The EM algorithm

- Start with guess for values of your model parameters
- **Step E**
 - Compute distribution of the missing/latent data given the observed data and your current guess of the model parameters.
 - Use the missing/latent data distribution to compute the expectation of the likelihood function with respect to the unobserved variables.
- **Step M**
 - Use the expected likelihood function with no unobserved variables to maximize the function as you would in the fully observed case, to get a new estimate of your model parameters.
- Repeat steps E-M until convergence (no further changes).
The EM algorithm - Example

- Three coins with probability of heads (λ, p_1, p_2).
- Hidden variable coin$_0$ (λ): $Y = \{H, T\}$
- $Y = H \Rightarrow$ flip coin$_1$ (p_1) three times
- $Y = T \Rightarrow$ flip coin$_2$ (p_2) three times
- Observed sequence: $X = \{\text{HHT, HTT, TTT, HHH}\}$
The EM algorithm - Example

- **Start with a guess model** \(\mu = (\lambda, p_1, p_2) \)

- **Step E - Expectation**

 Use current model parameters \(\mu \) to compute probability distribution of hidden data given the observations:

 \[
 P_\mu(H \mid x_i) = \frac{P_\mu(x_i, H)}{P_\mu(x_i)}; \quad P_\mu(T \mid x_i) = \frac{P_\mu(x_i, T)}{P_\mu(x_i)} \quad \forall x_i \in X
 \]

 where \(P(x_i, H), P(x_i, T), \) and \(P_\mu(x_i) \) are computed from current model:

 \[
 P_\mu(HHT, H) = \lambda p_1^2 (1 - p_2) \\
 P_\mu(HTT, T) = (1 - \lambda) p_2 (1 - p_2)^2
 \]

 \[
 \ldots \text{etc.} \ldots
 \]

 \[
 P_\mu(x_i) = P_\mu(x_i, H) + P_\mu(x_i, T) \quad \forall x_i \in X
 \]

 Compute expected number of occurrences for hidden variable values:

 \[
 E[Y = H] = \sum_i P(H \mid x_i) \\
 E[Y = T] = \sum_i P(T \mid x_i)
 \]
The EM algorithm - Example

- **Step M - Maximization**

 Use expectations computed above to compute new MLE estimates of model parameters given observations
 \(X = \{ \text{HHT, HTT, TTT, HHH, HTT} \} \)

 \[\lambda' = \frac{E[Y=H]}{N} \]

 \[p_1' = \frac{2 \cdot P(\text{HHT}, \text{H}) + 1 \cdot P(\text{HTT}, \text{H}) + 0 \cdot P(\text{TTT}, \text{H}) + 3 \cdot P(\text{HHH}, \text{H})}{E[Y=H]} \]

 \[p_2' = \frac{2 \cdot P(\text{HHT}, \text{T}) + 1 \cdot P(\text{HTT}, \text{T}) + 0 \cdot P(\text{TTT}, \text{T}) + 3 \cdot P(\text{HHH}, \text{T})}{E[Y=\text{T}]} \]