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from Young et al, 2018

Applications

TABLE II: POS tagging

Paper Model WSIJ-PTB (per-token accuracy %)

(nmenez and Marquez [1352] ¥ M with manual feature pattern uil.16
Collobert et al. [3] MLFP with word embeddings + CRF T
Santos and Zadrozny [32] MLP with character+word embeddings 97.32
Huang et al. [133] LSTM o729
Huang et al. [133] Bidirectional L51TM 40
Huang et al. [133] LSTM-CEF o754
Huang et al. [133] Bidirectional LS TM-CRE Wia5
Andor et al. [134] Transition-based neural network o435
Kumar et al. [97] DMMN oi.56
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Applications

from Young et al, 2018

TABLE III: Parsing (UAS/LAS = Unlabeled/labeled Attachment Score; WSJ = The Wall Street Journal Section of Penn Treebank)

Parsing type Paper Model W5l
Chen and Manning [135] Fully-connected NN with features including POS 01.8/8%.6 (UAS/LAS)
Dependency Parsing Weiss et al. [136] Deep Tully-connected NN with Teatures including POS 9137913 TUANLAS]
Drver et al. [137] stack-LSTM 03. 17909 (UASLAS)
Fhou et al. [138] Beam contrastive model 03319237 (UANLAS)

Petrov et al. [139] Probabilistic context-free grammars (PCFG) 1.8 (F1 Score)

Constituency Parsing Socher et al. [10] Kecursive neural networks 00.29 (F1 Score)

Zhu et al. [140] Feature-based transition parsing 91.3 (F1 Score)

Yinyals et al. [101] seqlseq learmng with LS TM+Atention 93.5 (F1 Score)
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Applications

from Young et al, 2018

TABLE IV: Named-Entity Recognition

Paper Model CoNLL 2003 (F1 %)

Collobert et al. [3] MLF with word embeddings+gazetieer 55.549
HPassos et al. [142] Lexicon Infused Phrase Embeddings Q.90
Chiu and Nichols [143] | Bi-LSTM with word+char+lexicon embeddings Q0.TT
Luo et al. [144] semi-CRE jointly tramed with linking 91.20
Lample et al. [a5] Bi-LSTM-CRF with word+char embeddings 994
Lample et al. [38] Bi-LSTM with word+char embeddings 80.15
strubell et al. [143] Dilated CNN with CKF G54
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Applications

from Young et al, 2018

TABLE V: Semantic Role Labeling

Paper Model CoNLL2005 (F1 %) | CoNLL2012 (F1 %)
Collobert et al. [3] CNN with parsing features 1606
Tackstrim et al. |146] Vanual features with DP tor inference 8.6 9.4
Fhou and Xu [147] Bidirectional LSTM 81.007 81.27
He et al. [145] Bidirectional LSTM with highway connections 83.2 ERE
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Applications

from Young et al, 2018

TABLE VI: Sentiment Classification (SST-1 = Stanford Sentiment Treebank, fine-grained 5 classes Socher et al. [4]; SST-2: the binary
version of S8T-1: Numbers are accuracies (%))

Paper Muodel Sal-1 | 55T-2

Socher et al, |4] Kecursrve Meural lTensor MNetwork 45,7 a4
Kim [43] Multichannel CNMN 474 88.1
Ralchbrenner et al. [44] DUNN with k-max pooling 455 H6.5
Tar et al. [111] Bidirectional LSTM 48.5 8.2

Le and Mikolov [149] Paragraph Vector 487 8.8
Tar et al. J111] Constituency Tree-L5TM 51.0 a88.0

Tu et al [150] Tree-L5TM with mhned word embeddings 34.0 ETE]
Kumar et al. [97] DMN 52.1 886

AHLT Deep Learning 2 7



Applications

from Young et al, 2018

TABLE VII: Machine translation (Numbers are BLEU scores)

Model

WMT2014 English2German

WHhT2014 English2French

Paper
Cho et al. [77] Phrase table with neural features 34.50
sutskever et al. [69] | Keranking phrase-based SMT best list with L3TM seqlseq 36.5
Wu et al. [151] Residual LSTM seqlseq + Remnforcement learming refiming 26.30 41.16
Gehring et al. [152] seq2seq with CNN 26.36 41.29
Waswani et al. | 133] Attention mechanism ! 41.0
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Applications

from Young et al, 2018

TABLE VIII: Question answering

Paper Model bAbl (Mean accuracy %) | Farbes (Accuracy %)
Fader et al. [157] Paraphrase-driven lexicon learning 0.54
Bordes et al. [1538] Weekly supervised embedding 0.73
Weston et al. [107] Memory networks 93.3 0.83
Sukhbaatar et al. [131] End-to-end memory networks and
Foumar et al. |97 ] LN W36

AHLT Deep Learning 2 9




Applications

from Young et al, 2018

TABELE IX: Dialogue systems

Twitter Conversation

Ubuntu Dhalogue

Paper Model Triple Dataset (BLEU) | Dataset (recall 1@10 %)

Ritter et al. [15Y9] SMT 4,60
sordom et al. | 16l] aMT+neural reranking 444

Li et al. [161] LSTM seqlseq 451

Li et al. [161] L5TM seqlseq with MMI obgective 5.2

Lowe et al. [92] Dual LSTM encoders for semantic matching 35,27
Dodge et al. [162] Memory networks 63.72
Lhou et al. [163] sentence-level CNN-LSTM encoder K

AHLT Deep Learning 2 10




Applications

from from Wang et al, 2014

Different embedding models of relations and triples

Model

Score function f.(h.t)
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Applications

e Some applications with more details: QA

— Bordes 2014’s approach is based on converting questions to
(uninterpretable) embeddings which require no pre-defined
grammars or lexicons and can query any KB independent of its
schema.

— He focuses on answering simple factual questions on a broad
range of topics, more specifically, those for which single KB
triples stand for both the question and an answer.

o automatically generating questions from KB triples and
treating this as training data

* Supplementing this with a data set of question collaboratively
marked as paraphrases but with no associated answers.
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Applications

Patterns for generating questions from ReVerb triples

KB Triple|Question Pattern|| KB Triple |[Question Pattern

(7, r, &) |(whore? (7, r, &) |whatisesr?
(7, r, &) |what re ¥ (e, r, 7) |whoisrbye?
(e, r, 7) |who does e r ¥ (e, r-in, ?)|when did e r ¥
(e, r, 7) |what does e v ¥ (e, r-on, 7)|when did e r ¥

(?, r, e) |what is the rof e 7||(e, r-in, ?)|when was e r ¥
(?, r, e) |whois the rofe ¥ ||[(e, r-on, 7)|when was e r ¥
(e, r, 7) |whatisrbye? (e, r-in, 7?)|where waser ¥

(7, r, &) |(whoisesr ¥ (e, r-in, ?)|where did e v ¥

AHLT Deep Learning 3 13




Applications

o QA
— Embedding Reverb

— The model ends up learning embeddings of symbols, either for
entities or relationships from ReVerb, or for each word of the
vocabulary. The embeddings are used for scoring the similarities of
a question g and a triple t, i.e. learning the function S(qg,t).

— It consists of projecting questions, treated as a bag of words (and
possibly n-grams as well), on the one hand, and triples on the other
hand, into a shared embedding space and then computing a
similarity measure (as the dot product) between both projections.
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Applications

¢ QA
— Scoring function: S(qg, t) = f(q)"g(t)

« f(-) a function mapping words from questions into RX, f(q) =
VTi®P(q).

 V is the matrix of R"v*k containing all word embeddings v that
will be learned,.

o ®(q) is the (sparse) binary representation of q (€ {0, 1}")
Indicating absence or presence of words.

« Similarly, g(-) is a function mapping entities and relationships
from KB triples into R, g(t) = WTW(t).
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Applications

o QA
— Scoring function: S(qg, t) = f(q)"g(t)
« W is the matrix of R"¢*k containing all entity and relationship
embeddings w, that will also be learned.
o Y(1) is the (sparse) binary representation of t (€ {0, 1}"¢)
Indicating absence or presence of entities and relationships.

* An entity does not have the same embedding when appearing
In the left-hand or in the right-hand side of a triple.

t(g) = argmax S(q,t") = arg max ( f(g) Tguli"]].
‘ = - ek
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Applications

 RAE for paraphrase detection

— From Socher et al, 2011

— RAE learns feature representations for each node in the tree such that
the word vectors underneath each node can be recursively
reconstructed.

— These feature representations are used to compute a similarity matrix
that compares both the single words as well as all nonterminal node
features in both sentences.

— In order to keep as much of the resulting global information of this
comparison as possible and deal with the arbitrary length of the two
sentences, a new dynamic pooling layer which outputs a fixed-size
representation. Any classifier such as a softmax classifier can then be
used to classify whether the two sentences are paraphrases or not.
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Applications

Paraphrase detection with RAE

Recursive Autoencoder Dynamic Pooling and Classification
Janaw
/\ Paraphrase Softmax Classifier
A

6 S@se® - |
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— — e |
\—___ >*T234567 |Variable-Sized Similarity Matrix
-
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Applications

Paraphrase detection with RAE

Recursive Autoencoder Unfolding Recursive Autoencoder
@ooo X' @goo Y @oom X' @©oooX,' Goo® X3!
W / W, WdE’.
___Gssoyy
Ol 0l
W, G Vi

W,

@eewXy @)X, (Be00)X;
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Applications

Paraphrase detection with RAE

Representing a sentence as an ordered list of these vectors (X4, ..., Xq)
This word representation is better suited for RAEs than the binary

number
representations used in previous related models.

Atree is given for each sentence by a parser.
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Applications

Paraphrase detection with RAE

The binary parse tree for this input is in the form of branching
triplets of parents with children: (p — c,c,).

Each child can be either an input word vector x; or a nonterminal
node in the tree.

For both examples in last slide, we have the following triplets:
((y1 = XoX3), (Y2 = X1Y1)), VX, y € R
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Applications

Paraphrase detection with RAE

Compute the parent representations.

p =Y, Is computed from the children (c,, C,) = (X,, X3) by one standard
neural network layer: p = f(W,[c,; c,] + b),

where [c,; C,] is simply the concatenation of the two children,

f an element-wise activation function and W, € R"™?" (the encoding
matrix).

how well this n-dimensional vector represents its direct children?
decode their vectors in a reconstruction layer and then compute the
Euclidean distance between the original input and its reconstruction.
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Applications

Parsing using Matrix

Parsing Natural Scene Images
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Parsing using Matrix
Vector RNN,
Socher et al, 2011

Applications

Recursive Matrix-Vector Model
e % (80 - vector
f(Ba, Ab)l=G% |
(Ba, Ab) ©91- matrix
Ba=@a Ab=G®
oo o0 \
(i og
T, @a G13)
very good movie
(a,A) (b,B) c,C)
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AHLT Deep Learning 3 24




An example of using CNN
for sentence classification

Zhang and
Wallace, 2015

+ activation function

convolution

A

\

Tx5

like
this
movie

very
much

3 region sizes: (2,3,4)
Sentence matrix 2

filters for each region
size
totally 6 filters

2 feature
maps for
each
region size

1-max
\ pooling regularization
{‘ in this layer

]

1

6 univariate
vectors
concatenated
together to form a
single feature
vector

softmax function J

| 2 classi



Neural-image QA (Malinowski et al. 2015)

| L | | | |
! fl T ] J

[LSTM |+ LSTM o] L5TM --lLETI'I.I'I-i-LETMI--LETM LSTM || LsTM
b bk ey e
PSP N I SO S - [=d
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Applications

more examples of
sentence classification

Aleksandr Kimashev, 2017,

sequence of one-hot vectors sequence of Te—hnt vectors sequence of Te—hntvectﬂrs
LSTM (50} 1D Convolution; 16 filters; filter size 3 1D Convolution; 16 filters: filter siz
sigmoid (1) max pooling layer; size 2 max pooling layer; size 2
v Y Y
classes LSTM (50) LSTM (100)
sigmoid (1) sigmoid (1)
classes classes

AHLT Deep Learning 3 27



Aleksandr Kimashev, 2017,

sequence of one-hot vectors

Applications

sequence of one-hot vectors

sequence of ::Ile-hutvectﬂrs

+ .
LSTM (200) LSTM (500) 1D Convolution; 64 filters; filter size 3
sigmoid (1) sigmoid (1) max pooling layer; size 2
v v , Y
classes classes Flatten (concatenate a_II output vectors
to one)
RelLU (64)
RelLU (32)
sigmoid (1)

v

classes




Applications

Aleksandr Kimashev, 2017,

sequence of one-hot vectors sequence of one-hot vectors sequence of one-hot vectors

| GRU (10) GRU (10) GRU (10)

sigmoid (3) GRU (10) GRU (10)
classes ' l

' id (3

best accurauy 0.6608 sigmoid (3) GRU(I0)

classes l
best accurauy 0.8288 sigmoid (3)
classes

best accurauy 0.6259
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sequence of one-hot vectors

v

GRU (10)

RelLU (64)

Y
RelU (32)

l

sigmoid (3)

v

classes

best accurauy 0.8186

Applications

sequence of one-hot vectors

v

sequence of one-hot vectors

v

GRU (10)

GRU (10)

!

!

GRU (10)

GRU (10)

!

RelLU (64)

!

RelU (32)

!

sigmoid (3)

v

classes
best accurauy 0.826

!

GRU (10)

L

ReLU (64)

sigmoid (3)

v

classes

best accurauy 0.8243



Applications

Aleksandr Kimashev, 2017,

sequenca of one-hot vectors

| !

— f one-hotvectors
sHquancen TE phuscrs batch normalization batch normalization
GRU [10) l L
+ GRU [80) dropout0.2 backward GRU (80) dropout 0.2
GRU (10 — ¥ ¥
GRU (80) dropout 0.2 GRU (80) dropout 0.2
= backward GRU (1D) | # |
# merge (summation )
GRU (10} L
l RelLl (G4)dropout 0.3 ‘
merge [summation) g l
batch normalizaton
ReLU (G4}
v ReLU (32) diopout 0.3 ‘
RelLU (G4} .L
l ‘ batch normalizaton
sigmoid (3) ‘
'L sigmoid (3}
classes
pestaccurauy 08278 vL

Classes
bestaccurauy 0.3474




Applications

Aleksandr Kimashev, 2017,

seguence of one-hot vectors

¥ hd Y 4
convalution, 64 filars, with filter gize 2 caonvolution, 64 fitters, with filter size 3 corvalution, B4 filters, with filter size 4 convalufion, 64 filtars, with fillergize 5
max pooling size 2 max poaling size 2 max pooling size 2 max pooling size 2

L

merge (concatenation)

l

Rel U (16)

’

Rall (16)

sigmuoid (3}

v

tlasses
best accurauy 0342
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Conclusions

« Embeddings
— Good for words, LM, MT, Sum

 Billion of words for learning models

* Unsupervised learning from domain specific corpora

* Probably better than LSI; LDA, ...

« Combining unsupervised learning with task-dependent supervised layers

— Not so good for composition of words into more complex units

« Convolution and pooling seem to be rather naive approaches for dealing with
word order and relevance.

« Socher’s approaches seem to go in the good direction
— Including additional information beyond words: pos, parse, synsets, ...

— Nice to embed KB
» Freebase, dbpedia, BioPortal, ...
» Other rdf (why not owl) modeled KB
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Conclusions

NN models

— Many new models
— Many forms of combination

Stacking

Bidirectional

Attention-based

Memory-based

Combining task-specific models for NN architectures

— Combination with other approaches:

Reinforcement learning
Building NN from complex kernels (sequence, tree, graph)
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Conclusions

 Deep Learning
— Good Results in many NLP tasks
— Need of big datasets for training

— Good learning capabillities
* Big models
» Efficient use of computer resources, GPU, ...

— Difficult to interpret
* Magic, miracle ???
» Can we get conclusions from a successful model ??

— Greedy learning of layers is ok??

— How many layers ??

— How many neurons in each layer ??

— How about not NN-based models (deep graphical models, ...) ??

AHLT Deep Learning 3 36



	Deep Learning in NLP�
	Outline
	Applications
	Applications
	Applications
	Applications
	Applications
	Applications
	Applications
	Applications
	Applications
	Applications
	Applications
	Applications
	Applications
	Applications
	Applications
	Applications
	Applications
	Applications
	Applications
	Applications
	Applications
	Applications
	Applications
	Número de diapositiva 26
	Applications
	Applications
	Applications
	Applications
	Applications
	Applications
	Outline
	Conclusions
	Conclusions
	Conclusions

