information on
the value that Y could take.

(3) Decomposition: I(X |Z|Y ∪W )⇒ I(X |Z|Y ).
If both Y and W are irrelevant for the value
of X , then each one of them, taken separately,
should be taken as irrelevant for the value of X .

(4) Weak union: I(X |Z|Y ∪W )⇒ I(Y |Z∪Y |X).
When knowing Y , a piece of information taken
as irrelevant for X cannot make any other ir-
relevant information W become relevant for
knowing X .

(5) Contraction:

I(X |Z|Y )&I(X |Z ∪ Y |W )⇒
I(X |Z|Y ∪W ).

If W is taken as an irrelevant piece of infor-
mation for X after knowing irrelevant infor-
mation Y , then W should be irrelevant for the
value of X before knowing Y .

(6) Intersection:

I(X |Z ∪W |Y )&I(X |Z ∪ Y |W )⇒
I(X |Z|Y ∪W ).

If two combined elements of information Y and
W are relevant for X , then at least one of them
should be relevant for X , when the other one
is joined with a previous information Z.

Any set of independence assertions about a collec-
tion of data that reflects the independence implicit in
the data (any dependency model of the data) that sat-
isfies axioms (2)–(5) is called a semi-graphoid. If it
also satisfies axiom (6), it is called a graphoid [69].

The interesting thing about Bayesian networks, and
in general, about belief networks, is that they can be
taken as a representation of a dependency model. If
this is so, it is important to know which mappings can
be established between the topology of the network
and its associated dependency properties. The notion
of d-separation is central to that task.

Definition 1 (d-separation [68]). If X, Y, and Z are
three disjoint subsets of nodes in a directed acyclic
graph D, then Z is said to d-separate X from Y , iff
there is no path from a node in X to a node in Y
where the following conditions hold: (1) every node
with converging arrows either is or has a descendant
in Z and (2) every other node is outside Z. A path
satisfying these two conditions is said to be active;
otherwise it is said to be blocked by Z.
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Fig. 2. An example for the d-separation criterion.

Example [56]. Given the following Bayesian net-
work: X1 takes values in the set {winter, spring, sum-
mer, fall} and the other variables are binary-valued.
The setsX = {X2} and Y = {X3} are d-separated by
Z = {X1}; the path X2 ← X1 → X3 is blocked by
X1 which belongs to Z and the path X2 → X4 ← X3

is blocked because X4 as well as all its descendants
lie outside Z. On the other hand, X and Y are
not d-separated by Z ′ = {X1, X5} because the path
X2 → X4 ← X3 is made active by X5, which is a
descendant of X4 and belongs to Z ′ (see Fig. 2).

If we assume that behind a collection of data there
exists a dependency model, M , then the following
definitions express the possible relations between the
dependency modelM and its graphical representation,
the DAG D.

Definition 2 (I-map). A DAG D is said to be an I-
map [68] of a dependency model if every d-separation
relation in D corresponds to an independence relation
in M . That is, given X, Y, Z three disjoint sets of
nodes in D:

d-(X |Z|Y )D ⇒ I(X |Z|Y )M .

Example: a trivial example is when D is a complete
graph.

Definition 3 (minimal I-map). For a given DAG D,
that is an I-map for a given dependency model M , it
is minimal if no other DAG D′ with less links than
D is an I-map for M.

Definition 4 (D-map). A DAG D is a D-map [69]
for a dependency model M if every independence
relation in M has a one-to-one relation with d-
separation relations in D. That is, given X, Y, Z
three disjoint node sets it happens that

d-(X |Z|Y )D ⇐ I(X |Z|Y )M .

Example: when D is a completely disconnected
graph.

Definition 5 (perfect map). A DAG is a perfect map
of a model M if it is an I-map and a D-map of the
model M .

Given a dependency model, there can exist several
different graphical representations for the same inde-
pendence relations in the model. These representa-
tions are isomorphic. A typical example is the fol-
lowing one. Knowing that x and z are marginally de-
pendent but, when y is known, both are conditionally
independent, the following structures are isomorphic.

x← y ← z ≈ x→ y → z ≈ x← y → z.

This property has important implications for learn-
ing.

For a DAG to be isomorphic to a dependency
model, M , the following conditions are to be
met [69]:

(1) Symmetry: I(X |Z|Y )M ⇔ I(Y |Z|X)M .
(2) Composition/Decomposition:

I(X |Z|Y ∪W )M ⇔
I(X |Z|Y )M&I(X |Z|W )M .

(3) Weak union:

I(X |Z|Y ∪W )M ⇔ I(X |Z ∪ Y |Y )M .

(4) Contraction:

I(X |Z|Y )M&I(X |Z ∪ Y |W )M ⇒
I(X |Z|Y ∪W )M .

(5) Intersection:

I(X |Z ∪W |Y )M&I(X |Z ∪ Y |W )M ⇒
I(X |Z|Y ∪W )M .

(6) Weak transitivity:

I(X |Z|Y )M&I(X |Z ∪ w|Y )M ⇒
I(X |Z|w)M ◦ I(w|Z|Y )M .

(7) Cordality: I(x|y ∪ z|w)M&I(y|x ∪ w|z)M ⇒
I(x|y|w)M ◦ I(x|z|w)M .

Letters in lower case represent individual variables.
The d-separation criterion has been proved to be

a necessary and sufficient condition in relation to
the set of distributions represented by a given DAG.
There is a one-to-one correspondence between the set
of independences implied by recursive decomposition
of probability distributions and the d-separation on
a DAG.
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4.2. Other approaches for non-probabilistic belief
network models

4.2.1. Possibilistic networks
The conditional independence properties just men-

tioned allow for the characterisation of independence
in several uncertainty calculi. Possibility [21] is
a way of dealing with uncertainty and imprecision.
Fonck [23,25,27], devised possibilistic networks, a
specialisation of possibilistic hypergraphs [21].

In these networks, uncertainty is assumed to be
represented by a possibility distribution [20]. Fonck
later described inference algorithms for such net-
works [19,23]. These inference mechanisms are anal-
ogous to the ones proposed by Pearl in his original
work. Fonck proved that the d-separation criterion is
also valid for possibilistic networks. However, she
also detected some important properties of condition-
ing operators in possibility theory of special impor-
tance for learning possibilistic causal networks.

Possibilistic conditional independence is defined in
terms of the conditioning operator. Contrary to prob-
ability, there are several conditioning operators and
several ways to combine possibility distributions.

Let us mention the Dempster–Shafer conditioning
operator [49]:

π(X |Y ) = π(X,Y )/π(Y )

and Hisdal’s [39] conditioning operator:

π(X |Y ) =
{
π(X,Y ) if π(X,Y ) < π(X |Y ),
1 otherwise

where π is a possibility distribution. Based on the re-
sults of conditioning on possibility distributions, con-
ditional independence can be defined in several ways.
The traditional way to understand conditional inde-
pendence in possibilistic settings was to equate inde-
pendence to the equality between the joint possibility
distribution and a combination of the marginal pos-
sibility distributions. This is what is known as the
non-interactivity property.

Definition (non-interactivity [24]). Given two possi-
bility distributions on the sets X, Y they are said to
be non-interactive with respect to a third one Z, if
they can be factored:

π(X,Y |Z) = c
(
πc(X |Z), πc(Y |Z)

)
where c is a possibility distribution combination op-
eration (usually the minimum operator) and πc repre-
sents the distribution resulting from applying the c op-
erator in the conditioning operation.

Other possible ways of defining independence in a
possibilistic setting are the following ones.

Definition (strong possibilistic conditional indepen-
dence [24]). Given the variables X, Y and Z and
the corresponding possibility distributions, we say that
X is possibilistically conditionally independent of Y
given Z if the following equalities hold:

πc(X |Y,Z) = π(X |Z)

and

πc(Y |X,Z) = π(Y |Z).

Definition (similarity-based possibilistic conditional
independence [16]). Two variables X, Y and Z are
said to be possibilistically conditionally independent
with respect to a third variable Z when

π(X |Y,Z) = simπ(X |Z)

for any values of X, Y and Z, where their symbol
= sim denotes that both distributions are similar.

The idea behind similarity-based definitions is that
if two variables are independent conditionally to a
third one, then the conditioned distribution cannot be
very different from the original one. The more differ-
ent it is, the more dependent the variables are [16].

Fonck [23] proved that, depending on the combina-
tion operator used (minimum, product or Lucasiewicz-
like T-norm), the resulting independence relationships
could obey the graphoid axioms or not. In particular,
she showed that for non-interactivity semigraphoid
axioms were valid but graphoid axioms were not. This
means that such an independence definition could not
be used in defining a possibilistic network, and even
less to learn one from data. Huete [42] also stud-
ied the properties of several similarity-based condi-
tional independence definitions depending on the type
of similarity used, proving that most of them do not
fulfil the symmetry property.

Other similar network proposals are Kruse and
Gebhardt’s [33] who defined a similar construct based
on their characterisation of possibility in terms of their
“context model” [32]. Analogously, Parsons [61] has
proposed a characterisation of possibilistic networks
that draws on Fonck’s previous work but refers to
qualitative concepts of influence between variables.
These approaches, with the exception of Parsons’,
stress that independence relations (whatever the un-
derlying uncertainty formalism may be) can be char-
acterised by means of the d-separation criterion. This
is important, because it gives a level of abstraction
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above details due to the nature of the uncertainty for-
malism used. A further development in the direction
of a higher abstraction is Shenoy’s work on valuation
systems [77] which has been given an operational as-
pect and so establishes the conditions for propagating
uncertainty values in DAGs [7].

In any case, these methods represent an advance
in the direction of providing inference mechanisms
based on uncertainty formalisms other than probabil-
ity. They are not changes in learning methods but
in representation. Moreover, even if there is a clear
sense of unity in the way that independence properties
carry over to different formalisms thanks to a struc-
tural criterion, these characterisations still miss some
of the characteristics of causal relations.

Several other assumptions have been introduced in
order to derive truly causal networks. As we have
stressed before, this is equated to the proposal of sev-
eral new characterisations of causality, i.e., several
new criteria for the identification of causation. The
novelty in relation with other criteria previously used
for example in statistics [9] or even in AI [89] where
causality is characterised in terms of constraints on
correlations, is that the new formalizations are based
on an extension of the independence model.

Two interesting departures from the basic belief
graphical model are to be remarked. One is Heck-
erman’s characterisation of probabilistic causal net-
works in terms of decision theory [36] and the other
one is Pearl’s new account for causality in terms of
probabilistic calculus of intervention [66]. Finally,
Cooper [11] has put forth conditions to graphically
identify certain causal relations in terms of their in-
dependence properties.

4.3. Pearl’s intervention view of causality: causal
theories

Pearl has developed a new interpretation for causal
networks based on the idea of intervention. This is
in accordance with other interpretations of causality
widely used among experimental disciplines [85].

The key idea in Pearl’s new work lies in find-
ing structural equivalencies to causal influence and
in defining how a change in a variable value due to
external intervention affects the structure of related
probability distributions.

4.3.1. The probabilistic action calculus
The first change in the Bayesian network defined

by Pearl is the explicit representation of a causal
mechanism [64]. A causal DAG is a DAG where
each parent–child subgraph is a deterministic func-
tion. A child Xi, with parents pai represents a deter-
ministic function:

Xi = fi
(
pai, εi

)
for i = 1, . . . , n, n being the cardinality of the set
of domain variables and pai the set of parents for
variable in a given DAG. εi, 1 6 i 6 n, are mutually
independent disturbances.

Functions allow for calculating the precise effects
of interventions. The simplest of interventions (i.e., an
external action) is the setting of a simple variable, that
is, forcing a variable, say Xi, to take a given value, xi.
This atomic intervention (set(Xi = xi)), according to
Pearl, amounts to isolating Xi from the influence of
the previous functional mechanism Xi = fi(pai, εi)
and setting it under the influence of a new mechanism
that makes xi constant while all other mechanisms
are left unperturbed. That is, the new correspond-
ing graph is a subgraph of the original one where all
arrows entering Xi are wiped out.

Pearl suggests entering a new variable in the sys-
tem in order to represent the operation of an external
intervention. So a new variable Fi is created and the
following convention is made:

Xi = I
(
Fi,pai, εi

)
,

where I is a function defined as

I(a, b, c) = fi(a, c) when b = fi.

In this way the action of any external intervention
that may alter Xi is represented by another parent
node of Xi. The effect is analysed through Bayesian
conditionalization.

The effect of an atomic intervention of the type
(set(Xi = xi)) is encoded by adding to the graph a
new node Fi and a link connecting it to Xi. Fi rep-
resents the deterministic function but is treated like a
variable that can take values in {set(xi), idle}1, xi has
the same domain as Xi and “idle” means no interven-
tion.

The new parent set pa′i of Xi is its previous par-
ent set pai and the Fi node. It fulfils the following
condition:

1See [34] for a similar construct on decisions.
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Fig. 3. The corresponding manipulated graph.

Fig. 4. An extended DAG with a functional mechanism.

P
(
xi | pa′i

)
= P

(
xi | pai

)
if Fi = idle

but

P
(
xi | pa′i

)
=

{
0 if Fi = set(x′i) and x′i 6= xi,
1 if Fi = set(x′i) and x′i = xi.

Graphically, then, we have in Fig. 3 a graph with
no external intervention. The extended graph corre-
sponding to an external intervention Fi is given in
Fig. 4.

So the effect of the intervention set(x′i) is to trans-
form the original probability distribution P (x1, . . . ,
xn) into the new distribution P (x1, . . . , xn | Fi =
set(x′i)).

The relation between pre- and post-intervention
joint distributions can be expressed, thanks to the de-
composability property of Bayesian networks, as:

P
(
x1, . . . , xn | Fi = set(x′i)

)
=


P
(
x1, . . . , xn

)
/P
(
xi | pai

)
=
∏
j 6=i P

(
xi | pai

)
if xi = x′i,

0 otherwise.

Graphically this is equivalent to removing the links
between Xi and pai and leaving the rest of the net-
work as it was before.

4.3.2. Identifiability of causal effects in
observational data

The interest of Pearl’s action calculus is that it al-
lows for the identifiability of causal effects by means
of graphical criteria. The criteria for identification of
a causal effect is that, upon the execution of an action
by external agent in setting a variable (do(x) action),
the related probability distributions should be altered.
If no alteration appears, then no truly causal effect
can be said to have taken place. So, if a change in
a given variable has no effect on the other variables
linked to it in the DAG reflecting dependence rela-
tions, no causal relation can be said to exist among
those variables.

The important twist in Pearl’s work lies in setting
graphical conditions for determining which graphs can
be subject to such a test. That is, to state which graph-
ical conditions are to be met by a dependency graph
in order to test it for the existence of a causal associ-
ation. If a DAG does not meet such conditions, one
cannot infer causal effects by manipulating it. Con-
sequently, it has to be rejected as a representation of
causality in the domain.

Pearl’s conditions are the following ones [29].
A necessary and sufficient condition for the identifia-
bility of the causal effect of a set of variables X on
Y is that the DAG G containing X and Y satisfies
one of the following conditions:

1. There is no directed path from X to Y in G;
2. There is no back-door path from X to Y in G

(i.e., there is no link into X);
3. There exists a set of nodes B that blocks all

paths from X to Y ;
4. There exists sets of nodes Z1 and Z2 such that:

– no element of Z2 is a descendant of X ;
– Z2 blocks every directed path from X to Y

in C−x ;
– Z2 blocks all path in G−x between X and Z1

in C−x ;

where C−x is the graph obtained by deleting
from G all arrows pointing to X .

Definition (back-door criterion [64]). A set of vari-
ables Z satisfies the back-door criterion with respect
to an ordered pair of variables (Xi, Xj) in DAG G
if:

(i) no node in Z is a descendant of Xi;
(ii) Z blocks every path between Xi and Xj which

contains an arrow into Xj .
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Fig. 5. Pearl’s example for testing causal identifiability.

For example, in Fig. 5 the sets Z1 = {X1, X2}
and Z2 = {X4, X5} obey the back-door criterion but
Z3 = {X4} does not because there exists the path
(Xi, X3, X1, X3, X2, X5, Xj).

So if a graph G has one of these properties, it can
have a causal interpretation, in the sense given in the
previous section.

Up to this point we have reviewed most of the as-
pects of causality related to belief networks. Let us
review two more methods, one establishing a differ-
ent set of criteria for finding causal associations on
a Bayesian belief network and a last one that maps
a definition of causality in terms of decision theory
onto the already known concept of Bayesian belief
network.

4.4. Cooper’s partial conditions on causal structures

Cooper [11] has tried to devise some new criteria
to derive causality from observational data that, inter-
estingly enough, make use of independence criteria.
We will comment briefly on his characterisations (see
Fig. 6).

Cooper takes a Bayesian network as the repre-
sentation of the causal relations among the variables
in a domain. Then, he lists a set of several rela-
tions that he qualifies as truly causal and he stud-
ies what kinds of independence relations are satisfied
by such relations. He identified the following seven
relations of independence in terms of d-separation
as uniquely identifying the structures depicted in
Fig. 6.

Fig. 6. Cooper’s characterisation of causality in terms of indepen-
dence relations.

R1: I(x, y) R5: I(w, z | y)
R2: I(x, z | y) R6: I(x, z)
R3: I(w, y | x) R7: I(w, y)
R4: I(w, z | x)

Relations R1 to R7 are tests of independence in
terms of the d-separation criterion. The important
result is that Cooper proved that these seven relations
are sufficient to distinguish among the four network
structures.

4.5. Heckerman’s decision-based view of causality

The main concept behind this approach is the idea
of unresponsiveness that allows Heckerman to define
the causal relation. In order to understand it, one has
to resort to the transformation of a Bayesian network
into an influence diagram.

An influence diagram is a representation used to
represent decisions and their consequences. Its struc-
ture is a DAG where nodes are of different types.
Variables have a possibly infinite set of states. Deci-
sion nodes represent the possibility to take a decision
(i.e., selecting an alternative); chance nodes represent
variables in the domain that may affect decisions but
for which information is uncertain. So, for example,
the variable smoking with values yes or no may be
a decision variable, while a variable indicating that a
person may develop lung cancer is a chance variable.
Arcs are also of two types: information arcs and rele-
vance arcs. Information arcs represent what is known
at the time of the decision. Relevance arcs represent
probabilistic dependence. Now, apart from this infor-
mation, an influence diagram has the following com-
ponents:

(a) a set of probability distributions associated with
each chance node;

(b) a utility node, that indicates the expected utility
of the final decision, and a set of utilities.
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Fig. 7. Heckerman’s causal extension. Example 1.

Deterministic nodes are those nodes that are de-
terministic functions of their parents. Arcs point to
chance nodes representing conditional dependence re-
lations. Bayesian networks can be seen as influence
diagrams with no decision nodes.

In Heckerman’s proposal, causality is a relation de-
termined by unresponsiveness. A variable x is said to
be unresponsive to a decision d if, no matter which
alternative is chosen for decision d, the outcome of x
is the same. Note that if the result of a chance vari-
able x is not affected by decision d, then x and d must
be probabilistically independent.

In Fig. 7, an influence diagram has been built in
order to represent information about the decision of
smoking or not and about changing diet or not. Pos-
sible states for decision variables smoke and diet are
shown. Chance nodes are represented by ovals, deci-
sion nodes by squares and utility nodes by diamonds.
Note that the absence of relevance arcs induces the
fact that lung cancer and cardiovascular status are
conditionally independent given diet, smoke and geno-
type. Although there is no certitude about genotype,
it is possible to assert that, whatever the genotype of
a given person is, it will not be affected by whether
this person smokes or not: genotype is unresponsive
to the decision smoke. Those two variables can be
taken as independent in the probabilistic sense.

Definition (mapping variables). Given uncertain vari-
ablesX and Y , then the mapping variableX(Y ) is the
chance variable that represents all mappings from X
to Y .

state 1 state 2 state 3 state 4
smoke

no no no yes no yes no yes
no yes yes no no no yes yes

lung cancer

Fig. 8. Heckerman’s causal extension. Example 2.

For example, a mapping variable can be defined by
means of the decision variable smoke and the chance
variable lung cancer. The mapping variable cancer
(smoke) represents all possible deterministic mappings
from smoke to cancer. This mapping variable has four
possible states depending on the two-valued settings
of cancer and lung cancer (see Fig. 8). Each of these
mappings has an associated uncertainty.

Heckerman and Shachter [36,37] state that a set of
variables C are causes for x with respect to a set of
decisions D if the following conditions hold.

Definition (cause). (1) x does not belong to C;
(2) x is unresponsive to D;
(3) C is a minimal set of variables such that X(C)

is unresponsive to D;
X(C) is said to be a causal mechanism.

Definition (causal mechanism). Given a decision D
and a chance variable X that is responsive to D, a
causal mechanism for X with respect to D is a map-
ping variable X(C) where C are causes for X .

Once all these concepts are presented, Heckerman
and Schachter establish a correspondence with a spe-
cial form of influence diagram, the Howard Canonical
Form canonical diagram.

First they define a blocking relation and try to de-
termine when a group of blocking variables embodies
the notion of unresponsiveness.

Definition (block). Given an influence diagram with
decision nodes C and chance nodes U, U ⊃ C is said
to block D from x in U if every directed path from
a node in D to x contains at least one node in C.
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In some cases, whenever there is a path from D to
a variable x, this variable is responsive to D. So, it
seems that the block concept allows for the graphical
test of causal association. However, this is not gener-
ally the case in ordinary influence diagrams. The au-
thors show that influence diagrams in Howard Canon-
ical Form do ensure that the blocking condition faith-
fully represents their concept of causality.

Definition (Howard canonical form influence dia-
gram). An influence diagram for chance variables U
and decision variables D is said to be in Howard
Canonical Form if (1) every chance node that is not
a descendant of a decision node is unresponsive to D
and (2) every chance node that is a descendant of a
decision node is a deterministic node.

Heckerman and Shachter argue that their formula-
tion is identical to Pearl’s concept of causation (see
below) with the exception that, in their view, Pearl
requires mechanisms to be independent, and their pro-
posal allows for dependent mechanisms (see [37] for
their argumentation).

4.6. Path models

As we said before, path models are based on the
manipulation of multiple regression models. In a re-
gression model, a system of equations is built and
used for prediction. In such a model there exist sev-
eral variables X1, . . . , Xn that can be manipulated to
change the variable of a given response variable Y.
The aim of regression models is to assess the value of
certain coefficients in order to obtain a least squares
system of equations, i.e., a model that minimises least
squares distance.

Given a prediction model,

rY X1 = β1 + β2X2X1 + β3X3X1,

rY X2 = β1X2X1 + β2 + β3X3X2,

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
rY Xn = β1X3X1 + β2X3X2 + β3

the idea is to solve the beta coefficients in order to
obtain a least squares rule.

Wright [96] proposed an interpretation of such
models in graphical terms. In Fig. 9 we have a three-
equation model.

The first equation allows us to link X1 and Y
through the β1 coefficient; the relation between X2

and Y is represented by the path that goes from X1

Fig. 9. A path model corresponding to the three equation model.

to Y via X2; the relation with X1 is given by the in-
direct path through X3. Correlation rY X1 is given by
the sum of the factors of the paths. The weight of a
path is the product of the coefficients on the links of
the path. The convention in this representation is that
undirected arrows represent correlations and directed
arcs represent causes.

Note that directed links are weighted by betas that
represent the partial regression coefficients, that is, the
effects of a variable on Y when all other variables
remain fixed.

To derive a path model from a predictive multiple
regression model four steps have to be taken:

(1) Create a prediction model and the correspond-
ing path diagram.

(2) Decide which factors are correlations and
which are beta coefficients. This can be done
by applying the following rules:

– if several variables, X, Y, . . . point to an-
other variable Z and they are independent
causes of Z, then the path coefficients are
just the correlations ρZX , ρZY , . . . ;

– if they are dependent, the coefficients are the
standardised partial regression coefficients,
βZX , βZY .

(3) Solve for the coefficients. If they are correla-
tions, they can be calculated from data; if they
are not, a multiple regression has to be run on
the corresponding variables.

(4) Estimate correlations between variables by
summing up weights along the paths. There
are some rules for calculating such values. Co-
hen [9] gave a graphical expression to these
rules by taking into account the way an arrow-
head enters a node. The proposed rules are:
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Fig. 10. Possible networks corresponding to the database in Table 4.

(a) A path cannot go through the same node
twice;

(b) once a node has been entered by an arrow-
head no node can be left by an arrowhead.

By means of these rules, causal associations can be
established.

5. Learning belief networks

The learning problem for this kind of networks can
be stated as follows:

“Given a set of data, infer the topology for the
causal network that may have generated them to-
gether with the corresponding uncertainty distri-
bution”

We use here the term “uncertainty distribution” in
order to allow for uncertainty formalisms other than
probability to be used. However, in reviewing current
methods we will make use of probabilistic examples.

As we said in Section 1, the process of causal dis-
covery, as a learning problem, differs basically in the
search procedure and also in the function used to rank
tentative resulting models. The problems in any ap-
proach to such kind of discovery are centred around
the high complexity of learning the topology (struc-
ture) of the DAG [19]. Once the topology is known,
finding the conditional probability tables is straight-
forward, although some efforts have been done for
improving the efficiency of learning them. For in-
stance, Musick [59] uses neural networks to learn the
conditional probability tables.

Table 4
A simple database

Variables

Case # A B C

1 1 0 1

2 1 1 1

3 0 1 1

4 0 1 1

Additional problems that some methods are able
to tackle with are: unmeasured variables [76], miss-
ing values [34] and instrumental unobserved vari-
ables [29].

It is possible to classify the methods by taking those
that start with an assumption about the structure and
then infer the distribution or conversely, start with an
assumption about an uncertainty distribution and try
to recover the corresponding structure.

To make things clearer let us see which are the
dimensions of learning such structures.

The search space

Given a data base as simple as in Table 4 [3], the
following structures are possible Bayesian networks
compatible with such data, see Fig. 10.

To have an idea of how large the search space
can become let us take, for example the first
structure, the one with three independent variables.
Here three probability distributions have to assessed:
p(A), p(B) and p(C). All variables being binary,
each probability is specified by a single real number
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in [0, 1]. The parameters to be learned can be defined
as φa. In order to learn the fourth structure, probabil-
ities p(a), p(b) and p(a | b) are to be assessed, this
means a family of parameters φa whose values are
in R4. p(c | b) has to be ascertained for two values
p(c = t | b = t) and p(c = t | b = f). For any
given Bayesian network structure, the probability ta-
ble p(X/Y ) for any two variables X, Y is a subset of
the real space of (|X |−1)|Y | dimensions (where |X |
is the number of different values for a variables X).
A completely disconnected network such that |U | = k
and every variable is binary (as the upper left one in
the figure) needs between k and 2k−1 values to spec-
ify its conditional probability tables. In the case that
continuous variables are used and that they follow a
Gaussian distribution, a node with k parents will need
k(k+1)/2 values to specify the mean and covariance
matrices.

Fortunately, equivalence properties among Bayesian
networks have been identified [94] that allow for
a reduction in the number of different networks.
There exist networks that represent the same inde-
pendence statements. For example, for networks cre-
ated with just three variables, there are 25 possible
networks (varying arrow orientation and connectiv-
ity). However, there are only eleven different equiva-
lence classes (where each class contains networks re-
flecting the same dependency model). Let us remark,
however, that probabilistic equivalence does not mean
causal equivalence. Networks in the same class are
not equivalent when interpreted causally. See [34] for
a discussion of this point.

Finding and selecting a network

Over this search space some way has to be found in
order to select the “best” network that reflects existing
dependences in data. Many of the methods that will
be reviewed make use of standard statistical sampling
methods to derive the needed parameters (structure
plus probability distribution).

Here, one assumes that a given structure has gen-
erated the data, and then some measure of compati-
bility between such assumption and the probability of
obtaining the data has to be devised.

Given a collection of data, during the learning pro-
cess, different networks may be possible alternatives,
even after considering the dependency equivalences
that may exist among them. In general, methods that
resort to quality measures have derived some form
of establishing the overall quality of a network in

terms of its constituents, reducing quality measures to
the sum of the quality of all given child–parent con-
figurations. This is possible thanks to the property
of factorisation over distribution which is inherent to
Bayesian networks:

Quality (Network | data)

=
∑

quality (x | pax, data),

where pax is the set of parents of variable x.
There are other possibilities in choosing different

alternative structures. Some methods based on condi-
tional independence tests choose a variable to become
a new node according to a previous given order and
when, still, several variables are eligible they make a
random choice.

In general, one can distinguish two great groups of
methods [42]. The first ones are based on the appli-
cation of conditional tests between variables and the
construction of the structure of the DAG based on the
result of such tests; then the conditional probability
tables (the quantitative part of the network) are cal-
culated from the data. The second ones are methods
based on goodness-of-fit tests between the probability
distribution of a tentative DAG and the true joint dis-
tribution implied by the data. We will review them in
the same order.

There exists, too, a mixed method, the CB algo-
rithm [80] that first derives a structure by means of
CI-tests between variables, and then generates an or-
der that is fed to the K2 algorithm. One of our current
proposals is also a hybrid method, but as we will see,
we exploit the relation between CI tests and goodness-
of-fit in a different way, incrementally as the DAG is
built.

5.1. Conditional independence test methods

Algorithms in this class resort to the qualitative
properties of the networks in order to build the cor-
responding belief network. They usually take as in-
put a set of dependence assertions among variables
or sets of variables in the domain. The output is a
belief network that reflects those relationships. Let
us remember that, given a dependency model, several
different networks may reflect the same dependencies
up to isomorphism. All of these algorithms return a
structure that has to be completed by calculating the
associated conditional independence tables.

The different structures are in ascending order of
generality: trees, polytrees, singly connected graphs,
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and general DAGs. A polytree is a kind of DAG
where all nodes with common ancestors do not share
common descendants. The name “polytree” stems
from the fact that these structures can be seen as a col-
lection of several causal trees merged together where
arrows converge head to head (→ x←). Singly con-
nected graphs are those graphs that allow a certain
kind of cycles: simple cycles.

Definition (simple DAG [30]). A directed acyclic
graph is said to be simple if every pair of nodes with
a common direct child have no common ancestor nor
is one of them ancestor of the other.

Definition (simple cycle). A cycle in a graph is sim-
ple if any pair of nodes in the cycle that share a direct
descendant neither have a common ancestor nor one
of them is an ancestor of the other one.

It is important to remember that all these methods
assume a certain structure for the underlying distri-
bution. It is worth noting that if the true distribu-
tion has a different structure, the graphs recovered by
the learning methods are still useful as approxima-
tions [15]. De Campos carried on a study in which the
resulting approximated graphs were compared against
the true known structures corresponding to a known
database, the ALARM database. He studied the dif-
ference in inference accuracy between the approxi-
mated graphs and the original one finding small vari-
ations in the probabilities of the queried nodes.

Each one of the following algorithms make use of
one or another of the characteristics of the above-
mentioned structures in terms of conditional indepen-
dences between variables (i.e., nodes). We will com-
ment them on describing each algorithm in turn.

Simple structures

The following method was devised by Geiger, Paz
and Pearl [30,31] in order to build singly connected
structures. They assume that the underlying distribu-
tion has a polytree form.

The Geiger, Paz and Pearl algorithm (I)
Input: a list of dependences between the variables
in a domain U .
Output: a polytree or an error message.
1. Build a complete undirected graph.
2. Build the Markov network G0 erasing every

arc x−y such that

I(x|U\{x, y}|y)M .

3. Build GR by erasing every arc such that I(x
|�|y)M .

4. Turn each arc x−y in GR into x→ y if y has
a neighbour z such that I(x|�|z)M and x−z
does not belong to GR.

5. Direct the rest of links without creating new
head to head connections. If this is not possi-
ble, return error.

6. If the resulting polytree is not an I-map, then
return error.

The algorithm makes use of a well-known property
of simple graphs: for every chain a−b−c if b is a head
to head node (a → b ← c) then one can guarantee
that a is marginally independent of c. Note that the
number of needed independence tests is at most two
for each pair of variables (steps 2 and 3). However,
these tests are of a high order because for every pair
of variables in a domain with n variables an indepen-
dence test of order n− 2 must be made. These tests
are exponential with n. So, the algorithm is polyno-
mial O(n2) in the number of independence test but,
unfortunately, it is exponential for each independence
test.

The same authors put forth another method that is
able to recover simple graphs, that is, structures that
allow the presence of simple cycles. It is based on a
property that asserts that a graph represents well a de-
pendency model if whenever every pair of variables x
and y are connected by a path without head to head
nodes, those nodes are marginally independent.

The Geiger, Paz and Pearl algorithm (II)
Input: a list of dependences between the variables
in a domain U .
Output: a polytree or an error message.
1. Build a complete undirected graph.
2. Erase every arc x−y such that I(x|U\{x, y}|
y)M .

3. Erase every arc x−y such that I(x|�|y)M .
4. Turn each arc x−y and y−z into x → y and
y → z whenever x−y−z is in the graph and
I(x|�|y)M .

5. Direct the rest of links without creating new
head to head connections. If this is not possi-
ble, return error.

6. If the resulting graph does not represent the
dependency model well, then return error.

The main difference with respect to the previous
algorithm lies in the kind of structure it recovers. It
can be seen that complexity is once more quadratic in
the number of needed tests and that each one of these
requires an exponential time.



R. Sangüesa and U. Cortés / Learning causal networks from data 47

CH algorithm [42]

This algorithm is devised to recover a special case
of network, a causal polytree. Causal polytrees can be
seen as simple DAGs where between any two nodes
only a single path exists.

For each node x a set Λx is defined. Λx contains
the set of variables y belonging to U such that x and
y are marginally dependent. In a polytree structure,
two variables are dependent if there is no head to head
node in the path connecting them. The idea is to take
a variable x and test for any other two variables y, z
in Λx in order to check if y lies in the path between x
and z.

In order to do that a new concept, the sheaf of a
node is defined. The sheaf structure is made up by
just the direct parents and descendants of a given node
(Huete calls them “direct causes and effects”).

The algorithm tries to create a growing partial struc-
ture T and to restrict the search for new variables to be
included in it to only those variables in Λx that can af-
fect the sheaf of x. De Campos and Huete [14] proved
that if x is a variable in a dependency model M rep-
resented by a node in a structure T and z is a variable
not in T but belonging to Λx, then the sheaf of x has
to be modified only if one of the following conditions
holds:

(1) I(x|z|y) is true in M for some y belonging to
the sheaf of x;

(2) I(x|y|z) is false in M for all y belonging to
the sheaf of x.

Moreover, if the previous conditions do not hold
then there exists one and only one node y belonging
to the sheaf of x such that I(x|y|z) is true in M . So,
the last property helps in directing the search for the
variables whose sheaf structure has to be modified.

The algorithm starts with an empty structure and
then selects a variable x. Next, dependent variables
with respect to x are also found (Λx). A structure T
is built with variables x and those in Λx. Then a
new variable y from T is repeatedly selected from its
corresponding Λy of marginally dependent variables
and for any z not in T an attempt is made at inserting
it in T . This continues until all variables are in T .

A polytree structure is constructed in O(n2) steps,
n being the number of variables in U . Only marginal
and first-order conditional independence tests are
needed. However, no directionality for arcs is recov-
ered. This was improved in another version of the
algorithm [42] by using a test of independenge on any

Z

T

U

Y
X

Fig. 11. An example DAG.

three variables x, y, z. If, when testing if x and y
were marginally independent and became dependent
given z, then they were oriented as x→ z ← y.

5.1.1. Algorithms for recovering DAGs
In order to recover more complex structures than

polytrees or singly connected DAGs by means of con-
ditional independence test methods, some other prop-
erties relating structure of general DAGs with inde-
pendence have to be taken into account.

The following properties are the basis for the next
algorithm.

A dependency model M is isomorphic to a DAG
G, iff [89]:

(a) For each pair of vertices x and y in G, x and
y are adjacent iff x and y are conditionally in-
dependent given every subset of vertices in G
(excluding x and y).

(b) For each triplet of vertices x, y, z such that x
and y are adjacent and y and z are adjacent but
x and z are not, x → y ← z is a subgraph of
G iff x, y, and z are conditionally independent
given the set of all variables in G excluding y
but not x and z.

Spirtes, Glymour and Scheines algorithm [89]
Input: a list of dependences between the variables
in a domain U .
Output: a directed graph.
1. Build a complete undirected graph H .
2. For every arc x, y if there exists a sub-

set S in U\{x, y} such that I(x|S|y), erase
the arc x−y.
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Fig. 12. The variable sheaths built by the HC algorithm.

3. Let K be the resulting graph of step 2. Then
for every triplet x−y−z in H , such that z−x
is not in H , if no subset S in U\{x, z} ex-
ists such that I(x|S ∪ {y}| |z) then create the
orientation x→ y ← z.

4. Repeat until no more arcs could be oriented.

4.1. If x−y−z is in H with x and y being
non-adjacent nodes, orient y−z as y → z.

4.2. If there exists a directed path from x to
y and the connection x−y also exists then
orient x→ y.

Step 2 is critical, because it needs to search among
all possible subsets in U\{x, y}. This results in an
exponential time cost. Note that also independence
tests have an exponential cost. The time needed to
calculate such tests is exponential.

An improvement is given by the same authors. It
carries out the least number of comparisons. It starts
with a complete graph and at each step i removes
those vertices x−y for which there exists an indepen-
dence relation of order i. In the following, Ad(x) is
the set of adjacent nodes for node x.

The PC algorithm
Input: a list of dependences between the variables
in a domain U .

Output: a directed graph.
1. Create a complete graph G on the variables

in U.
2. n := 0.
3. Repeat Until|Ad(x)\{y}| < n for each set of

ordered pairs (x, y).

3.1. Repeat Until all ordered pairs of adjacent
variables (x, y) such that |Ad(x)\{y}| >
n and every subset S in Ad(x)\{y} have
been tested for independence.
Select an ordered pair of variables x, y ad-
jacent in G such that |Ad(x)\{y}| < n.
Select a subset S of Ad(x)\{y} with car-
dinality n.
If I(x|S|y), then erase x−y fromG. Store
S in the sets Separating (x, y) and Sepa-
rating (y, x).

3.2. n := n+ 1.

4. For each triplet of nodes x, y, z where x and
y are adjacent, and y and z are adjacent but
x and z are not adjacent, orient x → y ← z
if and only if y does not belong to Separat-
ing (x, z).

5. Repeat Until no more arcs could be oriented.

5.1. If the structure x → y−z belongs to G,
where x and z are not adjacent an no head
to head arcs point y orient y−z as y → z.
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5.2. If there exists a directed path from x to y
and the arc x−y exists, turn it into x→ y.

The complexity of the algorithm depends on the
number of adjacent nodes that each node has in the
graph. If k is the highest number of adjacent nodes
for a node in the graph G, then the number of inde-
pendence tests is bounded by:

n2(n− 1)k−1/(k − 1)!.

5.1.2. Comments on conditional independence
test-based methods

As can be seen, the main difficulty with these type
of algorithms is the growing number of higher- order
independence tests needed to recover complex struc-
tures. The more constrained the type of structure of
the underlying distribution is supposed to have, the
less number on independence tests are needed. It is
worth noting that the HC algorithm allows a great re-
duction in complexity when recovering simple graphs.
The only needed tests are zero- and first-order inde-
pendence test.

Let us note here that, although recovering complex
structures may seem a better result than the recovery
of simpler ones, the approximation of full DAGs by
polytrees, or singly connected structures is still inter-
esting. In an ideal situation, the best network that can
be recovered from data is the one whose structure is
just the same as the one that generated the data. When
working with data about which very little is known it
is not reasonable to expect to recover the exact net-
work that generated it, so an approximation may be
the best that one can hope for. Acid and De Cam-
pos [1,15] studied the differences in probability val-
ues when inferring in a recovered simple DAG and
showed that they were not significant. Let us remark,
however that a different DAG structure implies a dif-
ferent causal structure.

5.2. Goodness-of-fit methods and measure of quality
methods

In the following methods some assumptions are
made for recovering the structure of the network as it
was the case in the previous group of conditional in-
dependence test methods. The rationale is to assume
that a graph exists whose nodes correspond to the vari-
ables in a database. Due to the factorisation property
of belief networks, it is easy to make an assumption
about the probability distribution it induces, PE , as
the product of the distribution of nodes conditioned to

their parents. On the other hand, the database allows
for the estimation of a joint probability distribution
over its variables PD. What those methods try to at-
tain is a graph which exhibits the minimum distance
between PE and PD. Differences between methods
are centred around the type of graph that they allow
to recover, measures used in assessing distance be-
tween distributions or quality of the distributions and
the way the graph is built applying such measures.

Normally the Kullblack–Kleiber entropy cross-
measure is used as a distance between distributions.
Distance D between two distributions is defined as:

D
(
PD, PE

)
=
∑ PD

(
x1, . . . , xn

)
logPD

(
x1, . . . , xn

)
PE
(
x1, . . . , xn

) ,

summations are taken over all instantiations of xi for
1 6 i 6 n.

5.2.1. Singly connected networks
In order to understand some of the following algo-

rithms, one has to go back to an algorithm by Chow
and Liu [8] used for recovering trees from data. To
find trees from data, the maximum weight generating
tree is projected and as the weight for each link the
following measure of information between variables
is used:

I
(
xi, xj

)
=

∑
PD
(
xi, xj

)
logPD

(
xi, xj

)
PD(xi)PD(xj)

,

for all instantiations of xi and xj .
Note that such a measure is minimum (zero)

when both variables are independent. A theorem by
Chow and Liu proved that, given a set of variables,
(x1, . . . , xn), if the mutual information I(xi, xj) mea-
sure is used, then assigning it to every arc (xi, xj) be-
tween variables, cross entropy over all tree-structured
distributions is minimised when the structure is a max-
imum weight spanning tree.

We will just give the next algorithm for the sake
of our presentation, as it is the basis for Rebane and
Pearl’s algorithm [74].

Chow and Liu Tree Recovery algorithm
Input: a data base on x1, . . . , xn variables.
Output: a tree-structure reflecting dependences in
the database.

0. T = {�}, the empty tree.
1. Calculate for every pair (xi, xj) the bidimen-

sional marginal distribution P (xi, xj).
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2. Calculate weights for links between every pair
(xi, xj) by means of the I(xi, xj) measure.

3. Select the maximum cost pair (xi, xj)M :

T = T ∪
(
xi, xj

)
.

4. Select the next maximum cost pair (xi, xk).
If it does not create a cycle in T , add it to T .
Else erase (xi, xk) from the set of pairs.

5. Repeat step 4 until including n− 1 links.

Note that the algorithm was initially designed for
recovering trees. It is important to realise that, for
a given distribution, it can recover different trees de-
pending on the order in which pairs with the same
weight are selected. No arcs are oriented: a skeleton
of the tree is recovered. The cost of the algorithm is
O(n2 log n).

Rebane and Pearl algorithm

In contrast with the previous algorithm, this one
is able to give an orientation to links. In a first
step it creates the skeleton of the graph (i.e., the re-
sult of the Chow and Liu algorithm) and then tries
to give an orientation to as many as links as possi-
ble. Note that several probabilistic dependence re-
lations are indistinguishable in terms of orientation.
As we said before, given three variables x, y, z
one can test if they can be related by the structure
x → y ← z if x is marginally independent of z.
However x ← y → z cannot be distinguished from
x→ y → z or x← y ← z.

Rebane and Pearl polytree recover algorithm
Input: a database on variables x1, . . . , xn.
Output: a partially oriented graph.
1. T = maximum weight generating tree result-

ing from the Chow and Liu algorithm.
2. Select x, y, z such that I(x | z).

Give x, y, z the orientation x→ y ← z.
3. If a subgraph with more than one parent is

found, apply the test of marginal indepen-
dence to adjacent nodes.

4. For each node with at least one incoming arc,
study the orientation of the rest of the adjacent
nodes by means of the marginal independence
test.

5. Repeat steps 2 to 4 until no new orientations
can be found.

6. If there are still some links with no orientation,
label them as “undetermined”.

Note that Chow and Liu’s algorithm can be
used with several measures of dependence. Acid [1]
showed that any measure that satisfies the following
conditions can be used as a dependency degree in-
stead of the mutual information function put forth by
Chow and Liu.

Dependency measure property
Given three variables x, y, and z such that x and
z are conditionally independent on y, any depen-
dency measure, Dep(x, y), such that

min
(
Dep(x, y),Dep(y, z)

)
> Dep(x, z)

can be used for the Chow and Liu algorithm.

This was used in the CASTLE system [2] for learn-
ing Bayesian belief networks based on different de-
pendence degrees. In CASTLE, two variables are said
to be dependent if their dependency degree is less than
a threshold ε fixed by the user. Some of the measures
used by the system are the following ones:

Dep(X,Y ) =
∑
X,Y

p(X,Y ) log
p(X)

p(X)p(Y )
,

Dep(X,Y ) =
∑
X,Y

∑
X,Y

p(X,Y ) log p(X)
p(X)p(Y )∑

X,Y

p(X,Y ) log(X,Y )
,

Dep(X,Y ) =
∑
X

∑
Y

∣∣p(X,Y )− p(X)p(Y )
∣∣,

Dep(X,Y ) =
∑
X

p(X,Y )

×
∑
Y

∣∣p(X,Y )− p(X)p(Y )
∣∣,

Dep(X,Y ) =
∑
X

p(X,Y )

×
∑
Y

∣∣p(X,Y )− p(X)p(Y )
∣∣2,

Dep(X,Y ) = max
X

max
Y

∣∣p(X,Y )− p(X)p(Y )
∣∣.

Let us remark that these measures assess the differ-
ences in value between the joint probability distribu-
tion of two variables and the product of their marginal
distribution. They should be the same if they were in-
dependent variables. This is in accord with the known
relationship that holds between joint and marginal dis-
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tributions in probability theory, but, as we will see,
the same idea has a different expression in other un-
certainty formalisms.

5.2.2. DAG algorithms
Cooper and Herskovitz entropy-based method

Cooper and Herskovitz [38] devised a method
which took as a quality criterion a measure of the en-
tropy of the distribution implied by the structure being
built.

The Kutató algorithm
Input: a database on variables x1, . . . , xn; a fixed
value for entropy α;
an order between variables.
Output: an oriented DAG or an error code.
1. Build a DAG on x1, . . . , xn, assume all vari-

ables to be marginally independent.
2. Calculate the DAG entropy.
3. Select a link such that

(1) it creates no cycle;
(2) it is the one that creates a new graph G′

with minimum entropy;
(3) it links variables x, y such that x comes

first in the order;

4. Give the orientation x→ y.
5. Repeat steps 2 to 4 until an α entropy level is

reached.

The complexity of the method can be estimated as
follows: given a DAG with n nodes, in order to se-
lect the best one O(n2) comparisons are to be made.
If all associations are significant, then the process is
repeated O(n2) times. So, complexity (entropy cal-
culations aside) is O(n4).

Entropy for a DAG G is calculated by the local
entropy of a node instantiation given its parents and
this entropy is weighted by the probability that the
parents have a given value instantiation:∑

xi∈U

∑
pai(xi)

P
(
pa(xi)

)
×
∑

pai(xi)

P
(
xi | pai(xi) log P

(
xi | pa(xi)

))
.

A Bayesian-based method: the K2 algorithm
Cooper and Herskovitz [12] devised an improved

version of the previous algorithm which resorted to
Bayesian criteria. Given a database D, with infor-
mation on n variables, and a Bayesian network Bs

with n nodes (one for each variable in D) one has to
find the Bayesian network that maximises the prob-
ability P (Bs | D). They approximate P (Bs | D)
by P (Bs, D).

Cooper and Herskovitz’ merit lies in finding a
sound way for calculating the whole probability of a
DAG in terms of local parent–children subgraphs.

Their measure is:

P (Bs | D) = P (Bs)
∏

g
(
xi,pai(xi)

)
,

where pai(xi) is the set of parents of the vari-
able xi, g(xi,pai) is:

g
(
xi,pai(xi)

)
=

∏(
ri − 1

)
!(

Nij + ri − 1
)
!Nijk!

,

where, for each variable xi, ri is the number of pos-
sible instantiations; N is the number of cases in the
database; wij is the j-th instantiation of pai in the
database; qi is the number of possible instantiations
for pai; Nijk is the number of cases in D for which
xi takes the value xik with pai instantiated to wij ;
Nij is the sum of Nijk for all values of k.

A previous assumption for this method is that all
structures are equally probable. An order between
variables is given. If xi precedes xj in that order,
all structures with an arc between xj and xi are to
be removed, further reducing the possible alternatives.
A further restriction is that the number of parents a
given node can take, u, is low.

The K2 algorithm proceeds by starting with a single
node (the first variable in the order) and then takes
the node that increments most the probability of the
given structure, calculated by means of the g function.
When adding a new parent does not increment the
probability, no more nodes are added to the parent set.

The K2 algorithm
Input: a set of variables x1, . . . , xn; a given order
among them;
an upper limit u on the number of parents for a
node;
a database on x1, . . . , xn.
Output: a DAG with oriented arcs.
For i := 1 to n do
1. pai(xi) = �; Ok := true;
2. Pold := g(xi,pai(xi));
3. While Ok and |pai(xi)| < u do

3.1. Let z be the node in the set of predeces-
sors of xi that does not belong to pai(xi)
which maximizes g(xi,pai(xi)) ∪ {z});

3.2. Pnew := g(xi,pai(xi) ∪ {z});
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3.3. If Pnew > Pold. Then Pold := Pnew;
pai(xi) := pai(xi) ∪ {z})

Else Ok := false.

Execution time is in the order O(Nu2n2r) with r
being the maximum value for ri.

There exists an extension for dealing with continu-
ous variables and missing values.

Other methods have been devised that make use of
Bayesian metrics. Let us mention the BDe metric,
proposed by Heckerman, Geiger and Chickering [35].
The importance of this metric lies on the kind of as-
sumptions it is based upon, which are specially sig-
nificant for the recovery of networks with a causal
interpretation. They devised a method that can ad-
mit as a priori knowledge a Bayesian belief network,
thus opening the possibility to create a more cog-
nitively acceptable final network (as it is guided by
previous knowledge). Being a method based on a
Bayesian metric, its target is to find the belief network
with maximum probability, given the data. In doing
so, they reveal several important assumptions of most
Bayesian learning methods.

These assumptions are the following ones. The
database is a multinomial sample from some belief
network. This implies that variables are discrete. Sec-
ondly, the user may not be sure about the belief net-
work that is generating the data. Thirdly, the user
may be uncertain about the conditional probabilities
in the network, the parameters of the model to be
found. Fourthly, the process is constant over time
(this is an assumption called ‘stability’ by Pearl [70]).
Parameters are assumed to be independent. Databases
are complete, i.e., all variables in a database are ob-
served. Finally, if a variable xi has the same par-
ents in any two belief networks, its probability den-
sity is the same, it depends only on the parents of xi.
Heckerman et al. also show that the parameters to be
learned follow a Dirichlet distribution.

Taking into account all these assumptions, they de-
rived a metric that relates the joint probability of a
given database D and a Bayesian network Bs and
called this metric the BD metric (Bayesian metric with
Dirichlet priors):

P (D,Bs) = P (Bs)
n∏
i=1

qi∏
j=1

Γ(N ′ij)

Γ(N ′ij +Nij)

×
ri∏
k=1

Γ(N ′ij +Nij)

N ′ijk
,

where ri is the number of states of variable xi, Πi is
the set of parents of xi (denoted in this same paper
as pai), qi is the number of instances of Πi, Γ is the
gamma function,

Nij =

ri∑
k=1

Nijk, N ′ij =

ri∑
k=1

N ′ijk,

Nijk is the number of cases in database D, where
xi = k and pai = j, N ′ijk is an exponent of the Di-
richlet distribution such that N ′ijk > 0, that is, the
theoretical number of cases where xi = k and pai = j
in the population.

Now, the same authors adapted their metric so that
when two Bayesian networks were isomorphic, their
score should be the same. The resulting metric was
called the BDe metric (score equivalent metric for
Bayesian belief networks). The user has to specify
the a priori probability distributions for the Bayesian
networks as well as for the densities of the parameters.

Using the minimum description length principle
The idea behind the following methods is the use of

the Minimum Description Length principle as a mea-
sure of fit. The best representation for a database is
the model that minimises its description length. That
is, the representation that minimises, given a coding
schema, the sum of the length of encoding:

– the model;
– the data, given the model.
Lam and Bacchus [52–54] have given coding

schemas for networks as binary strings.

Network codification
For each node (variable) a list of its parents is

needed together with the list of the conditional prob-
abilities of the variables, given the parents; then for a
graph with n nodes the total description length is:∑[

|pai(xi)| log2(n) + d(ri − 1)qi
]
,

where |pai(xi)| is the number of parents of a given
node xi; d is the number of bits needed to repre-
sent a numerical value; ri is the number of different
values xi can take and qi is the number of possible
instantiations that the set of parents of xi can take.
Consequently, more connected networks have longer
descriptions.
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Database codification
Data are encoded by representing all the values that

appear in the database as a single binary string. They
use a Huffman code:

−N
∑

p(xi) log2 p
∗(xi),

where N is the number of cases in the database, p(xi)
is the probability of occurrence of the atomic event xi
and p∗(xi) is the probability of the success calculated
from the network representing the model.

Such encoding requires an exponential number of
bits, so they take advantage of the factorisation prop-
erty of Bayesian networks and calculate the following
number:

−N
∑

H
(
xi,pai(xi)

)
+N

∑
−
[∑

p(xi) log2 p(xi)
]
,

where H(xi,pai(xi)) is:

H
(
xi,pai(xi)

)
=
∑

p

(
xi,pai(xi) log2

p
(
xi,pai(xi)

)
p(xi)pai(xi)

)
,

the summation is over all parents of xi.
Total description length for a given node is then:

DLi =
∣∣pai(xi)

∣∣ log2 n+ d(ri − 1)qi

−NH
(
xi,pai(xi)

)
.

The total description length of a DAG is calculated
by summing DLi over all variables.

In order to search the space of possible networks
a best first search method is used. Separate sets
of candidate graphs are maintained. These sets dif-
fer in the number of arcs their graphs have. For a
database with n variables DAGs can have between 0
a n(n − 1)/2 arcs so n(n − 1)/2 + 1 separate sets
are maintained. Within each set a best first search is
performed. Each element of a set has two compo-
nents: a candidate network with the number of arcs
corresponding to the set and a pair of nodes between
which an arc could be added without causing a cycle.
The search takes as a heuristic the total description
length of the graph.

Before starting search, mutual information (as in
the Chow and Liu algorithm) is calculated for each
pair of nodes and links are sorted accordingly. Let us
remark that Chow and Liu’s measure was extended by
Lam and Bacchus in order to be able to recover more

general graphs (remember that Chow and Liu’s origi-
nal work was aimed at the recovery of tree-structured
distributions).

The mutual information measure defined by Lam
and Bacchus relates a variable xi and its parents Fxi :

W
(
XiFxi

)
=
∑
Fxi

P
(
xi, Fxi

)
log

P
(
Xi, Fxi

)
P (Xi)P (Fxi)

.

Wai and Lam prove that cross entropy between the
joint distribution implied by the database and the joint
distribution of the DAG factored distribution is min-
imised when the W (xi, Fxi) measure is maximised.

5.2.3. Comments on goodness-of-fit methods
As we mentioned above, goodness-of-fit methods

are aimed at trying to find a structure that minimises
the distance between the real distribution implied by
the data and the factored distribution corresponding to
a network or to maximize a certain quality criterion.
It is important to notice, however, that such an ap-
proach tends to favour networks that are too dense and
where the interpretation of links is somehow counter-
intuitive.

Lam and Bacchus favour a method that would re-
cover less dense networks. The authors try to find net-
works that, although being closer in distribution terms,
are as simple as possible within the DAG model.
They have found experimentally that the recovered
networks differ very little in belief updating results
from the correct ones. From the causal point of view,
however there are differences in structure that can im-
ply a great difference in causation.

Cognitively, however, it seems that goodness-of-fit
methods tend to give to qualitative structure a sec-
ondary role. These family of methods tend to add to
the DAG arcs that correspond to very weak depen-
dencies, which results in very entangled graphs that
are difficult to understand by humans. Probably, a
good alternative would be to allow for some previous
knowledge to be added in an understandable form,
such as a causal network is. Actually, only some al-
gorithms exist in which it is possible to specify the
previous probabilities on arcs but not on complete net-
works nor a tentative DAG partial structure. Lam and
Bacchus offered a way of refining existing DAGs with
new knowledge that could be a possible development
in this direction [53].

It seems that combining CI-test based methods and
goodness-of-fit methods could bring a balance in the
sense that the recovered DAG would exhibit a cor-
rect structure with respect to conditional independence
properties while at the same time it would have the
joint uncertainty distribution that is closest to the data.
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5.3. Hybrid algorithms

Singh and Valtorta [80,81] have devised an algo-
rithm that follows a two-step procedure. In the first
step, it performs a series of conditional independence
tests and obtains an ordering among variables; then
it starts the K2 algorithm. The first part is based on
work by Verma and Pearl [93], and Spirtes, Glymour
and Scheines [89].

The CB algorithm
Input: u, a limit on the number of parents a node
may have; a set Z of n variables x1, . . . , xn.
Output: a DAG.

1. Start with the complete graph G1 on the set
of variables Z

ord := 0

oldpai := { } for each i in 1 6 i 6 n
oldprob := 0.

2. Modify G1 as follows:
For each pair of vertices a, b that are
adjacent in G1, if AdG1 has a cardinal-
ity greater than or equal to ord, and
I(a, Sab, b) where Sab is contained in
AdG1ab of cardinality ord, remove the
edge a− b and store Sab.
If for all pairs of adjacent vertices a, b in
G1, then |Adjab| < ord, goto step 10.
If degree of G1 > u then ord := ord+ 1.
Goto the beginning of step 2.

3. Let G be a copy of G1.

For each pair of non-adjacent variables
a, b in G, if there is a node c that is not in
Sab and is adjacent to both a and b, then
orient edges as a → c and b → c unless
this creates a cycle.
If an edge has already been oriented in the
reverse direction, make it bidirected.

4. Try to assign directions to yet undirected
edges in G by applying the following rules:

R1: if a→ b and b−c and a and c are not
adjacent then direct b→ c;
R2: if a → b and b → c and a − c then
direct a→ c;
R3: if a−b, b−c, a−c, c−d and d→ a
then direct a→ b, c→ b;
Moreover if a→ b, b→ c and a↔ c then
direct a→ c.

5. Let pai(xi) := { } for every i, 1 6 i 6 n.

For each node i, add to pai(xi), the set
of vertices xj such that for each such xj
there is an edge xj → xi in the partially
directed graph G.

6. For each undirected or bidirected arc in the
partially directed graph G, choose an orienta-
tion as described next:

If xi−xj is an undirected edge an pai(xi)
and paj(xj) are the corresponding par-
ent sets in G then calculate the following
products:

ival = g
(
xi,pai(xi)

)
×g
(
xj ,pai(xi) ∪ {xi}

)
,

jval = g
(
xj ,pai(xi)

)
×g
(
xi,pai(xi) ∪ {xj}

)
,

where g is the measure defined by Cooper
and Herskovitz for K2.
If ival > jval then paj(xj) ← pai(xi) ∪
{xi} unless the addition of xi → xj cre-
ates a cycle.
In that case, choose the reverse orientation
and change pai(xi). Do a similar thing if
jval > ival.

7. The sets pai(xi) obtained in step 6 define
a DAG.

Generate an order by performing a topo-
logical sort on it.

8. Apply the K2 algorithm to find the set of par-
ents of each node using the order in step 6.

Let pai(xi) be the set of parents found by
K2 for node xi.
Let newprob :=

∏
g(xipai(xi)).

9. If newprob > oldprob then

oldprob := newprob
ord := ord+ 1
oldpai := pai(xi), for every xi, 1 6 i 6
n
Discard G
Goto step 2
Else goto step 10.

10. Output oldpai, for every xi, 1 6 i 6 n
Output oldprob.
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The fact that the authors use a chi-square test for
testing dependence at a fixed α level may induce de-
pendences that are a product of chance. The quality
of the network hinges critically on the order extracted
in the first phase of the algorithm. However, accord-
ing to their experimental results, the quality of the
recovered networks is high in terms of structure and
closeness for distributions.

5.4. Algorithms for non-probabilistic formalisms

Gebhardt and Kruse [33] have developed several
algorithms to retrieve possibilistic DAGs. They base
their search methods on a heuristic expressed in terms
of non-specificity, the counterpart of entropy in pos-
sibility theory. They try to find the network that min-
imises the expected non-specificity. They define non-
specificity in terms of the Hartley information mea-
sure [49].

Given a set A, the Hartley information measure is
defined as:

H(A) = log2 |A|.
Then given a DAG D on a set of variables

x1, . . . , xn, its total non-specificity is:

Nonspec(D) =
∑

H
(
xi | pai(xi)

)
,

where pai(xi) is the set of parents of xi.
The authors developed a greedy algorithm that

looks for the minimum expected non-specificity net-
work among all possible networks. It starts with a
single node graph and at each step it adds the link
with minimum non-specificity. A node ordering is ex-
plicitly used in selecting the next node to be consid-
ered.

5.4.1. HCS: a hybrid algorithm for recovering
possibilistic networks

In our recent work we have developed an new hy-
brid algorithm for recovering possibilistic networks.
It is based on Huete and Campos’ CH algorithm; it
uses a measure of non-specificity to choose among
possible subgraphs.

Non-specificity is currently modelled according to
Klir’s [49] definition of the U -uncertainty information
function, which is a measure of non-specificity.

Definition (U -uncertainty). Given a variable X with
domain {x1, . . . , xn} and an associated possibility
distribution Πx(xi), the U -uncertainty of the distribu-
tion is:

∫ 1

0
log |Xρ| dρ,

where Xρ is the ρ-cut set forX . That is, Xρ = {xi |
πx(xi) > ρ}.

Definition (joint U -uncertainty). Given a set of vari-
ables with associated possibility distributions πx1 , . . . ,
πxn their joint non-specificity is:∫ 1

0
log |X1ρ × · · · ×Xnρ| dρ.

Definition (conditional U -uncertainty). Given a two
variables X and Y with associated possibility distri-
butions πx, πY their conditional U -uncertainty is:∫ 1

0
log
|Xρ × Yρ|
|Yρ|

dρ.

Definition (DAG parent–children U -uncertainty).
Given a DAG with domain {x1, . . . , xn} for any given
variable xi with parent set pai, the parent–children
U -uncertainty is:

U
(
xi | pai

)
= U

(
xi,pai

)
− U(pai).

Definition (DAG non-specificity). Given DAG D on
a domain U = {x1, . . . , xn} the DAG non-specificity
is defined as:

U(D) =
∑
xi∈U

U
(
xi | pai

)
.

Now, our hybrid algorithm is also based on a de-
pendency measure between variables. Due to the fact
that information is extracted directly from data and is
not supplied by an expert in the form of a dependency
list, a graded measure of dependence is proposed and
used. This dependency measure is based on the sim-
ilarity between distributions before and after condi-
tioning. The more similar the two distribtions are,
the less dependent the variables are. The similarity
measure is quite simple. It measures how much each
value of a given variable influences in the modifica-
tion of the distribution of the conditioned variable. A
threshold is set in order to allow for some imprecision
in the similarity. That is, for a given threshold α and
two variables X and Y , only differences in possibility
greater than α will be taken into account when mea-
suring the similarity between π(X) and π(X | Y ).
Then, a summation of the differences greater than α
is taken, and the resulting value is averaged by the
number of values of Y . A second limit γ is fixed in
order to decide when two variables are to be taken as
dependent or not.
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Definition (conditional dependency degree). Given
two variables X and Y with joint possibility distri-
bution π(X,Y ) and a real value of the dependency
between X and Y at level α, Dep(X,Y, α) is defined
as:

Dep(X,Y, α) =

(
1
|Y |

∑
yi∈Y

π(yi)

)

×
∑

xi∈X|\π(xi)−π(xi|yi)|<α

∣∣π(xi)− π
(
xi | yi

)∣∣.
Now, this measure of similarity between π(X) and

π(X | Y ) before and after conditioning is applied to
the data in order to derive a model of dependence be-
tween the variables in the domain. With this model of
dependences a variation of the CH algorithm is used.
In this version, several decisions on orientation of sub-
graphs are taken by resorting to the parent–children
non-specificity in order to decide which orientation is
best for a given pair of variables x, y that are known
to be dependent: x→ y or y → x.

The algorithm creates the sheaths corresponding to
each variable in the domain, orients them by using the
U -uncertainty measure and then merges the resulting
subgraphs to obtain the final DAG, which is a singly
connected graph.

In using a non-specificity measure with a CI-test
based algorithm we replicate some of the advantages
of the hybrid algorithms but in possibilistic settings.
The structure of the graph adheres to the properties of
conditional independence and the U -uncertainty mea-
sure that we recover for the most specific graph, given
the data. Actual experiments show that the possibilis-
tic version of HCS is more robust to imprecision in
data than the probabilistic version, this may be due
to the low reliability of the chi-square test when data
are scarce.

Several improvements are on their way in order to
extend the same idea to general DAGs. We are also
creating a version based on a cross non-specificity
measure.

Note that for possibility, there exists an equivalent
of cross entropy defined by Ramer [73] which is ap-
propriatetly called “cross non-specificity”.

Definition (cross non-specificity). Given two possi-
bility distributions π(X) and π(Y ); the cross non-
specificity is:∑

i

|π(xi)− π(yi)| log(n+ i)

log(n+ 1)
,

where i indexes all values of the sets X and Y .

To the best of our knowledge, no algorithm devised
for the recovery of possibilistic networks makes use
of this property. We are currently introducing a modi-
fication of our own work to incorporate such measure
of distance between distributions. An extension for
incomplete data sets is also planned.

5.4.2. Recovering networks based on probability
intervals

Huete [42] has developed a method based on CI-
tests that is applicable to uncertainty formalisms other
than probability. It is clear from his work that his
method can be used, at least, with probability inter-
vals. He and De Campos defined a measure of depen-
dence between probability interval distributions [14]
and then modified Chow and Liu’s algorithm in or-
der to use it with this uncertainty formalism. They
also extended Rebane and Pearl’s algorithm and use it
with this uncertainty formalism. With respect to com-
plexity, both algorithms exhibit the same behaviour as
their probabilistic counterparts.

5.5. Discussion on belief network learning
algorithms

In general, methods relying on goodness-of-fit
heuristics need previous knowledge in the form of an
order between variables. Buntine [3] has devised a
method that needs no order but, in exchange, it re-
quires an external expert to specify priors on prob-
ability distributions. As we have seen, Heckerman
et al. [34] have also devised a method of this kind
where some previous knowledge in the form of priors
on distributions have to be fed to the algorithm.

Goodness-of-fit methods tend to give more than one
resulting network that can be ranked in terms of its
probability. There can be several networks with the
same probability given the equivalence properties of
belief networks.

Methods based on conditional independence test
criteria are more abstract in the sense that they only
recover structure, where conditional distributions are
to be added in order to get a belief network. Many dif-
ferent formalisms can be used to represent uncertainty.
So, in principle, such methods are more abstract than
the other ones. However, they depend heavily on the
dependence list provided at the beginning and some
of them resort to probabilistic notions in order to de-
cide on arc orientation. They also need a substantial
amount of data to deliver reliable CI tests when using
probability theory.
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The need for using different uncertainty formalisms
arises in many occasions. For example, when data
are scarce or fraught with imprecision. This is the
case of data coming from sensors. Probability inter-
vals or possibility distributions are good alternatives
to represent the uncertainty in these systems. These
uncertainty calculi are also more robust to incomplete
data.

New methods for measuring possibilistic informa-
tion from data have been developed recently by Joss-
lyn [47]. Josslyn also defined the term “possibilis-
tic process” and “possibilistic model” in contrast to
“stochastic processes” and stressed the need to de-
velop a network representation for it. The connec-
tion between these methods and the work by Fonck,
Huete, Gebhardt and others is still to be made.

Now we will examine briefly other methods used
in recovering models that have a causal network rep-
resentation.

5.6. Learning path models

The automatic construction of path models is the
purpose of Cohen et al. [9]. To the best of our knowl-
edge no other algorithm has been created for recov-
ering path models.

Cohen’s algorithm follows a best-first strategy. The
search space is the set of all path models satisfying
the constraints expressed in the corresponding section
above. Path models being graphs, they are represented
by means of adjacency matrices. With n variables,
the size of the required matrix is n×n and the search
space is of size 2n

2
.

Their algorithm begins with a matrix which only
contains the dependent variables in the model. At
each step, a single arc to a variable in the graph is
tested for inclusion. A list of all possible models to-
gether with all possible modifications is kept. The
best modification is selected and applied to one of
the possible models; once applied, it is evaluated and
inserted in the list of models. The process contin-
ues until an acceptable model is obtained or no more
significant improvements can be made.

The evaluation function is based on the R2 statis-
tic which measures the percentage of variance in the
dependent variable due to independent variables. If
the value of R2 is low, it is because there exists some
other variables influencing Y and, so, the resulting
model is not very good in explanatory terms. Theoret-
ically, the best model is the regression model because
all independent variables are correlated and point to
the dependent variable.

6. Learning “true” causal networks

Recently, there has been a move towards devising
methods to learn networks that embody some kind of
causal concepts. The general proposals of Heckerman
and Pearl as well as Cooper’s list of relations for char-
acterising “true” causal relations are an improvement
over previous rapid identifications between belief net-
works and causal networks in the sense that they are
semantically more correct. All of them rely, to some
extent, on a concept of causation linked to the idea of
external intervention. However, they have different
implications for learning algorithms.

The construction of a causal network, in Hecker-
man’s work, is equated to the construction of an in-
fluence diagram in the Howard Canonical Form [40].
However, during this process, predecessors of every
utility node are known with certainty by the decision
maker and so is the structure of the arcs. The sole
task that remains, then, is to assess the physical prob-
abilities associated with chance nodes. Moreover, all
states of decision nodes are known in advance by the
decision maker, so little room is left for a learning
method. The problem reduces to learning a Bayesian
network where decision variables are interpreted as
chance variables.

In brief, what Heckerman et al. [37] posit is the
problem of learning Howard Canonical Form influ-
ence diagrams, given that the structure is known. That
is, only parameters of the structure are to be learnt.
What they finally remark is to start learning such pa-
rameters given an a priori network given by the deci-
sion maker.

In Heckerman’s proposal, it is important to start
with a clear knowledge about which variables in the
data are decision variables and which ones are chance
variables. This amounts to knowing beforehand, some
structure of the domain. Moreover, there is a need to
specify a priori knowledge in the form of priors on
distributions. More frequently than not, what experts
do know well is the existence of qualitative relations
between variables or constraints that they have to re-
flect. In contrast, experts are very poor estimators
of probability distributions [48]. So, such a method
could be very well applied to data coming not from
passive observations but to experimental data, where
a priori one knows which are the controlled variables.

In Pearl’s calculus of intervention proposal, the dis-
tinction of decision and chance variables does not ex-
ist and, in principle, this could be applied to obser-
vational data, as Pearl has suggested and argued con-
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vincingly elsewhere [64,66]. His idea is that causal
relations can be deduced from DAG structure and ob-
servational data by several graphic criteria. To learn
structures reflecting the whole formalization of Pearl
(i.e., the one where each child–parents cluster has
a deterministic function interpretation) some hurdles
have to be removed. The difficult part of the question
lies in assessing the form of the functional ties now
replacing the links in the parent–children subgraphs.
Learning functions from observational data is no easy
task. Only some kinds of linear combinations of sim-
ple functions have been derived from data by systems
like BACON. An improvement on those results are
methods that learn partitioned sets of equations as the
FAHRENHEIT [97] system does.

If one sets to the task of learning causal networks
with just observational data, it is clear that the correct
approach must follow the lines of Pearl’s proposal.
This could be done, in principle, by using Pearl’s con-
ditions for causal effect identification as a test for true
causal associations in recovered DAG. Such knowl-
edge could be incorporated in a learning system as a
critiquing module that could prune spurious associa-
tions from the DAG.

Referring to Cooper’s criteria for distinguishing
causal relations, he has not provided up to now any
application of them to learning causal networks. How-
ever, it may be as simple as building a belief network
by any of the above mentioned methods and then ap-
ply a test to check which of the seven relations hold
in the learned network.

No study has been carried out in order to identify
if any of these characterisations of causality can be
transferred to other uncertainty formalisms. Let us
remark, however, that both Pearl’s and Cooper’s def-
initions rely on graphical conditions, so they may be
used in order to identify causality under other for-
malisms.

7. Summary and conclusions

We have reviewed several representations of causal
models used in AI settings in order to identify the
common characteristics of all of them and to explore
the ways in which known learning algorithms can be
applied to several formalisms.

It has been seen that graphical models and path
models, constructs that have their roots in statistical
techniques, have a limited ability for discovery if they

do not use previous knowledge. They seem to be
useful only with experimental data.

It is important to note the central role of Bayesian
networks and the basic notion of conditional indepen-
dence in all these representations. In effect, the no-
tion of conditional independence appears in models
where uncertainty is not represented by probability.
Algorithms for recovering belief networks based on
non-probabilistic representations of uncertainty exist
and the corresponding structures obey the indepen-
dence axioms. Many other formalisms have been put
into correspondence with Bayesian belief networks
in causal domains, most notably, Simon’s ideas on
causal order, which Simon himself cast in terms of
the Bayesian belief network representation.

We have not mentioned several aspects of learning
that are of interest when dealing with real data. Most
algorithms only work well with discrete variables and
complete data. There are many cases in the real world
where observations are noisy or missing. Some tech-
niques do exist in the case of probabilistic formalisms
for solving these practical problems. In our experi-
ence, possibilistic representations perform much bet-
ter in the presence of noisy or imprecise data, in the
sense that the learning algorithms tend to be more
robust than their probabilistic counterparts.

To the best of our knowledge no other algorithm has
been developed for extracting non-probabilistic struc-
tures (such as belief function representations) from
data. A remarkable exception is De Campos and
Huete’s work on probability interval-based belief net-
works.

There is a great deal of research to be done in the
direction of finding which of the conditions of causal
identifiability put forth by Pearl can be translated into
formalisms other than probability. This is important
if the critical approach to causal network pruning is to
be applied in all possible uncertainty representations
and formalisms.
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