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Hidden Markov Models

@ Hidden Markov Models (HMM) useful for prediction under
uncertainty

@ HMM generates probability distribution on

sequences of observations (or action/observation pairs)

@ Learning problem: Given sample of sequences of observations
infer an HMM generating a similar distribution
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Hidden Markov Models

Hidden Markov Models (HMM) useful for prediction under
uncertainty
@ HMM generates probability distribution on

sequences of observations (or action/observation pairs)

Drawbacks:

Learning problem: Given sample of sequences of observations
infer an HMM generating a similar distribution
Standard approach: Expectation Maximization (EM) to

approximate target's parameters [Rabiner89]

© requires previous knowledge of state set - not always available
R. Gavalda, P. Keller, J. Pineau, D. Precup (

© converges to local minimum — how far from optimum?
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Summary of Results

@ We use Probabilistic Deterministic Finite Automata as
approximations of HMM

@ We give a learning algorithm for PDFA
o that infers both state representations and parameters
results

@ has formal guarantees of performance — PAC-learning

@ We test on (very small) simple dynamical systems - promising
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Previous work

Learning HMM without prior knowledge of states:
al 04, Singh et al 03].

@ Predictive State Representations [Jaeger et al 05, Rosencrantz et
No formal guarantees, millions of examples.

@ PAC-style: [Ron et al 95] [Clark & Tholard 04]: basis of our work
@ [Holmes & Isbell 06]: similar to ours, deterministic systems
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HMM, PNFA, PDFA

@ Finite set of observations or letters
@ Finite set of states

@ Probabilities on transitions between states
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HMM, PNFA, PDFA

@ Finite set of observations or letters
@ Finite set of states

@ Probabilities on transitions between states
@ HMM: States emit observations, probabilistically

@ PNFA, PDFA: Transitions emit observations, probabilistically
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HMM, PNFA, PDFA

@ N = Nondeterministic: Each (state,letter) leads to many states
@ D = Deterministic: Fixing (state,observation) fixes next state

b/0.7

HMM

PNFA
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Relation between models

@ HMM n states — PNFA n states
@ PNFA n states — HMM n? states
@ But:

@ Some finite-size PNFA/HMM only have infinite-size PDFA

For every PNFA M and every e there is a finite-size PDFA
that approximates M within precision ¢ in L, distance
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Distribution distances

Definition

For two distributions D4, Do,

Loo(D1,D2) = max |D1(X) — Da(X)]
Dy (x)
KLD(D1||D>) E Dy(x) |
l|| 2 1 Og DZ(X)
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PAC-Learning PDFA

What do we mean by learning?

Definition

An algorithm PAC-learns PDFA if for every target PDFA M, every e,
every ¢ it produces a PDFA M’ such that

Pr{ KLD(D(M)|D(M")) > €] <§
in time poly (size(M), 1/e,1/96).
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PAC-Learning PDFA

What do we mean by learning?

Definition

An algorithm PAC-learns PDFA if for every target PDFA M, every e,
every ¢ it produces a PDFA M’ such that

Pr{ KLD(D(M)|D(M")) > €] <§
in time poly (size(M), 1/e,1/96).

Unfortunately this is impossible [Kearns et al05]
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PAC-Learning PDFA

What do we mean by learning?

@ [Ron et al 96] Learning becomes possible by
@ restricting to acyclic PDFA and

@ considering distinguishability parameter p

@ [Clark&Thollard 04] Works for cyclic automata if we consider a

new parameter L = bound on expected length of generated strings

They learn in the KLD sense in time poly(n,1/e,In(1/5),1/u,L)
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Distinguishability

Definition

@ States g and g’ are p-distinguishable if

Lo(D(a),D(q) = &,

where D(q) is the distribution of strings generated from q

@ A PDFA is p-distinguishable if every two states in it are
p-distinguishable
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PAC-Learning PDFA

The C&T algorithm: promise and drawbacks
It provably PAC-learns. But:

@ Asks for parameters ¢, 4, ...and n, u, L (Quesswork)
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PAC-Learning PDFA

The C&T algorithm: promise and drawbacks

It provably PAC-learns. But:

@ Asks for parameters ¢, 4, ...and n, u, L (Quesswork)
@ Requires full sample up-front:

read parameters;

compute m = poly (e, é,n, i, L);
get sample of size m;

build pdfa from sample
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PAC-Learning PDFA

The C&T algorithm: promise and drawbacks

It provably PAC-learns. But:

@ Asks for parameters e, 6, ...and n, u, L (guesswork)
@ Requires full sample up-front:

read parameters;

compute m = poly (e, é,n, i, L);
get sample of size m;

build pdfa from sample

@ Always worst-case: as many samples as worst target PDFA!
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PAC-Learning PDFA

The C&T algorithm: promise and drawbacks
It provably PAC-learns. But:

@ Asks for parameters e, 6, ...and n, u, L (guesswork)
@ Requires full sample up-front:
read parameters;

compute m = poly (e, é,n, i, L);
get sample of size m;

build pdfa from sample

@ Polynomial is huge:

@ Always worst-case: as many samples as worst target PDFA!
forn=L=3,e=0=p=0.1—m>10%

@ Analysis certainly not tight. Is this cost unavoidable?
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Our approach

Based on [C&TO04], but:

@ Improved analysis:

@ No need to give L and ¢ as parameters if m is fixed,;

@ time to get state graph independent of ¢, L

@ separates time to get graph and time to tune parameters
@ this time smaller for “easier” graphs
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Our algorithm

Data structures

@ Graph with “safe” and “candidate” states

@ Safe state s: represents state where string s ends

@ Candidate state: pair (s, o) where next(s, o) still unclear
@ Invariant: all safe states are really distinct in target

safe states candidate states

n}
L)
1
w
i
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Growing the graph

@ A candidate state can be promoted to safe or merged with an
existing safe state

@ Keep a multiset Ds ,, for each candidate (s, o)

safe states

@ D, sample of distribution from state reached by s - ¢

candidate states
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Growing the graph

@ A candidate state can be promoted to safe or merged with an
existing safe state

@ Keep a multiset Ds ,, for each candidate (s, o)

@ D, sample of distribution from state reached by s - ¢
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Growing the graph

@ A candidate state can be promoted to safe or merged with an
existing safe state

@ Keep a multiset Ds ,, for each candidate (s, o)

@ D, sample of distribution from state reached by s - ¢

R. Gavalda, P. Keller, J. Pineau, D. Precup (

PAC-Learning of HMM

DA

18/32



Growing the graph

@ A candidate state can be promoted to safe or merged with an
existing safe state

@ Keep a multiset Ds ,, for each candidate (s, o)

@ Dg, sample of distribution from state reached by s - o

Qw 5
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The algorithm

1. define safe initial state, labelled with empty string;

2. define candidate states out of initial state, one per letter;
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The algorithm

1. define safe initial state, labelled with empty string;
2. define candidate states out of initial state, one per letter;
3. while there are samples left do

4. run next sample through current graph;
5. if itends in a candidate state (s, o) then
6.

7. store w in Ds ,;

8.

9.

endif

let w be the unprocessed part of sample;
10. endwhile

if Ds» large enough, either merge or promote (s, o);
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The algorithm

1. define safe initial state, labelled with empty string;
2. define candidate states out of initial state, one per letter;
3. while there are samples left do
4. run next sample through current graph;
5.
6.
7.
8.

9.

if it ends in a candidate state (s, o) then
store w in Ds ,;

endif

let w be the unprocessed part of sample;
10. endwhile

if Ds» large enough, either merge or promote (s, o);
11. build PDFA from current graph
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Merging and promoting states

Largeness condition: Ds , has size at least

(o n|x
T & 0
1 )
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Merging and promoting states

Largeness condition: Ds , has size at least

0
Assuming p-distinguishable target, we can then decide reliably

@ if distributions observed at (s, o) and some safe state s’ are
u/2-close — identify (s,o) and s/, i.e., set next(s,o) = s’
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Our algorithm

Merging and promoting states

Largeness condition: Ds , has size at least

Assuming p-distinguishable target, we can then decide reliably:

@ if distributions observed at (s, o) and some safe state s’ are
u/2-close — identify (s,o) and s/, i.e., set next(s,o) = s’
@ else, (s, 0) is pu/2-far from all safe states —

promote (s, o) to safe state labelled so, create new candidate
states

DA
21132
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Our algorithm

Merging and promoting states

Largeness condition: Ds , has size at least

Assuming p-distinguishable target, we can then decide reliably:
@ if distributions observed at (s, o) and some safe state s’ are
u/2-close — identify (s,o) and s/, i.e., set next(s,o) = s’
@ else, (s, 0) is pu/2-far from all safe states —

promote (s, o) to safe state labelled so, create new candidate
states

@ rerun strings in Ds , from merged/promoted state

n}
L)
1
w
i
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Building the PDFA from the graph

@ Identify each remaining candidate states with a closest safe state;
@ Compute transition probabilities in obvious way:
Pris-Zs'] =

#samples using (s—2s’)
(maybe with some smoothing)

#samples passing through s
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Main claim 1: time to learn topology

Lemma

Suppose a target state q is reachable by a path of length ¢ all whose

edges have absolute probability > p. Then g has a corresponding safe
state in the graph by time at most

14 14 n|Z]>
p (™) <u2p 0

@ Time depends on unknown ¢ and p: easier states are found faster
@ No dependence on ¢; on L, indirectly via p

R. Gavalda, P. Keller, J. Pineau, D. Precup (
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Main claim 2: time to learn parameters

Lemma

Suppose the built graph is isomorphic to target graph; if we see
poly(n, /e, In(1/3), 1/, L)
PAC-learning criterion

additional samples, the PDFA obtained from the graph satisfies the
[proof basically as in Clark&Thollard04]
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Wrap-up

@ Lemma 1 states time to identify non-negligible states
® Lemma 2 states time to approximate transition probabilities
@ Together, we recover [Clark&Thollard04] PAC-guarantees

@ But with less parameters, faster in non-worst-case situations
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Simple text generation

@ alphabet = {a, b, #}, # as word separator
@ HMM generates only {abb, aaa, bba}
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Simple text generation

@ alphabet = {a, b, #}, # as word separator
@ HMM generates only {abb, aaa, bba}
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Simple text generation

@ alphabet = {a, b, #}, # as word separator
@ HMM generates only {abb, aaa, bba}
@ Noisy: flip letter with probability 0.1
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Samples to achieve desired prediction

x 10
4 :
—&— HMM
—&— Noisy HMM
n 3
Q@
Q.
£
82
g
2
1
0 -3 -2 1 0
10 10 10 10

epsilon

n}
L)
1
w
i

Do
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Cheese maze experiment

@ observations: a =1 wall; b = 2 walls; ¢c = 3 walls

@ move to random neighbor

@ task resets whenever we reach s10

@ each state of learned PDFA has natural interpretation
@ e.g. N5 = “We're at S5 or S7, prob. 0.5 each”

A
4
Q

8 S10 S9

o = = H =

DA
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Conclusions

@ A PAC-learning algorithm for learning HMM as PDFA

@ Learns state structure as well as transition probabilities
@ # samples order of 10° where theory said > 10%°
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Conclusions

@ A PAC-learning algorithm for learning HMM as PDFA
Future work:

@ Learns state structure as well as transition probabilities
@ # samples order of 10° where theory said > 10%°

@ Extend to distances other than L
@ No need to input p

@ Reduce number of samples (by tighter analysis)

@ [Denis et al 06] PAC-learn full class of PNFA. Practical?
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