
AHLT Deep Learning 2 1

Deep Learning in NLP

Horacio Rodríguez

AHLT Deep Learning 2 2

Outline

• Introduction
• Short review of Distributional Semantics, Semantic spaces, VSM, …
• Embeddings

– Embedding of words
– Embedding of more complex units

• Simple Linear Models
• Neural Networks models for NLP
• Applications
• Conclusions

AHLT Deep Learning 2 3

From linear models to NN

classifier

linear classifier

neural layer = affine transform + nonlinearity

AHLT Deep Learning 2 4

From linear models to NN
The scheme of a neuron's operation, input data (input) is multiplied by weights (W),
summed, added bias (b) and the result is sent to the input of some activation function

AHLT Deep Learning 2 5

From linear models to NN

Common nonlinearities

AHLT Deep Learning 2 6

From linear models to NN

Common nonlinearities

AHLT Deep Learning 2 7

From linear models to NN

Common nonlinearities

AHLT Deep Learning 2 8

NN models for NLP
• Loss Functions (for training the model)

– Hinge (binary)

– Hinge (multiclass)

– Log loss

– Categorical cross-entropy loss

– Ranking losses

AHLT Deep Learning 2 9

NN models for NLP
• Output transformations

– SoftMax (most popular for classification)

AHLT Deep Learning 2 10

NN models for NLP
• Learning

AHLT Deep Learning 2 11

NN models for NLP
• Learning

– SGD is the most popular training algorithm
– But there are others:

• Stochastic gradient descent with momentum remembers the update
weights at each iteration, and determines the next update as a
convex combination of the gradient and the previous update

• Nesterov accelerated gradient (Nesterov Momentum)
• Adagrad
• RMSProp and Adadelta
• Adam - adaptive moment estimation
• Adamax
• Resilient propagation (Rprop)

AHLT Deep Learning 2 12

NN models

• Software
– Scikit-learn is not enough
– Several Python-based model libraries
– Low level: Theano, CNN, pyCNN
– Midle level: TensorFlow, Chainer, Torch
– High leval: Keras, PENNE, Lasagne, pyLearn2, Caffe

AHLT Deep Learning 2 13

Logistic regression with Keras
import keras
print keras.__version__
from keras import models
from keras import layers
from keras.models import Input, Model
from keras.layers import Dense, Dropout

def buildKerasLogRegModel(parameters, x_train, y_train, x_test, y_test, epochs):
inputs = Input(shape=(parameters['numFeatures'],))
output = Dense(1, activation='sigmoid')(inputs)
kerasLogRegModel = Model(inputs, output)
kerasLogRegModel.compile(optimizer='sgd',

loss = 'binary_crossentropy', metrics=['accuracy'])
kerasLogRegModel.optimizer.lr = 0.001
kerasLogRegModel.fit(x=x_train, y=y_train, epochs = epochs,

validation_data = (x_test, y_test),verbose=0)
return kerasLogRegModel

AHLT Deep Learning 2 14

Logistic regression with Keras

def predKerasLogRegModel(kerasLogRegModel, x_test, y_test):
y_pred = kerasLogRegModel.predict(x_test)
return y_pred > 0.5

kerasSimpleFNNModel = buildKerasLogRegModel(
parameters, x_train, y_train, x_test, y_test, epochs)

y_pred = predKerasSimpleFNNModel(
kerasSimpleFNNModel, x_test, y_test)

p, r, f1, a, m = evaluateClassifier(y_pred, y_test)

AHLT Deep Learning 2 15

NN models for NLP

• Feed-forward neural Networks (FFNM)
• Convolutional NN (CNN)
• Recurrent NN (RNN)
• Autoencoders
• Recursive NN (RecNN)
• Gated models

– Long Short Time Models (LSTM)
– Gated Recurrent Units (GRU)

AHLT Deep Learning 2 16

NN models for NLP

• Feed-forward neural Networks (FFNM)
• Convolutional NN (CNN)
• Recurrent NN (RNN)
• Autoencoders
• Recursive NN (RecNN)
• Gated models

– Long Short Time Models (LSTM)
– Gated Recurrent Units (GRU)

• Attention-based models

AHLT Deep Learning 2 17

FFNN

• feed-forward neural Network (FFNN)
– general structure for an NLP classification system

• 1 Extract a set of core linguistic features f1, …, fk
that are relevant for predicting the output class.

• 2. For each feature fi of interest, retrieve the
corresponding vector v(fi).

• 3. Combine the vectors (either by concatenation,
summation or a combination of both into an input
vector x.

• 4. Feed x into a non-linear classifier (feed-forward
neural network).

AHLT Deep Learning 2 18

FFNN
• Feed-forward neural Network

– Simple Perceptron

– 1-layer Multi Layer Perceptron (MLP1)

AHLT Deep Learning 2 19

FFNN

• Simple Feed Forward NN
– Example of neuron feed-forward fully connected network with

one hidden layer

AHLT Deep Learning 2 20

FFNN

• Simple Feed Forward NN
– Example of neuron feed-forward fully connected network with

one hidden layer

AHLT Deep Learning 2 21

FFNN
• Feed-forward neural Network

– 2-layer Multi Layer Perceptron (MLP2)

AHLT Deep Learning 2 22

2 hidden layers FFNN

AHLT Deep Learning 2 23

FFNN with Keras

def buildKerasDeepFNNModel(parameters, x_train, y_train, x_test, y_test, epochs, numLayers):
inputs = Input(shape=(parameters['numFeatures'],))
X = Dense(parameters['numFeatures']/10, activation='relu')(inputs)
X = Dropout(0.4)(X)
for layer in range(numLayers -1):

X = Dense(parameters['numFeatures']/20, activation='relu')(inputs)
X = Dropout(0.3)(X)

output = Dense(1, activation='sigmoid')(X)
kerasDeepFNNModel = Model(inputs, output)
kerasDeepFNNModel.compile(

optimizer='adam', loss = 'binary_crossentropy', metrics=['accuracy'])
kerasDeepFNNModel.fit(

x=x_train, y=y_train, epochs = epochs,
validation_data = (x_test, y_test),verbose=0)

return kerasDeepFNNModel

AHLT Deep Learning 2 24

NN models for NLP
• Sparse vs. dense feature representations.

– Two encodings of the information:
• current word is \dog"; previous word is \the"; previous pos-tag

is \DET".
• (a) Sparse feature vector. Each dimension represents a

feature. Feature combinations receive their own dimensions.
Feature values are binary. Dimensionality is very high.

• (b) Dense, embeddings-based feature vector. Each core
feature is represented as a vector. Each feature corresponds
to several input vector entries. No explicit encoding of feature
combinations. Dimensionality is low. The feature-to-vector
mappings come from an embedding table.

AHLT Deep Learning 2 25

NN models for NLP
• Sparse vs. dense feature representations.

AHLT Deep Learning 2 26

NN models for NLP
• Encoders

– a function to represent a word sequence as a vector
• Simplest: average word embeddings:

AHLT Deep Learning 2 27

NN models for NLP
• Embedding Layers

– c(.) is a function from core features to an input vector.
– It is common for c to extract the embedding vector associated

with each feature, and concatenate them

AHLT Deep Learning 2 28

NN models for NLP
• Embedding Layers

– Another common choice for c is to sum the embedding vectors
(this assumes the embedding vectors all share the same
dimensionality)

AHLT Deep Learning 2 29

NN models for NLP
• Embedding Layers

– Sometimes embeddings v(fi) result from an “embedding layer" or
“lookup layer". Consider a vocabulary of |V| words, each
embedded as a d dimensional vector. The collection of vectors
can then be thought of as a |V| x d embedding matrix E in which
each row corresponds to an embedded feature.

AHLT Deep Learning 2 30

NN models for NLP

• Feed-forward neural Networks (FFNM)
• Convolutional NN (CNN)
• Recurrent NN (RNN)
• Autoencoders
• Recursive NN (RecNN)
• Gated models

– Long Short Time Models (LSTM)
– Gated Recurrent Units (GRU)

• Attention-based models

AHLT Deep Learning 2 31

CNN
• Basic Convolution & Pooling

– Predictions based on ordered sets of items (e.g. the sequence
of words in a sentence, the sequence of sentences in a
document and so on).

– Apply a non-linear (learned) function over each instantiation of
a k-word sliding window over the sentence. This function (also
called filter) transforms a window of k words into a d
dimensional vector that captures important properties of the
words.

– A CNN is designed to identify indicative local predictors in a
large structure, and combine them to produce a fixed size
vector representation of the structure, capturing these local
aspects that are most informative for the prediction task at
hand.

AHLT Deep Learning 2 32

CNN
• Convolutional NN

– Srihari proposes Three Mechanisms of Convolutional Neural
Networks

• Local Receptive Fields
• Subsampling
• Weight Sharing

– Instead of treating input to a fully connected network two layers
are used:

• Layer of convolution
• Layer of subsampling (pooling)

AHLT Deep Learning 2 33

CNN
• Convolution

– Input f(t) is convolved with a kernel g(t), sometimes named filter

– Express each function in terms of a dummy variable τ
– Reflex g: g(τ) → g(-τ)
– Add an offset t for allow g to slide along τ axis.
– Integrate the product of f and g

AHLT Deep Learning 2 34

CNN
• Convolution

AHLT Deep Learning 2 35

CNN
• Convolution

– The feature map is the output of one filter applied to
the previous layer. A given filter is drawn across the
entire previous layer, moved one token at a time. Each
position results in an activation of the neuron and the
output is collected in the feature map.

AHLT Deep Learning 2 36

CNN
• Convolution in 2D

AHLT Deep Learning 2 37

CNN
• Convolution in 1D

– 2-gram model

AHLT Deep Learning 2 38

CNN
• Convolution in 1D

– Narrow and wide types of convolution.
– The filter m has size m = 5.

AHLT Deep Learning 2 39

CNN
• Pooling

– pooling layers
– Typically applied after the convolutional layers.
– A pooling function replaces the output of the net at a

certain location with a summary statistic of the nearby
inputs

– Pooling layers subsample their input
– Example: max pooling
– Several feature maps and sub-sampling

• Gradual reduction of spatial resolution compensated by
increasing no. of features

AHLT Deep Learning 2 40

CNN
• Pooling

– pooling functions:
• Max

• Average of a rectangular neighborhood
• L2 norm of a rectangular neighborhood
• Weighted average based on the distance from the central pixel
• k-max pooling

AHLT Deep Learning 2 41

CNN
• Basic Convolution & Pooling

– sequence of words x = x1, …, xn

– A 1d convolution layer of width k works by moving a
sliding window of size k over the sentence

– applying the same filter to each window in the
sequence (v(xi), v(xi+1), …. v(xi+k-1))

– The result of the convolution layer is m vectors
– P1, …. pm, pi ∈ ℝdconv where:

AHLT Deep Learning 2 42

CNN
• Basic Convolution & Pooling

– The m vectors are then combined using a max
pooling layer, resulting in a single dconv dimensional
vector c.

– we can split the vectors pi into distinct groups, apply
the pooling separately on each group, and then
concatenate the resulting dconv vectors.

AHLT Deep Learning 2 43

CNN
• Pooling

– 2 layer convolution & pooling:

AHLT Deep Learning 2 44

CNN
• Basic Convolution & Pooling

AHLT Deep Learning 2 45

CNN with Keras
from keras.models import Input, Model, Sequential
from keras.optimizers import RMSprop

In Keras, you would use a 1D convnet via the Conv1D layer.
There exist also, Conv2D and Conv3D.
It takes as input 3D tensors with shape (samples, time, features)
It returns similarly-shaped 3D tensors.
The convolution window is a 1D window on the temporal axis, axis 1 in the input tensor.

AHLT Deep Learning 2 46

CNN with Keras
def buildKerasConv1Model(parameters, x_train, y_train, x_test, y_test, epochs):

global history
input_shape = (x_train.shape[1],x_train.shape[2])
model = Sequential()
model.add(layers.Conv1D(32, 7, activation='relu', input_shape = input_shape))
model.add(layers.MaxPooling1D(5))
model.add(layers.Conv1D(32, 7, activation='relu'))
model.add(layers.GlobalMaxPooling1D())
model.add(layers.Dense(1))
model.summary()
model.compile(optimizer=RMSprop(lr=1e-4),loss='binary_crossentropy', metrics=['acc'])
history = model.fit(x_train, y_train, epochs=epochs, batch_size=128, validation_split=0.2)
return model

History allows a further analysis of the process for adjusting metaparameters

AHLT Deep Learning 2 47

CNN with Keras
def buildKerasConv1Model(parameters, x_train, y_train, x_test, y_test, epochs):

global history
input_shape = (x_train.shape[1],x_train.shape[2])
model = Sequential()
model.add(layers.Conv1D(32, 7, activation='relu', input_shape = input_shape))
model.add(layers.MaxPooling1D(5))
model.add(layers.Conv1D(32, 7, activation='relu'))
model.add(layers.GlobalMaxPooling1D())
model.add(layers.Dense(1))
model.summary()
model.compile(optimizer=RMSprop(lr=1e-4),loss='binary_crossentropy', metrics=['acc'])
history = model.fit(x_train, y_train, epochs=epochs, batch_size=128, validation_split=0.2)
return model

Input_shape consists of the number of vectors and their dimensión
The input shape is one of the parameters of the first conv1 layer

Sequential model is just a sequence of layers
that have to be added to the model

AHLT Deep Learning 2 48

CNN with Keras
def buildKerasConv1Model(parameters, x_train, y_train, x_test, y_test, epochs):

global history
input_shape = (x_train.shape[1],x_train.shape[2])
model = Sequential()
model.add(layers.Conv1D(32, 7, activation='relu', input_shape = input_shape))
model.add(layers.MaxPooling1D(5))
model.add(layers.Conv1D(32, 7, activation='relu'))
model.add(layers.GlobalMaxPooling1D())
model.add(layers.Dense(1))
model.summary()
model.compile(optimizer=RMSprop(lr=1e-4),loss='binary_crossentropy', metrics=['acc'])
history = model.fit(x_train, y_train, epochs=epochs, batch_size=128, validation_split=0.2)
return model

The model consists of two convolutional layers followed each by a
MaxPooling layer.

eventually ending in either a global pooling layer or a Flatten layer, turning the 3D
outputs into 2D outputs, allowing to add one or more Dense layers to the model,
for classification or regression.

AHLT Deep Learning 2 49

CNN with Keras
def buildKerasConv1Model(parameters, x_train, y_train, x_test, y_test, epochs):

global history
input_shape = (x_train.shape[1],x_train.shape[2])
model = Sequential()
model.add(layers.Conv1D(32, 7, activation='relu', input_shape = input_shape))
model.add(layers.MaxPooling1D(5))
model.add(layers.Conv1D(32, 7, activation='relu'))
model.add(layers.GlobalMaxPooling1D())
model.add(layers.Dense(1))
model.summary()
model.compile(optimizer=RMSprop(lr=1e-4),loss='binary_crossentropy', metrics=['acc'])
history = model.fit(x_train, y_train, epochs=epochs, batch_size=128, validation_split=0.2)
return model

The model is summarized, compiled and learned (fit)

AHLT Deep Learning 2 50

CNN with Keras

Layer (type) Output Shape Param #
===
conv1d_1 (Conv1D) (None, 74, 32) 448704

max_pooling1d_1 (MaxPooling1 (None, 14, 32) 0

conv1d_2 (Conv1D) (None, 8, 32) 7200

global_max_pooling1d_1 (Glob (None, 32) 0

dense_1 (Dense) (None, 1) 33
===
Total params: 455,937
Trainable params: 455,937
Non-trainable params: 0

AHLT Deep Learning 2 51

CNN with Keras

Train on 5760 samples, validate on 1440 samples
Epoch 1/10 142s - loss: 0.9316 - acc: 0.6250 - val_loss: 0.7563 - val_acc: 0.6368
Epoch 2/10 91s - loss: 0.6910 - acc: 0.6250 - val_loss: 0.6820 - val_acc: 0.6174
Epoch 3/10 98s - loss: 0.6467 - acc: 0.6337 - val_loss: 0.6636 - val_acc: 0.6139
Epoch 4/10 89s - loss: 0.6291 - acc: 0.6432 - val_loss: 0.6575 - val_acc: 0.6229
Epoch 5/10 92s - loss: 0.6168 - acc: 0.6556 - val_loss: 0.6781 - val_acc: 0.6382
Epoch 6/10 89s - loss: 0.6077 - acc: 0.6623 - val_loss: 0.6800 - val_acc: 0.6278
Epoch 7/10 94s - loss: 0.5997 - acc: 0.6635 - val_loss: 0.6792 - val_acc: 0.6417
Epoch 8/10 93s - loss: 0.5926 - acc: 0.6679 - val_loss: 0.6984 - val_acc: 0.6306
Epoch 9/10 94s - loss: 0.5872 - acc: 0.6734 - val_loss: 0.7079 - val_acc: 0.6292
Epoch 10/10 97s - loss: 0.5811 - acc: 0.6750 - val_loss: 0.7100 - val_acc: 0.6326

Extending to 20 epochs

92s - loss: 0.5551 - acc: 0.6898 - val_loss: 0.8395 - val_acc: 0.6312

AHLT Deep Learning 2 52

CNN with Keras

Clear C
Clear
overfitting

AHLT Deep Learning 2 53

NN models for NLP

• Feed-forward neural Networks (FFNM)
• Convolutional NN (CNN)
• Recurrent NN (RNN)
• Autoencoders
• Recursive NN (RecNN)
• Gated models

– Long Short Time Models (LSTM)
– Gated Recurrent Units (GRU)

• Attention-based models

AHLT Deep Learning 2 54

RNN models
• Recurrent NN (RNN)

– representing arbitrarily sized structured inputs (e.g.sentences) in
a fixed-size vector, while paying attention to the structured
properties of the input.

– The hidden layer activations are computed by iterating the
following equations from t = 1 to T and from n = 2 to N:

AHLT Deep Learning 2 55

RNN models

AHLT Deep Learning 2 56

RNN models
• Stacked RNN

– It is sometimes useful to stack several recurrent layers one after
the other in order to increase the representational power of a
network. In such a setup, you have to get all intermediate layers
to return full sequences.

AHLT Deep Learning 2 57

RNN

𝑊𝑊ℎ1ℎ1

𝑊𝑊𝑖𝑖ℎ1

𝑊𝑊𝑖𝑖ℎ3

𝑊𝑊ℎ2ℎ2

𝑊𝑊ℎ3ℎ3

𝑊𝑊ℎ3𝑦𝑦

𝑊𝑊𝑖𝑖ℎ2
𝑊𝑊ℎ1ℎ2

AHLT Deep Learning 2 58

RNN models
• Recurrent NN (RNN)

– An input vector sequence x = (x1, …, xT) is passed through
weighted connections to a stack of N recurrently connected
hidden layers to compute first the hidden vector sequences hn =
(hn

1, …, hn
T) and then the output vector sequence y = (y1, …,

yT). Each output vector yt is used to parameterise a predictive
distribution Pr(xt+1|yt) over the possible next inputs xt+1. The first
element x1 of every input sequence is always a null vector
whose entries are all zero; the network therefore emits a
prediction for x2, the first real input, with no prior information.
The network is `deep' in both space and time, in the sense that
every piece of information passing either vertically or
horizontally through the computation graph will be acted on by
multiple successive weight matrices and nonlinearities.

AHLT Deep Learning 2 59

RNN models
• Recurrent NN (RNN)

AHLT Deep Learning 2 60

RNN models
• Simple RNN architecture

– The state at position i is a linear combination of the
input at position i and the previous state, passed
through a non-linear activation (commonly tanh or
ReLU). The output at position i is the same as the
hidden state in that position.

AHLT Deep Learning 2 61

RNN models
• Recurrent NN (RNN)

Same parameterization

RNN models

AHLT Deep Learning 2 62

RNN language models

Without W bigram NN LM
s(t) = f(Uw(t) + Ws(t-1))
f sigmoid or tanh
y(t) = g(Vs(t))
g SoftMax

∼10K-200K

∼50-1000

RNN models

AHLT Deep Learning 2 63

Factorization of the output layer,
c(t) is the class layer.
Assignment word to class

AHLT Deep Learning 2 64

RNN models
• Multi-layer (stacked) RNNs

AHLT Deep Learning 2 65

RNN models
• bidirectional-RNN (BI-RNN)

– Much like the RNN relaxes the Markov assumption
and allows looking arbitrarily back into the past, the BI-
RNN relaxes the fixed window size assumption,
allowing to look arbitrarily far at both the past and the
future.

– Two separate states, 𝑠𝑠𝑖𝑖
𝑓𝑓 and 𝑠𝑠𝑖𝑖𝑏𝑏 for each input position

i. The forward state 𝑠𝑠𝑖𝑖
𝑓𝑓 is based on x1, x2, …, xi, while

the backward state 𝑠𝑠𝑖𝑖𝑏𝑏 is based on xn, xn-1, …, xi.

AHLT Deep Learning 2 66

RNN models
• bidirectional-RNN (BI-RNN)

AHLT Deep Learning 2 67

RNN with Keras
from keras.layers import SimpleRNN
from keras.layers import Activation
from keras import initializers

SimpleRNN processes batches of sequences, like all other Keras layers, not just a single
sequence. This means that it takes inputs of shape (batch_size, timesteps, input_features),
rather than (timesteps, input_features).
SimpleRNN can be run in two different modes: it can return either the full sequences of
successive outputs for each timestep (a 3D tensor of shape (batch_size, timesteps,
output_features)), or it can return only the last output for each input sequence (a 2D tensor
of shape (batch_size, output_features)). These two modes are controlled by the
return_sequences constructor argument.

AHLT Deep Learning 2 68

RNN with Keras

def buildKerasSimpleRNNModel(parameters, x_train, y_train, x_test, y_test, epochs):
global history
input_shape = (x_train.shape[1],x_train.shape[2]); print 'input_shape', input_shape
hidden_units = 100; learning_rate = 1e-6
model = Sequential()
model.add(SimpleRNN(hidden_units, input_shape=input_shape,

kernel_initializer=initializers.RandomNormal(stddev=0.001),
recurrent_initializer=initializers.Identity(gain=1.0), activation='relu',))

model.add(Dense(1))
model.add(Activation('softmax')); rmsprop = RMSprop(lr=learning_rate)
model.summary()
model.compile(loss='binary_crossentropy', optimizer=rmsprop, metrics=['accuracy'])
history = model.fit(x_train, y_train, batch_size=32,

epochs=epochs, verbose=2, validation_data=(x_test, y_test))
return model

Dimensionality of the output space

Number of samples per gradient update

One line per epoch

AHLT Deep Learning 2 69

RNN with Keras
def buildKerasSimpleRNNModel(parameters, x_train, y_train, x_test, y_test, epochs):

global history
input_shape = (x_train.shape[1],x_train.shape[2]); print 'input_shape', input_shape
hidden_units = 100; learning_rate = 1e-6
model = Sequential()
model.add(SimpleRNN(hidden_units, input_shape=input_shape,

kernel_initializer=initializers.RandomNormal(stddev=0.001),
recurrent_initializer=initializers.Identity(gain=1.0), activation='relu',))

model.add(Dense(1))
model.add(Activation('softmax')); rmsprop = RMSprop(lr=learning_rate)
model.summary()
model.compile(loss='binary_crossentropy', optimizer=rmsprop, metrics=['accuracy'])
history = model.fit(x_train, y_train, batch_size=32,

epochs=epochs, verbose=2, validation_data=(x_test, y_test))
return model

Initializer for the kernel
weight matrix

Initializer for the recurrent_kernel
weight matrix

Optimizers: Adam, RMSprop, Nadam,
Adadelta, SGD, Adagrad, Adamax

List of metrics to be
evaluated during training
and testing

AHLT Deep Learning 2 70

NN models for NLP

• Feed-forward neural Networks (FFNM)
• Convolutional NN (CNN)
• Recurrent NN (RNN)
• Autoencoders
• Recursive NN (RecNN)
• Gated models

– Long Short Time Models (LSTM)
– Gated Recurrent Units (GRU)

• Attention-based models

AHLT Deep Learning 2 71

Autoencoders
– An autoencoder takes an input x ∈ [0,1]d and first maps it (with an encoder)

to a hidden representation y ∈ [0,1]d’ through a deterministic mapping, e.g.:
y = σ(Wx + b)

– Where σ is a non-linearity such as the sigmoid. The latent representation y,
or code, is then mapped back (with a decoder) into a reconstruction z of the
same shape as x. The mapping happens through a similar transformation,
e.g.: z = σ(W’y + b’)

– Optionally, the weight matrix W’ of the reverse mapping may be constrained
to be the transpose of the forward mapping: W’ = WT. This is referred to as
tied weights.

– The parameters W, b, W’, b’ are optimized such that the average
reconstruction error is minimized.

– The reconstruction error can be measured in many ways, depending on the
appropriate distributional assumptions on the input given the code (squared
error, cross-entropy, …).

AHLT Deep Learning 2 72

Autoencoders

y = tanh(Wx+b)

x‘ = tanh(WTy+b’)

Cost of reconstruction
= ||x’ – x||2

AHLT Deep Learning 2 73

Autoencoders

• Denoising Autoencoders (dAE)
– The dAE is a stochastic version of the auto-encoder.
– The idea behind dAE is simple. In order to force the hidden layer to discover

more robust features and prevent it from simply learning the identity, we train
the autoencoder to reconstruct the input from a corrupted version of it.

– Intuitively, a dAE does two things: try to encode the input (preserve the
information about the input), and try to undo the effect of a corruption
process stochastically applied to the input of the auto-encoder. The latter
can only be done by capturing the statistical dependencies between the
inputs.

– the stochastic corruption process randomly sets some of the inputs (as
many as half of them) to zero. Hence the denoising auto-encoder is trying
to predict the corrupted (i.e. missing) values from the uncorrupted (i.e., non-
missing) values, for randomly selected subsets of missing patterns.

AHLT Deep Learning 2 74

Autoencoders

• Recursive Autoencoders (RAE)
– Combines RecNN with dAE
– From Socher et al, 2011, used for paraphrase detection (see later)
– A RAE is a multilayer recursive neural network with input = output
– It learns feature representations for each node in the tree such that the

word vectors underneath each node can be recursively reconstructed.
– Reconstruction = decoder(encoder(input))

AHLT Deep Learning 2 75

Recursive Autoencoders

• Stacking RAE
– RAE can be stacked to form highly non-linear representations

AHLT Deep Learning 2 76

Recursive Autoencoders

AHLT Deep Learning 2 77

Autoencoders

• Variational Autoencoders (VAE)
– augment autoencoders with a little bit of statistics that forces them to

learn continuous, highly structured latent spaces.
– A VAE, instead of compressing x into a fixed code in the latent space,

turns it into the parameters of a statistical distribution: a mean and a
variance. Essentially, this means that we are assuming that x has been
generated by a statistical process, and that the randomness of this
process should be taken into accounting during encoding and decoding.
The VAE then uses the mean and variance parameters to randomly
sample one element of the distribution, and decodes that element back
to the original input. The stochasticity of this process improves
robustness and forces the latent space to encode meaningful
representations everywhere, i.e. every point sampled in the latent will be
decoded to a valid output.

AHLT Deep Learning 2 78

Autoencoders

• Variational Autoencoders (VAE)
– First, an encoder module turns the input samples x into two parameters

in a latent space of representations, which we will note z_mean and
z_log_variance. Then, we randomly sample a point z from the latent
normal distribution that is assumed to generate the input image, via z =
z_mean + exp(z_log_variance) * epsilon. where epsilon is a random
tensor of small values. Finally, a decoder module will map this point in
the latent space back to the original input.

– The parameters of a VAE are trained via two loss functions: first, a
reconstruction loss that forces the decoded samples to match the initial
inputs, and a regularization loss, which helps in learning well-formed
latent spaces and reducing overfitting to the training data.

AHLT Deep Learning 2 79

NN models for NLP

• Feed-forward neural Networks (FFNM)
• Convolutional NN (CNN)
• Recurrent NN (RNN)
• Autoencoders
• Recursive NN (RecNN)
• Gated models

– Long Short Time Models (LSTM)
– Gated Recurrent Units (GRU)

• Attention-based models

AHLT Deep Learning 2 80

RecNN
• Recursive Neural Networks

– See Goldberg 2016
– The RNN is very useful for modeling sequences. In language

processing, it is often natural and desirable to work with tree
structures.

– The trees can be syntactic trees, discourse trees, or even trees
representing the sentiment expressed by various parts of a
sentence.

– RecNN are a generalization of the RNN from sequences to (binary)
trees.

– Much like the RNN encodes each sentence prefix as a state vector,
the RecNN encodes each tree-node as a state vector in Rd.

AHLT Deep Learning 2 81

RecNN

AHLT Deep Learning 2 82

RecNN

• Recursive Neural Networks for NLP
– first, run a constituent parser on the sentence
– convert the constituent tree to a binary tree
– construct vector for sentence recursively at each rewrite (“split point”):

AHLT Deep Learning 2 83

RecNN
• Recursive Neural Networks for NLP

– Recursive neural networks applied on a sentence for sentiment
classification. Note that “but” plays a crucial role on determining
the sentiment of the whole sentence (Socher et al. 2013)

AHLT Deep Learning 2 84

NN models for NLP

• Feed-forward neural Networks (FFNM)
• Convolutional NN (CNN)
• Recurrent NN (RNN)
• Autoencoders
• Recursive NN (RecNN)
• Gated models

– Long Short Time Models (LSTM)
– Gated Recurrent Units (GRU)

• Attention-based models

AHLT Deep Learning 2 85

LSTM
• Long Short-Term Models (LSTM)

– solve the vanishing gradients problem
– memory cells (a vector) that can preserve gradients

across time.
– gating components, smooth mathematical functions

that simulate logical gates.
– a gate g ∈ [0, 1]n is a vector multiplied component-

wise with another vector v ∈ ℝn, and the result is then
added to another vector. The values of g are designed
to be close to either 0 or 1.

AHLT Deep Learning 2 86

LSTM

AHLT Deep Learning 2 87

LSTM

AHLT Deep Learning 2 88

LSTM

AHLT Deep Learning 2 89

LSTM
Bidirectional LSTM

AHLT Deep Learning 2 90

LSTM

AHLT Deep Learning 2 91

LSTM with Keras
from keras.layers import LSTM

def buildKerasSimpleLSTMModel(parameters, x_train, y_train, x_test, y_test, epochs,
dropout=None):

global history
input_shape = (x_train.shape[1],x_train.shape[2]); print 'input_shape', input_shape
model = Sequential()
if dropout:

model.add(LSTM(32, input_shape=input_shape, dropout=dropout,
recurrent_dropout=dropout))

else:
model.add(LSTM(32, input_shape=input_shape))

model.add(Dense(1, activation='sigmoid'))
model.summary()
model.compile(optimizer='rmsprop', loss='binary_crossentropy', metrics=['acc'])
history = model.fit(x_train, y_train, epochs=epochs, batch_size=128,

validation_split=0.2, verbose=2)
return model

AHLT Deep Learning 2 92

LSTM with Keras

Possible max
10 epochs

Not absolute max
30 epochs
Overfitting

AHLT Deep Learning 2 93

LSTM
• Facing overfitting in LSTM models

– Recurrent dropout.
– Stacking recurrent layers, to increase the

representational power of the network.
– Bidirectional recurrent layers, which presents the

same information to a recurrent network in different
ways, increasing accuracy and mitigating forgetting
issues.

AHLT Deep Learning 2 94

Bidirectional LSTM with Keras

def buildKerasBiLSTMModel(parameters, x_train, y_train, x_test, y_test, epochs,
dropout=None):

global history
input_shape = (x_train.shape[1],x_train.shape[2]); print 'input_shape', input_shape
model = Sequential()
if dropout:

model.add(layers.Bidirectional(layers.LSTM(32, dropout=dropout,
recurrent_dropout=dropout), input_shape=input_shape))

else:
model.add(layers.Bidirectional(layers.LSTM(32),input_shape=input_shape))

model.add(Dense(1, activation='sigmoid'))
model.summary()
model.compile(optimizer='rmsprop', loss='binary_crossentropy', metrics=['acc'])
history = model.fit(x_train, y_train, epochs=epochs, batch_size=128, validation_split=0.2,

verbose=2)
return model

AHLT Deep Learning 2 95

LSTM vs GRU
LSTM vs GRU

AHLT Deep Learning 2 96

GRU

• Gated Recurrent Unit
– Based on the same principles as the LSTM, but uses fewer filters

and operations to calculate h(t). Filter update (update gate) z(t). and
reset the filter status (reset gate) r(t).

– cheaper to run, albeit they may not have quite as much
representational power as LSTM. Trade-off between computational
expensiveness and representational.

– Calculated using the following formulas:

AHLT Deep Learning 2 97

GRU with Keras

def buildKerasSimpleGRUModel(parameters, x_train, y_train, x_test, y_test, epochs,
dropout=None):

global history
input_shape = (x_train.shape[1],x_train.shape[2]); print 'input_shape', input_shape
model = Sequential()
if dropout:

model.add(layers.GRU(32, input_shape=input_shape, dropout=dropout,
recurrent_dropout=dropout))

else:
model.add(layers.GRU(32, input_shape=input_shape))

model.add(Dense(1, activation='sigmoid'))
model.summary()
model.compile(optimizer='rmsprop', loss='mae', metrics=['acc'])
history = model.fit(x_train, y_train, epochs=epochs, batch_size=128, validation_split=0.2,

verbose=2)
return model

AHLT Deep Learning 2 98

Stacked GRU with Keras

def buildKeras2LGRUModel(parameters, x_train, y_train, x_test, y_test, epochs,
dropout=None):

global history
input_shape = (x_train.shape[1],x_train.shape[2]); print 'input_shape', input_shape
model = Sequential()
if dropout:

model.add(layers.GRU(32, input_shape=input_shape, return_sequences=True,
dropout=dropout[0], recurrent_dropout=dropout[1]))

model.add(layers.GRU(64, activation='relu', dropout=dropout[0],
recurrent_dropout=dropout[1]))

else:
model.add(layers.GRU(32, return_sequences=True, input_shape=input_shape))
model.add(layers.GRU(64, activation='relu'))

model.add(Dense(1, activation='sigmoid'))
model.summary()
model.compile(optimizer='rmsprop', loss='mae', metrics=['acc'])
history = model.fit(x_train, y_train, epochs=epochs, batch_size=128,

validation_split=0.2, verbose=2)
return model

AHLT Deep Learning 2 99

NN models for NLP

• Feed-forward neural Networks (FFNM)
• Convolutional NN (CNN)
• Recurrent NN (RNN)
• Autoencoders
• Recursive NN (RecNN)
• Gated models

– Long Short Time Models (LSTM)
– Gated Recurrent Units (GRU)

• Attention-based models

AHLT Deep Learning 2 100

Attention-based models
– One potential problem that the traditional encoder-decoder framework

faces is that the encoder at times is forced to encode information which
might not be fully relevant to the task at hand. The problem arises also
if the input is long or very information-rich and selective encoding is not
possible.

– For example, the task of text summarization can be cast as a
sequence-to-sequence learning problem, where the input is the
original text and the output is the condensed version. Intuitively, it is
unrealistic to expect a fixed-size vector to encode all information in a
piece of text whose length can potentially be very long. Similar
problems have also been reported in machine translation.

– In tasks such as text summarization and machine translation, certain
alignment exists between the input text and the output text, which
means that each token generation step is highly related to a certain
part of the input text. This intuition inspires the attention mechanism.

AHLT Deep Learning 2 101

Attention-based models
– This mechanism attempts to ease the above problems by allowing the

decoder to refer back to the input sequence. Specifically during
decoding, in addition to the last hidden state and generated token, the
decoder is also conditioned on a “context” vector calculated based on
the input hidden state sequence.

– [Bahdanau et al. 2014], [Luong et al, 2016], MT
– [Rush et al. 2015] Summ
– In aspect-based sentiment analysis, [Wang et al. 2016] proposed an

attention-based solution where they used aspect embeddings to
provide additional support during classification. The attention module
focused on selective regions of the sentence which affected the aspect
to be classified.

AHLT Deep Learning 2 102

Attention-based models
from Luong et al, 2016: Conventional neural machine translation
(NMT)

A basic form of NMT consists of
two components:
(a) an encoder which computes

a representation s for each
source sentence and

(b) a decoder which generates
one target word at a time
and hence decomposes the
conditional probability as:

AHLT Deep Learning 2 103

Attention-based models
• In Luang et al, 2016 attention-based models are classified into two broad

categories, global and local. These classes differ in terms of whether the
“attention” is placed on all source positions or on only a few source
positions.

AHLT Deep Learning 2 104

Attention-based models
from Luong et al, 2016:

AHLT Deep Learning 2 105

Attention-based models
from Luong et al, 2016:

AHLT Deep Learning 2 106

Attention-based models
• These attentional decisions are made independently, which is suboptimal.

Whereas, in standard MT, a coverage set is often maintained during the
translation process to keep track of which source words have been
translated.

• Likewise, in attentional NMTs, alignment decisions should be made jointly
taking into account past alignment information. To address that, we
propose an input-feeding approach in which attentional vectors �ℎ𝑡𝑡 are
concatenated with inputs at the next time steps

AHLT Deep Learning 2 107

Attention-based models
from Luong et al, 2016:

	Deep Learning in NLP�
	Outline
	From linear models to NN
	From linear models to NN
	From linear models to NN
	From linear models to NN
	From linear models to NN
	NN models for NLP
	NN models for NLP
	NN models for NLP
	NN models for NLP
	NN models
	Logistic regression with Keras
	Logistic regression with Keras
	NN models for NLP
	NN models for NLP
	FFNN
	FFNN
	FFNN
	FFNN
	FFNN
	2 hidden layers FFNN
	FFNN with Keras
	NN models for NLP
	NN models for NLP
	NN models for NLP
	NN models for NLP
	NN models for NLP
	NN models for NLP
	NN models for NLP
	CNN
	CNN
	CNN
	CNN
	CNN
	CNN
	CNN
	CNN
	CNN
	CNN
	CNN
	CNN
	CNN
	CNN
	CNN with Keras
	CNN with Keras
	CNN with Keras
	CNN with Keras
	CNN with Keras
	CNN with Keras
	CNN with Keras
	CNN with Keras
	NN models for NLP
	RNN models
	RNN models
	RNN models
	RNN
	RNN models
	RNN models
	RNN models
	RNN models
	RNN models
	RNN models
	RNN models
	RNN models
	RNN models
	RNN with Keras
	RNN with Keras
	RNN with Keras
	NN models for NLP
	Autoencoders
	Autoencoders
	Autoencoders
	Autoencoders
	Recursive Autoencoders
	Recursive Autoencoders
	Autoencoders
	Autoencoders
	NN models for NLP
	RecNN
	RecNN
	RecNN
	RecNN
	NN models for NLP
	LSTM
	LSTM
	LSTM
	LSTM
	LSTM
	LSTM
	LSTM with Keras
	Número de diapositiva 92
	LSTM
	Bidirectional LSTM with Keras
	LSTM vs GRU
	GRU
	GRU with Keras
	Stacked GRU with Keras
	NN models for NLP
	Attention-based models
	Attention-based models
	Attention-based models
	Attention-based models
	Attention-based models
	Attention-based models
	Attention-based models
	Attention-based models

