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Abstract 

A definition for similarity between possibility distributions is introduced and discus- 
sed as a basis for detecting dependence between variables by measuring the similarity 
degree of their respective distributions. This definition is used to detect conditional in- 
dependence relations in possibility distributions derived from data. This is the basis for a 
new hybrid algorithm for recovering possibilistic causal networks. The algorithm POSS- 
CAUSE is presented and its applications discussed and compared with analogous devel- 
opments in possibilistic and probabilistic causal networks learning. © 1998 Elsevier 
Science Inc. 

1. Learning causal networks: The possibilistic case 

As more  and more  databases are used as a source for Knowledge Discovery 
[38], the interest o f  au tomat ing  the construct ion o f  a well defined and useful 
knowledge representat ion as belief networks [35,34,33], becomes apparent .  
Several methods  have been devised to recover bo th  the structure and the prob-  
ability distributions corresponding to it. Such methods  can be roughly divided 
into quality o f  implicit distribution methods  [6,23,22], conditional independence- 
based methods  [40,37,48] and hybrid methods  [47,46]. The first ones construct  
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tentative belief networks by using measure of the quality of the distribution im- 
plied by the DAG being built. Current approaches use as a quality measure a 
posteriori probability of the network given the database [6], entropy of the dis- 
tribution of the final DAG [5] and Minimum Description Length of the net- 
work [29] which is related to information criteria [2]. The second family of 
methods, uses tests for conditional independence between variables to recover 
a tentative dependency model of the domain and from this and independence 
properties a possible DAG structure is selected. Methods of this class, differ in 
the type of structure they are able to construct: polytrees [34], simple DAGs 
[25] or general DAGs [45]. Finally, hybrid methods, combine the first and sec- 
ond kind of methods in order to recover a network. For example, the CB algo- 
rithm uses dependence tests to recover a structure and uses a topological order 
on the resulting DAG to guide the K2 algorithm [47]. For a wider and more 
detailed discussion of current network learning methods see [41]. 

All these methods have been applied using a single uncertainty formalism, 
i.e., probability. However, uncertainty about a domain can be due to other fac- 
tors beyond those for which probability is adequate. When imprecision or am- 
biguity are inherent to the domain, possibility theory [11,20] is a good 
alternative. These circumstances (imprecision and ambiguity) do arise in many 
real-world situations. For example, data may come from multiple sensors with 
unknown fault probability [27]. Some tasks, too, may have some degree of am- 
biguity as it is the case in diagnosis when there is added uncertainty about 
symptoms being related to more than one fault in a non-exclusive way [12]. 

The idea that belief networks can use uncertainty formalisms other than 
probability is, thus, a natural development. Several alternative formalizations 
exist: valuation-based systems [44,3]; possibilistic networks [15,14,13], proba- 
bility intervals [7]. Due to the peculiar characteristics of such formalisms, 
new learning methods have been devised. In the context of possibilistic net- 
works some interesting work has been done by Gebhardt and Kruse [21] in cre- 
ating a learning method for possibilistic networks along lines similar to 
previous work in Bayesian learning [6]. 

Our aim in this paper has been to develop a method for building possibilistic 
networks that reflects in a consistent way all the dependence relations present 
in a database but also that recovers the most precise distribution from a data- 
base of imprecise cases which is a problem that we encountered in domains we 
are presently working in [41,42]. So, possibility theory was a natural choice. 
Problems, however arose in several shortcomings of current possibilistic coun- 
terparts of concepts such as independence, conditioning and measurement of 
possibilistic information. So, we have put forth new definitions and measures 
that have proven quite useful in our work. 

The organization of this paper is as follows. In Section 1 we review the basic 
concepts of extended belief networks, conditioning and independence in 
possibilistic settings; in Section 2 a new measure of possibilistic dependence 
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is discussed that combines similarity and information relevance concepts; Sec- 
tion 3 shows how this measure can be applied to a learning method; in Sec- 
t ion4 we comment on and present two new algorithms HeS and 
POSSe&USE. The first one is a hybrid variation on a previously existing algo- 
rithm due to Huete [25]. POSSCAUSE (Possibilistic Causation) is an extension 
to general DAGS. We comment in Section 5 about the results of applying them 
on a well-known test database. Section 6 is devoted to concluding remarks and 
future lines of research. 

2. General belief networks and possibilistic causal networks 

Here we modify the notion of belief network which is usually identified with 
Bayesian networks. 

Definition 2.1. (General belief network). For a domain U = {xl . . .x,} the 
corresponding belief network is a directed acyclic graph (DAG) where nodes 
stand for variables and links for direct association between variables. Each link 
is quantified by the conditional uncertainty distribution relating the variables 
connected to it, ~.  By uncertainty distribution we mean the distribution based 
on any confidence measure used to represent uncertainty about evidence. 

Belief networks have two interesting characteristics. Firstly, any given node 
xi in a belief network is conditionally independent of the rest of the variables in 
U, given its direct predecessors in the graph, i.e., its parents shieM the variable 
from the influence of the previous variables in the graph. Secondly, the joint 
uncertainty distribution induced by the DAG representing the dependencies 
in a given domain can be factorized into the conditional distribution of each 
variable with respect to its immediate predecessors (parents). That is 

~(Xl ...Xn) = ~(x i lpa i ) ,  

where pai is the set of direct parents for variable xi, ~ represents an uncertainty 
distribution (probability, possibility, etc.) and ® is a factorizing operator. In the 
case of probability this operator is the product of conditional distributions [33]; 
in the case of possibility it can be the product or the minimum operator [15]. 

Definition 2.2 (Possibilistic causal network). Possibilistic belief networks are 
belief networks where the underlying uncertainty distribution is the possibility 
distribution defined on corresponding to the graph. 

A belief network, then, represents the conditional independence relations 
that exist in a given domain. Now, conditional independence is a relationship 
between variables or groups of variables that has the following properties [36]: 
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1. Trivial independence: I(X]ZIO ) 
2. Symmetry: I(XIZIY ) ~ I(YIZIX) 
3. Decomposition: I(XlZl Y U W) ~ I(XIZIY ) 
4. Weak union: I(XIZI Y U W) ~ I(XIZ U YI W) 
5. Contraction: I(glZl Y) A I(glZ u YI W) ~ 10(121Y u W) 
6. Intersection: I(XIZ U WIY U W) A I(XIZ U Y] W U W) ~ I(XIZI Y U W) 

This characterization of conditional independence is as abstract as possible, 
thus, it makes no assumption about any particular uncertainty formalism used 
in order to recognize a given relationship as being an instance of a conditional 
independence relationship. Now, in learning from data, one has to define an 
operational criterion for identifying such relations from summarized informa- 
tion, as uncertainty distributions are. We will not review here the various tech- 
niques used in probability to detect such relations, the Z 2 test and its variations 
being the most classical ones. 

Our interest lies in defining a criterion for working with possibility distribu- 
tions derived from data. It will allow us to infer, from the relations between 
two possibility distributions, whether the corresponding variables are indepen- 
dent or not. As it is the case in probability theory, such criterion rests on the 
previous notion of conditional distribution. Two (or more) variables will be con- 
sidered as conditionally independent if their conditional distributions satisfy 
certain properties. But, while in probability there is a unique formulation for 
such conditional distributions, several different definitions have been proposed 
for possibilistic conditioning. We will just give them and then discuss several 
definitions for independence between variables. 

Dempster conditioning [8]: It is a specialization of Dempster's rule of con- 
ditioning for evidence theory. Given two variables X and Y taking values in 
{X1,X2,..., Xn} and {Yl,Y2,...,Y,}, respectively and the corresponding joint 
possibility 7~(x,y) distribution the conditional distribution g(xly ) is defined as 

~(XIY) - r~(g, Y) 
roy(Y) ' 

where ztr(Y) = maxyEr{rc(X, Y)}. 
Hisdal/Dubois conditioning [24,10]: In the same conditions as before 

J" rt(X, Y) if u(XIY) < re(Y), 
TC(XI Y ) 

1 otherwise. 

See [39] for a discussion on the adequateness of these definitions. 
Now, independence between variables, as we remarked, will require some 

kind of comparison between their distributions (marginal and conditional), 
so one or the other of the above conditioning operators will be used in estab- 
lishing independence. However, at a more abstract level, possibilistic indepen- 
dence between variables or groups of variables can be understood in terms of 
mutual information relevance. 
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Fonck [15] adheres to this view, putting forth the following interpretation: 
Conditional independence as mutual  information irrelevance: Given three sets 

of variables X, Y, Z saying that X is independent of  Y given Z amounts to the 
assertion: once the values of Z are known further information about Y is irrel- 
evant to X and further information about X is irrelevant to Y. Given the sets X, 
Y, Z the independence relation I ( X  I YI Z) is true iff 

rC~xl~uz } c and c c = ~{XlZ} 7r{rlXuZ} = 7z{~[z} 

is true, where rc c is the distribution that results from applying the c combination 
operator (i.e. a norm or the corresponding conorm). 

This definition is stricter than the one that had been taken previously as a 
test for independence in possibilistic settings: non-interactivity. Non-interactiv- 
ity [49], means equality between marginal distributions and factored marginal 
distributions, analogously to the traditional property of factorization in prob- 
ability theory. Fonck has proven that this definition does not satisfy all the in- 
dependence axioms mentioned before but hers does [16]. 

Another similar line of  work is followed by Huete [25] who explores three 
different views on independence. 

1. Independence as no change in information: When the value of variable Z is 
known knowing variable Y does not change information about values of  X. 
This can be understood as information about Y being irrelevant for X when 
Z is known. Note that this is a less strict definition than Fonck's, in the sense 
that only one such test is to be done (Fonck's symmetrical condition is not re- 
quired here). 

2. Independence as no information gain: When the value of  variable Z is 
known, knowing variable Y brings no additional information about the values 
of  X. In other words, conditioning represents no information gain. 

3. Independence as similar information: When the value of  variable Z is 
known, knowing variable Y brings a similar information about the values of 
X, this information being similar to the one that referred to X before knowing 
the value of Y. 

These three notions of independence are studied by Huete using Hisdal's 
and Dempster's conditioning operators. The interested reader is referred to 
[25]. 

3. Measuring dependence through similarity between distributions 

The different interpretations of  independence that we have commented 
above do not reflect completely separated concepts. In fact, they can comple- 
ment each other. We have adopted an independence characterization based 
on similarity but that has some relation to information relevance. 
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Independence between X and Y can be related to the similarity between the 
marginal possibility distribution 7r(X) and the conditional distribution ob- 
tained after conditioning on Y, zt(X[ Y). Extending to the three-variable case 

I(XlZl Y) ~ rcc(xlyz) ~ 7tc(xlz)Vx,y,z, 

where 7rc is the distribution obtained by applying one of  the usual conditioning 
operators for possibility distributions and ~ is read as "is similar to". 

Similarity between distributions admits several definitions. Let us suppose in 
the following that two distributions, ~t and zc' are being compared. These are 
the current similarity definitions used [25]: 
• 1so-ordering: 

Vx, < ¢ = .  < 

This amounts to establishing that two distributions are similar if their ap- 
propriate possibility distributions exhibit the same ordering for re(x), for 
all values. 

• Cto-equality: Two distributions will be taken as similar if 7t(x) = rc'(x) for all x 
and for all values of  re(x), rg(x) that are greater than a fixed possibility value 
50. 

5) = w / >  
1 where C(lr, ct) is the n-cut set corresponding to the value 5. 

• Strict similitude: In this case the idea is that two distributions are similar if 
the values for each x for 7r(x) and n'(x) differ in less than a given value 5. 
Now we have to remark on some important aspects of  the above definitions 

of  similarity. Firstly, all of  them are extremely fragile. It is enough for a single 
value not to obey the definition to rule out two distributions as being not sim- 
ilar. This is not very practical nor realistic when working with distributions de- 
rived from data. Secondly, and associated with the first disadvantge, it has to 
be remarked that there is no degree o f  similarity. Distributions are either sim- 
ilar or not similar. However, it is not the same thing if the differing values in the 
two distributions are separated by a great difference in possibility or by a small 
one. Thirdly, and this disadvantage has implications for learning, as there is no 
degree of  similarity. Comparison of  dependence strength between two variables 
respect to a third one is impossible. 

We just would like to combine the approaches of  the information relevance 
definitions of  independence with the similarity approach. We will define a grad- 
ed similarity measure that will allow for small variations in the form of  distri- 
butions and that will also take into account how much each different value of a 
given variable contributes in making the overall distribution different from the 
one that is compared against. 

1 The  or-cut set is the set {x[ n(x) 1> ct} for  ct E [0, 1]. 
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The rationale of  our definition is the following. Given a difference value a in 
[0,1] two distributions rc and ~' defined on the same domain will be considered 
similar if, for the most part of  the xi values of  their domain the appropriate  pos- 
sibility values lt(xi) and rc'(xi) differ by less than a. 

Definition 3.1 (a-set). Given two possibility distributions rc and ~' over a 
domain X and a real number  a C [0,1] the a-set for r~ and n' in the domain X is 
defined as 

a - s e t  = (x  i E X'. [ ~ ( x i )  - 7~t(xi)[ ~ a}. 

Definition 3.2 (Similarity degree). Given two possibility distributions 7t and rd 
over a domain X and a real number  a E [0, 1] their degree of  similarity is 
defined as 

Sim(rc, rr', a) ' ~ -~x iC~t - se t  17~(Xi)  - -  7Zt(Xi)[ 

I f  two possibility distributions have a similarity degree Sim(rc, re', ~) = 7 then 
if 7 = 0 they are said to be dissimilar at a level; if 7 = 1 they are said to be id- 
entical at 0c level. 2 In any other case, they are said to have similarity 7 at a level. 

Definition 3.3 ( a m i n ) .  Given two possibility distributions ~t and rt' over a domain 
X and the set {ai: Sim(rc, it', ai) ~ 0} then ami n is the infimum of this set. 

Definition 3.4 (Maximally similar distributions). Two possibility distributions n, 
7~ ~ are said to be maximally similar if ami n = 0 for them. 

Now that we have defined similarity in terms of  proport ion ofx~ values that 
are close to a difference of  u in their possibility values, we can establish depen- 
dence conditions on variables represented by possibility distributions. 

This has the advantage of  building an ordering on the strength of associa- 
tion between several variables, a possibility that is very useful in learning 
DAGs.  Given three variables x, y, y', we want to define a function Dep,  that 
will allow us to test whether Dep~(x[y) >~ Dep~(xly' ) or not at the same a level. 

Let us suppose that we have three variables x, y and y'. I f  there are the same 
number  of  values differing in 7r(xly ) and rc(xly' ) then we must test which of  the 
two conditional distributions changes more the distribution n(x). The variable 
which changes it more will be the one that is more dependent with the one we 
are testing it against. Of  course, in measuring this change one has to take into 
account the difference in possibility values for each xi but such difference, due 

2 T h e n  o u r  def in i t ion  r educes  to  the  s e c o n d  one  given above .  
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to the influence of  the yi value has to be weighted by the corresponding possi- 
bility zc(yi). Remember that we are working with possibility distributions 
derived from data. Now, this will give us an aggregated idea of how much does 
a given variable y influence variable x in front of the influence of variable y'. 

Definition 3.5 (Conditional Dependence Degree). Given two variables x and y 
with joint possibility distribution z(x,y), marginal possibility distributions nx 
and ny, conditional possibility distribution ~xly and a real value ~ in [0,1] we 
define their conditional dependence degree as 

Dep(x,y,~) = 1 - Zz~(yi) Z 17~(xi) - -  74(xi[yi)[. 
yiEY x i E ~ - s e t  

Notice that Dep~(x,y) is greater when Sim(x,y, ~) < Sim(x,y', ~). 

4. A learning method based on possibilistic conditional dependence degrees 

Now that we are in a position to test the degree of dependence between two 
variables x and y by means of the similarity between their distributions we can 
use this information to guide the building of a DAG that represents the depen- 
dencies between the variables in a database. 

In doing so, we will resort to dependence degrees to establish an order be- 
tween variables. This is only a first phase of our method. Building DAGs using 
conditional dependence information must be complemented with information 
about the whole quality of the resulting DAG. 

In the case of probabilistic belief networks, several measures have been de- 
fined in order to assess the quality of the network. For example, a typical one is 
measuring the cross-entropy of the distribution induced by the network and the 
distribution underlying the database. Chow and Liu [4] defined a measure that 
minimized cross-entropy when the DAG was a tree. This idea has been used by 
several authors to develop CI-test methods. See [40,26] and in a different setting 
[29,30]. Another often used measure is overall entropy of the DAG: one search- 
es among a space of low entropy networks. A method representing such orien- 
tation is [23]. 

In possibility theory, non-specificity is the concept corresponding to entropy 
in probability. Gebhardt and Kruse [21] defined an overall measure of non-spe- 
cificity in order to select at any step in their method a variable that, once added 
and linked to the DAG, resulted in the most specific joint distribution, given 
the data. Given those DAGs and the data it is important to recover the one 
that has a minimum overall non-specificity. That is, we are interested in recov- 
ering the DAG that is more precise given the data. 

A measure of the non-specificity associated with a possibility distribution is 
U-uncertainty [28]. 
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Definition 4.1 (U-uncertainty). Given a variable X with domain {xl . . .  xn} and 
an associated possibility distribution rcx(xi) the U-uncertainty for z(x) is 

U(~(x)) = lg 2 card(Xo) dp, 

where X o is the p cut for X. That is, Xp = {xi: ~(xi) /> p}. 

U-uncertainty can be extended for joint and conditional distributions in the 
following way. 

Definition 4.2 (Joint U-uncertainty). Given a variable )(1 ...An variables with 
associated possibility distributions nx~..,  nxo their joint non-specificity mea- 
sured as U-uncertainty is 

g(~xl . . .  ~xo) = lg 2 card(Xl~ x ...)(no) dp. 

Definition 4.3 (Conditional U-uncertainty). Given two variables X,  g with 
associated possibility distributions ZCx, ~y their conditional non-specificity 
measured as conditional U-uncertainty is 

f0 card(Xp x Yp) 
U(rcx (x) lrty(y)) = lg 2 card(Y0) dp. 

Note that U(XIY ) = U(X, Y) - U(Y) 
Now, we are interested in finding the overall U-uncertainty of a given DAG. 

That is, the U-uncertainty of the joint possibility distribution induced by the 
DAG. Making use of the factorizing property of belief networks, we can define 
the Global non-specificity for a given DAG. First we need a previous definition 
that of the non-specificity due to the conditional distribution of a variable and 
its parents. 

Definition 4.4 (Parent-children non-specificity). Let G be a DAG representing 
the conditional independence relationships existing between the variables in a 
domain U = {Xl...Xn}. For any given variable xi with parent set pai, the 
parent-children non-specificity is 

U(xi lpai )  = U ( x i , p a i )  - U(pa i ) ,  

when pa, = {3 then U(xilpa,) = U(xi). 

Definition 4.5 (DAG non-specificity). For a given DAG G defined on the same 
domain as in the previous case the DAG non-specificity is 

U( G) = ~-~ U(x~lpa~). 
xiCU 
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Now, the space of  possible DAGs is enormous, so information about known 
dependencies can help in pruning it. The idea is to use dependence information 
to build a non-oriented D A G  and then select the best orientations by means of  
the non-specificity of  the graph. We comment on the next two sections about 
how this hybrid methods can be devised. 

4.1. The H C S  algorithm 

Central to our methods is the idea of  variable sheaths due to Huete [26]. A 
sheath 7~x, for variable xi is the subgraph corresponding to those other vari- 
ables in U that are direct causes and effects of  xi. Sheaths are obtained by re- 
peatedly expanding the set of variables that are marginally dependent with 
respect to xi, i.e., those yi in U for which l(xd~ly~) holds. This set is called 
Axe. In Huete's method, after expansion of  Axl for all variables xi in the domain, 
a polytree-like D A G  is recovered by fusing the resulting partial sheaths tpxi. Fi- 
nally, and according to polytree properties, orientations for links are intro- 
duced. Orientation is not made until the whole graph is built. 

There are some aspects that are worth commenting on. First, as many other 
CI-test methods, HCS algorithm takes as input a list of  existing conditional de- 
pendencies on U. Secondly, orientation is made after expanding each sheath. 
And thirdly, after expansion, of  Ax, direct causes and effects involve not only 
those direct ancestors and successors of  a variable in the D A G  but also their 
neighbors, i.e., those variables for which successors and predecessors of  xi 
act as a separating set. 

The HCS algorithm is a combined algorithm for the recovery of  DAGs, 
modifying Huete's method in order to use an information criterion for testing 
network quality. 

HCS Algorithm 

1. For  each x~ in U 
(a) Calculate/Ix,. 
(b) Calculate ~x,. 
(e) For  each y in 7ix, 

i. Calculate the set of possible neighbors Nx, (y). 
ii. If Nx, (y) = ~ then eliminate y from ~g~, 

(d) Create G~ 3 
i. For  each y in 7~x,. If  there exists no link between xi and y then 

A. If  xi is a root  node 
• Create graph Gl by adding to G1 the link y --+ x. 

3 The partial graph relating all variables in ~x~. 
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• Calculate U(GI) 
• Create graph G2 by adding to G1 the link x ---+ y. 
• Calculate U(G2) 
• If  U(G1) > U(G2) then G~, = GI Else G =  G2 

B. If  xi is not a root node. 
Then add the link x ~ y 

2. Merge all Gx, to obtain G. 
3. Test whether the resulting graph is simple. If it is not then FAIL 

Results obtained by applying the HCS algorithm are commented on in the 
corresponding section. 

4.2. The P O S S C A  U S E  system 

We set ou:selves to the task of  making such method able to recover more 
general DAGs. We wanted to use information about the quality of  the network 
in order to decide on the orientation of the links. The idea behind that was that 
subgraphs based on partial sheaths would involve less nodes and links and then 
the cost of  orientation would be inferior than delaying it to the final non-ori- 
ented graph. In addition, we wanted to use a measure, or a combination of 
measures, that produced a resulting D A G  that were accurate (specific) with res- 
pect to data but not to the point of  being too complex. Finally, we wanted to 
make the resulting algorithm as amenable to parallel computation as possible. 
So we used global DAG non-specificity as defined above in order to use it as a 
test for orientation. Other measures are currently in study as, for example, 
Cross Non-specificity [39]. 

On using POSSe&USE some assumptions were made about the quality of  
data. In its present state, the algorithm is prepared for dealing with categorical 
data. Data are assumed to be complete, i.e., enough combinations of values are 
present for establishing marginal and conditional dependencies. 

The general schema of  the algorithm is as follows. For  each variable xi in U 
find its corresponding Ax, build the reduced sheath Pxi for it (i.e. only those di- 
rect causes that are direct ancestors or predecessors of xi); orient the reduced 
sheath by means of  non-specificity tests and merge the resulting sheaths for 
all variables in U. 

Definition 4.6 (Reduced sheath). For a node xi in a D A G  representing the 
conditional independence relationships in a given domain U, with sheath ~x,, 
the reduced sheath of xi, Pxi, is the set of  those vars y in ~x, ]y E Adj(xi) 
where Adj(xi) is the set of variables in the D A G  that are adjacent to xi. For  
any couple of  variables {y,z} y ,z  E Px~ belonging the following conditions 
hold: 
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1. I(ylxilz), 
2.-~l(xi lz) ,  
3.  I(xiIy). 

Definition 4.7 (Indirect  causes). Given a variable xi with sheath q~x, and reduced 
sheath Px,, the set of indirect causes of  xi is axi = ~xl - Px,. Let us suppose 
(~x i ~- {Yl ' "  .Ym}, then for any yk, l(xi[yklzy) for some variable zj not in the 
reduced sheath of  xi. 

Definition 4.8 (Focus o f  a sheath).  The focus of  a sheath Px, is the variable 
around which the sheath is built, xi. 

In this way, we distinguish between the direct parents and children of  a given 
node xi and other variables related to xi through these direct parents and chil- 
dren. These other variables, in turn, may be the direct parents or children of  
some other variable in the final DAG. 

D A G  construction proceeds in parallel. The idea is to find the direct parents 
and children of  each variable, then orient this reduced sheath and then merge 
all oriented sheaths. There is a process for each variable xi in the domain. Each 
one builds the reduced sheath for x~. During this process some variables 
{Y~ ...Y~m} will be detected as dependent with x~ but they mediate between x~ 
and some other variables {z~...z~m}. That  is, for each yg~ the relation 
I(xilYiklz~), holds. Evidently, no z~ can belong to the reduced sheath of xi. The 
processes that are building the reduced sheath of  the variables {z~ . . .  z~ m } must 
know that {Y~l...Y~m } belong to their reduced sheaths. 

Now a method can be devised in order to recover a possibilistic D A G  from 
data. 
• Input: DB, a database on a domain U = {x~...xn} 
• Outp ut :  the minimum non-specificity possibilistic DAG, Dmi n compatible 

with DB or an error message 
1. For each x in U 

(a) Build the set of marginal dependent variables for x, Ax 
(b) Build the set of  direct causes and effects for x. Px 
(c) Orient each Px according to the minimum non-specificity alternative 

2. Create Drnin, the graph resulting from joining all minimum non-specificity 

Px. 
3. If  there are cycles in Dmin then FAIL 

else return Dmi n 

Deriving Ax, for each xi amounts to calculating the Dep~ values for the rest 
of the variables in the domain. The result is a triangular matrix. This task is 
done in parallel with no special difficulty. 

Now, we will see how orientation testing (step l(c)) can be done. First, we 
have a variable sheath that basically represents the skeleton of  a subgraph. 
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That is, a subgraph with no orientation. Orienting such structure reduces to 
finding the most plausible parents and children of the focus of the sheath, xi. 
In fact, while doing so, several shortcuts can be applied. As every triplet 
{ x , y ,  z }  in Px obeys the conditions in definition (2) it is enough to test only three 
orientations: y ---+ x ---+ z, y +--- x ~-- z and y ~-- x --~ z. 

Orientation step 
• Input: a non-oriented reduced sheath for a variable xi in U, Pxi 
• Output: the minimum non-specificity oriented subgraph corresponding to 

the subgraph Pxi, Dp~ 
• Let Px~ = 0 
• For  each y, z in p~, 

1. Find the minimum non-specificity configuration minpc of  the set 
{ y  - ~  xi  -+ z , y  +- xi  - ~  z,  y +- xi  +- z }  

2. Let r e s u l t  = result U minpc 
Finding the minimum non-specificity parent-children set of x~ is equivalent 

to testing for each pair of variables y, z in Pxi which of  the three above mentioned 
orientations reduces in a greater amount the accumulated non-specificity. 

Complexity can be measured in terms of the number of variables in U. For 
each variable x in U its set of  marginally dependent variables ,~x may be, at 
most, of  the same cardinality as U. If n is the number of variables in U, then 
the total number of  possible comparisons is n 2. 

Conditional dependency tests are reduced to only first order tests. These are 
done only on the variables of  each 2x set which reduces the cost of conditional 
dependency calculation. Of course, this is no advantage when comparing 
POSSCAUSE with algorithms based on information criteria, as K2 (where 
the cost of dependency test is not included in the complexity calculations be- 
cause it is assumed to be pre-stored. 

The POSSCAUSE algorithm has been implemented on a Sun workstation 
simulating parallel processes. Currently it is being ported to a parallel IBM- 
SP2 computer under PVM-E software. The system allows for several modifica- 
tions of the above mentioned algorithms. For  example, information about 
known dependencies can be entered by an expert. If evidence against them is 
not conclusive, they are accepted and are used as a guide in building the vari- 
ables' sheaths. 

5. Experimental results 

Both algorithms have been tested on artificial databases. There was one 
problem in finding adequate datasets. HCS is devised to recover only singly 
connected DAGs, so it was applied to a simple example due to Musick [32]. 
In testing POSSCAUSE the ALARM database [l] was used. 
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Experiments had two different goals. The first ones were used to test the re- 
lationship between several factors affecting dependence degrees (~ values, De- 
pendence thresholds...) and information quality (Non-specificity). The second 
ones (on the ALARM database) were done in order to test the structural qual- 
ities of  the constructed networks and to compare them with known results of  
other algorithms on the same datasets. 

The resulting networks were compared for their structural quality. That  is, 
each combination of ~ and 7cut values was tested against a measure that calcu- 
lated the number of  links not present in the original network that were added 
(added links) in the learning process as well as how many original links were 
not recovered (deleted links). Incorrect orientations were also measured. 

5.1. Experiments with HCS." Musick 's  data 

Musick's database is a small and standard example that is represented as a 
simple D A G  on five variables. The corresponding database contains 100 cases. 
The original dependence relations between them are depicted in Fig. 1. 

When the algorithm is using the highest available dependencies observed, 
the resulting network is more similar to the original one, the one where the ob- 
served dependencies are supposed to come from. Of course, there is a limit to 
this behavior, when we are using 7cut values that are not realistic: those that are 
higher than the really observed ones. This induces the removal of  many links 
that were previously added. In other words, quality is reduced not because 
new spurious dependencies are added but because it is impossible to detect de- 
pendencies (see Fig. 2). This is in fact not a real disadvantage: it only means 
that we are demanding too much on the existing data. The pattern repeats 
across several values of ~, although greater ~ values induce a loss of quality 
with lower 7cut values. This is due to the fact that we are less and less precise 

® ® 

Fig. 1. Musick's example. 
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with respect to the conditions to declare two variables as conditionally depen- 
dent. Many spurious dependencies appear when ~ grows. So, the dependence 
information becomes unreliable at lower 7cut values. 

A second set of tests were made relating the values of ?c,, with the overall 
non-specificity of the network. Clearly, these two values are highly dependent. 
The higher the dependence degree is, the lower the non-specificity is. That 
means that as we try to build a network with stronger dependencies the result- 
ing structure is more specific. That is, if evidence in data support a high degree 
of dependence, then the resulting network is more precise. The last series of 
tests measured non-specificity against the number of correct links (see 
Fig. 3). It is interesting to see that the higher the non-specificity (i.e. the less 

Graph Non-specificity, maximun normalization, a -- 0 
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Fig. 3. Re l a t i onsh ip  between dependency  level and  non-specificity.  
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specific the network is) is, the higher the number of incorrect links is. That 
again, favors the use of  non-specificity combined with dependence information 
as a measure for finding better networks. 

Three probability to possibility transformations were used: maximum nor- 
malization, minimum information loss and necessity as additional quantity 
of information. The following behaviors were observed. First, the mentioned 
relationships between non-specificity and 7cut values were the same for all trans- 
formations. Secondly, the relation between specificity and correct links remains 
analogous. The only differences appeared in the total number of correct links. 
Using the minimum information loss probability-possibility transformation re- 
sulted in the lowest number of  incorrect links. However all three transforma- 
tions give as a result a number of  incorrect links whose mean was close to 
four. Also there existed slight differences in the optimum Vcut values, i.e., those 
that recovered the best network. For  maximum normalization the best values 
were in the interval (0.072, 0.10); for necessity as additional information trans- 
formation they were in (0.092, 0.10) and for minimum information loss trans- 
formation they were in (0.045, 0.094). 

When using order or dependence relations introduced by the expert, HCS 
recovered the DAG exactly, as it was to be expected, given the nature of  the 
basic CI-test algorithm used. 

It is also interesting to note that it was sufficient to introduce dependence 
knowledge for just those variables with too low evidence of association. Notice 
that those variables gathered not enough evidence because in the data there 
were insufficient cases to support all possible value combinations, so some de- 
gree of incompleteness appeared. 

The algorithm, as Huete's CI-based algorithm, is quite sensitive to variable 
order. As it considers variables in the same order as they are declared in the 
information on the data file, it builds sheaths in the same order, and this is 
the reason why different variable orderings result in quite different networks. 
Order information can be supplied by the expert. 

5.2. Exper iments  with the A L A R M  database 

The well-known ALARM [1] database was used as a test dataset for POSS- 
CAUSE. This database contains 20 000 cases generated from a D A G  structure 
representing the relationships on variables describing anesthetic emergency 
treatment. We used several subsets of  this database in increasing order and fi- 
nally the whole database in order to compare results. 

A note of caution here. It is inherently difficult to compare two networks 
that rely on different assumptions about measuring conditional independence 
in two different uncertainty formal isms.  Theoretically, the dependence structure 
of  the graph should be the same, the independence properties being devised to 
be as independent as possible of  the underlying uncertainty formalism. How- 
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ever, extracting possibility distributions from data is currently done in a rather 
indirect way (through probability-possibility transformations) which may ex- 
plain some loss of information that results in some dependencies being not rep- 
resented. 

The way structure quality is measured is counting the number of added links 
(i.e. those not present in the original DAG but present in the recovered one), 
missing links (opposite case) and the sum of both quantities. As it could be ex- 
pected, the increasing number of cases implies a better performance in the sense 
that less incorrect arcs appear. Let us comment a little more on wrong arcs (see 
Figs. 4 and 5). 

It is important to note that, although the number of missing links is reduced 
with higher numbers of cases, the set of not recovered links is very stable. For 
example, links between variables 21 and 17 are repeatedly absent of the final 
structure recovered by POSSCAUSE. On inspection of the data it is seen that 
evidence is not very high for the marginal dependence between these two vari- 
ables. The same is true for the implied conditional independence relationships. 
From our point of view, a possible explanation for such missing link may be 
due to the process used in obtaining the corresponding possibility distributions 
(that finally induce changes in the dependence measures). Presently, as we men- 
tioned in describing the results of the previous algorithm possibility distribu- 
tions are obtained by transformation from the corresponding probability 
distributions. This may induce a loss on information about dependencies. 
We are trying to devise a new method for extracting possibility distributions 
directly from data as for example it is done by [27] through possibilistic histo- 
grams. 

Fig. 4. Original alarm DAG. 
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® 
Fig. 5. Recovered DAG from 5000 cases. 

On close inspect ion  o f  the a lgor i thm part ia l  results it was seen tha t  some links 
were deleted because,  dur ing subgraph  merging,  they in t roduced cycles. This 
m a y  indicate tha t  in some cases, subgraph  or ienta t ion induces e r roneous  links. 

The  behav ior  o f  the added  links is also interesting in the sense tha t  very rap-  
idly links indicating spurious dependencies  d isappear  f rom the final structure.  
Final ly there is a stabil ization o f  the n u m b e r  o f  added  links. 

The  compar i son  of  the two a lgor i thms m a y  be bet ter  interpreted by using 
Fig. 6. 
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Fig. 6. POSSCAUSE performance against K2: total incorrect edges. 
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Let us remark that POSSC~USE uses no information about node ordering 
(as K2 does) and this may be the reason why some incorrect links remain in 
spite of  larger data volumes. 

In any case what is important to remark is that all dependencies induced by 
the final D A G  recovered by POSSCAUSE were effectively present in the data. 

A final remark about the relationship between ~ values and structural and 
informative quality of  recovered networks in a similar way as it happened with 
HCS. We are currently considering pre-processing the data in order to select the 

value that may recover the maximum number of dependencies and with 
greater precision. More detailed discussion of  this experiment can be found 
in [43]. 

6. Discussion and further research 

A measure for similarity between distributions has been the basis for two 
new hybrid algorithms for causal network construction: HCS and POSSCAUSE. 
The first one is used to recover simple DAGs and the second one to recover 
general DAGs. When HCS is applied to domains where the underlying struc- 
ture is a simple D A G  it recovers faithfully the known dependencies of the do- 
main. There are variations related to order between the variables. The 
underlying dependency model is correctly recovered whatever the order between 
input variables is. However, the sheath structure is highly dependent on the or- 
der of consideration of variables in the Ax set. This implies that, in building the 
sheath, variables with less dependency with the sheath focus are included be- 
fore others that are more strongly associated to it. That  has as a result that de- 
pendencies that may induce incorrect parent-child link associations are 
maintained. Contrary to other CI-based algorithms, HCS can use dependence 
information as a basis for ordering variables. We are testing the effect of  select- 
ing first for inclusion in a given sheath the ones that are more dependent. As we 
mentioned, in cases where knowledge about dependence relationships is avail- 
able, HCS can use it in the form of  dependence information, in which case it 
recovers a structure that reflects the true dependencies in the domain. It is im- 
portant to see that complexity remains at the same order than the original CI- 
test algorithm HCS is based upon [25]. 

The second algorithm, POSSCAUSE, is a parallel extension of  HCS and it is 
able to recover more general DAGs. Recovered DAGs are able to reconstruct 
correct domain dependencies even when the underlying dependency model is 
not a simple DAG. Comparison with other algorithms showed an acceptable 
behavior of  POSSC~USE much better results are expected in datasets with a 
greater level of noise, which is currently a situation where probability based al- 
gorithms do not perform so well. We are working on this kind of  experimen- 
tation. 
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Orientation based on non-specificity test (or their conditional entropy coun- 
terparts for probability theory), allows for a reduction in the cost of the orien- 
tation step due in part to the fact that subgraphs are first oriented and then 
merged. New heuristics, however are under study in order to decide on orien- 
tations between subgraphs so that introduction of  spurious associations in this 
step is avoided. Currently we are testing the effect of  ordering the merge pro- 
cess in terms of the degree of  dependency between the center of the candidate 
subgraphs. 

The relationship between dependence and information through the depen- 
dence measure used by both algorithms is an important conclusion of  our work. 
We are currently proving new properties of  this measure and developing new 
variations on it, a work that stems from [43] where more details can be found. 

An important extension will be the application of POSSCAUSE to domains 
where continuous variables exist or where the domain is described by categor- 
ical and continuous variables at the same time. This is in accordance with a 
long line of  research in unsupervised learning in our group. 

Although possibilistic representations of  uncertainty may cope better with 
imprecise information than probabilistic counterparts it has also problems in 
dealing with an incomplete collection of cases. We are starting to develop vari- 
ations of POSSCAUSE that are able to manage such situations. 

A very important issue, however, remains to be dealt with. It is referred to 
the causa l  interpretation of  the links involved in the recovery process [41]. In 
effect, there is a widespread identification of  belief networks with causal net- 
works. This may be too rapid an identification. It may be true for causal net- 
works built directly by experts. Humans tend to think in terms of clusters of 
causally related variables. It happens that, when asked to build a belief net- 
work, experts tend to link causes and effects into the D A G  and then elucidate 
the corresponding uncertainty distributions. So, all cause-effect relationships 
are close to the conditional independence interpretation on DAGs, but the in- 
verse relationship is not always true as Drudzel and Simon [9] argue. There has 
been a lot of  controversy about how to identify 'true' causal relationships from 
conditional independence information. As a result there exists a trend in for- 
malizing correct axioms for causal relevance [19,18] and which allows for id- 
entifying true causal links in a DAG built by means of conditional 
independence relationships. Our next step will be to test if Galles and Pearl ax- 
ioms hold in a possibilistic setting and then create a critiquing module for the 
POSSCAUSE system in order to refine the obtained networks. 
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