PAC-Learning of Markov Models with Hidden State

Ricard Gavaldà ¹ Philipp W. Keller ² Joelle Pineau ² Doina Precup ²

¹Univ. Politècnica de Catalunya, Barcelona ²McGill University, Montréal

(work presented in ECML'06)

Outline

- Introduction
- HMM and PDFA
- PAC-Learning PDFA
- Our algorithm
- 4 Analysis
- Experiments
- Conclusions

Hidden Markov Models

- Hidden Markov Models (HMM) useful for prediction under uncertainty
- HMM generates probability distribution on sequences of observations (or action/observation pairs)
- Learning problem: Given sample of sequences of observations infer an HMM generating a similar distribution
- Standard approach: Expectation Maximization (EM) to approximate target's parameters [Rabiner89]
- Drawbacks
 - requires previous knowledge of state set not always available
 - converges to local minimum how far from optimum?

Hidden Markov Models

- Hidden Markov Models (HMM) useful for prediction under uncertainty
- HMM generates probability distribution on sequences of observations (or action/observation pairs)
- Learning problem: Given sample of sequences of observations infer an HMM generating a similar distribution
- Standard approach: Expectation Maximization (EM) to approximate target's parameters [Rabiner89]
- Drawbacks:
 - orequires previous knowledge of state set not always available
 - converges to local minimum how far from optimum?

Summary of Results

- We use Probabilistic Deterministic Finite Automata as approximations of HMM
- We give a learning algorithm for PDFA
 - that infers both state representations and parameters
 - has formal guarantees of performance PAC-learning
- We test on (very small) simple dynamical systems promising results

Previous work

Learning HMM without prior knowledge of states:

- Predictive State Representations [Jaeger et al 05, Rosencrantz et al 04, Singh et al 03].
 - No formal guarantees, millions of examples.
- PAC-style: [Ron et al 95] [Clark & Tholard 04]: basis of our work
- [Holmes & Isbell 06]: similar to ours, deterministic systems

HMM, PNFA, PDFA

- Finite set of observations or letters
- Finite set of states
- Probabilities on transitions between states
- HMM: States emit observations, probabilistically
- PNFA, PDFA: Transitions emit observations, probabilistically

HMM, PNFA, PDFA

- Finite set of observations or letters
- Finite set of states
- Probabilities on transitions between states
- HMM: States emit observations, probabilistically
- PNFA, PDFA: Transitions emit observations, probabilistically

HMM, PNFA, PDFA

- N = Nondeterministic: Each (state, letter) leads to many states
- D = Deterministic: Fixing (state, observation) fixes next state

Relation between models

- HMM n states → PNFA n states
- PNFA n states → HMM n² states
- Some finite-size PNFA/HMM only have infinite-size PDFA
- But:

For every PNFA M and every ϵ there is a finite-size PDFA that approximates M within precision ϵ in L_{∞} distance

Distribution distances

Definition

For two distributions D_1 , D_2 ,

$$L_{\infty}(D_1, D_2) = \max_{x} |D_1(x) - D_2(x)|$$

$$KLD(D_1||D_2) = \sum_{x} D_1(x) \log \frac{D_1(x)}{D_2(x)}$$

What do we mean by learning?

Definition

An algorithm PAC-learns PDFA if for every target PDFA M, every ϵ , every δ it produces a PDFA M' such that

$$\Pr[KLD(D(M)||D(M')) \ge \epsilon] \le \delta$$

in time $poly(size(M), 1/\epsilon, 1/\delta)$.

Unfortunately this is impossible [Kearns et al05]

What do we mean by learning?

Definition

An algorithm PAC-learns PDFA if for every target PDFA M, every ϵ , every δ it produces a PDFA M' such that

$$\Pr[KLD(D(M)||D(M')) \ge \epsilon] \le \delta$$

in time $poly(size(M), 1/\epsilon, 1/\delta)$.

Unfortunately this is impossible [Kearns et al05]

What do we mean by learning?

- [Ron et al 96] Learning becomes possible by
 - restricting to acyclic PDFA and
 - ullet considering distinguishability parameter μ
- [Clark&Thollard 04] Works for cyclic automata if we consider a new parameter L = bound on expected length of generated strings They learn in the KLD sense in time $poly(n, 1/\epsilon, ln(1/\delta), 1/\mu, L)$

Distinguishability

Definition

• States q and q' are μ -distinguishable if

$$L_{\infty}(D(q), D(q')) \geq \mu,$$

where D(q) is the distribution of strings generated from q

• A PDFA is μ -distinguishable if every two states in it are μ -distinguishable

- Asks for parameters ϵ , δ , ... and n, μ , L (guesswork)
- Requires full sample up-front

```
read parameters;
compute m = poly(\epsilon, \delta, n, \mu, L);
get sample of size m;
build pdfa from sample
```

- Always worst-case: as many samples as worst target PDFA!
- Polynomial is huge: for n = L = 3, $\epsilon = \delta = \mu = 0.1 \rightarrow m > 10^{20}$
- Analysis certainly not tight. Is this cost unavoidable?

- Asks for parameters ϵ , δ , ... and n, μ , L (guesswork)
- Requires full sample up-front:

```
read parameters; compute m = poly(\epsilon, \delta, n, \mu, L); get sample of size m; build pdfa from sample
```

- Always worst-case: as many samples as worst target PDFA!
- Polynomial is huge: for n = L = 3, $\epsilon = \delta = \mu = 0.1 \rightarrow m > 10^{20}$
- Analysis certainly not tight. Is this cost unavoidable?

- Asks for parameters ϵ , δ , ... and n, μ , L (guesswork)
- Requires full sample up-front:

```
read parameters; compute m = poly(\epsilon, \delta, n, \mu, L); get sample of size m; build pdfa from sample
```

- Always worst-case: as many samples as worst target PDFA!
- Polynomial is huge: for n = L = 3, $\epsilon = \delta = \mu = 0.1 \rightarrow m > 10^{20}$
- Analysis certainly not tight. Is this cost unavoidable?

- Asks for parameters ϵ , δ , ... and n, μ , L (guesswork)
- Requires full sample up-front:

```
read parameters; compute m = poly(\epsilon, \delta, n, \mu, L); get sample of size m; build pdfa from sample
```

- Always worst-case: as many samples as worst target PDFA!
- Polynomial is huge: for n = L = 3, $\epsilon = \delta = \mu = 0.1 \rightarrow m > 10^{20}$
- Analysis certainly not tight. Is this cost unavoidable?

Our approach

Based on [C&T04], but:

- No need to give L and ε as parameters if m is fixed;
- Improved analysis:
 - separates time to get graph and time to tune parameters
 - time to get state graph independent of ϵ , L
 - this time smaller for "easier" graphs

Data structures

- Graph with "safe" and "candidate" states
- Safe state s: represents state where string s ends
- Candidate state: pair (s, σ) where $next(s, \sigma)$ still unclear
- Invariant: all safe states are really distinct in target

- A candidate state can be promoted to safe or merged with an existing safe state
- Keep a multiset $D_{s,\sigma}$ for each candidate (s,σ)
- $D_{s,\sigma}$ sample of distribution from state reached by $s \cdot \sigma$

- A candidate state can be promoted to safe or merged with an existing safe state
- Keep a multiset $D_{s,\sigma}$ for each candidate (s,σ)
- $D_{s,\sigma}$ sample of distribution from state reached by $s \cdot \sigma$

- A candidate state can be promoted to safe or merged with an existing safe state
- Keep a multiset $D_{s,\sigma}$ for each candidate (s,σ)
- $D_{s,\sigma}$ sample of distribution from state reached by $s \cdot \sigma$

- A candidate state can be promoted to safe or merged with an existing safe state
- Keep a multiset $D_{s,\sigma}$ for each candidate (s,σ)
- $D_{s,\sigma}$ sample of distribution from state reached by $s \cdot \sigma$

The algorithm

- define safe initial state, labelled with empty string;
- 2. define candidate states out of initial state, one per letter;
- 3. while there are samples left do
- 4. run next sample through current graph.
- 5. if it ends in a candidate state (s, σ) then
- 6. let w be the unprocessed part of sample;
- 7. store w in $D_{S,\sigma}$;
- 8. if $D_{s,\sigma}$ large enough, either merge or promote (s,σ) ;
- 9. endif
- 10. endwhile
- build PDFA from current graph

The algorithm

- 1. define safe initial state, labelled with empty string;
- 2. define candidate states out of initial state, one per letter;
- 3. while there are samples left do
- run next sample through current graph;
- 5. **if** it ends in a candidate state (s, σ) **then**
- 6. let w be the unprocessed part of sample;
- 7. store w in $D_{s,\sigma}$;
- 8. if $D_{s,\sigma}$ large enough, either merge or promote (s,σ) ;
- 9. endif
- 10. endwhile

build PDFA from current graph

The algorithm

- define safe initial state, labelled with empty string;
- 2. define candidate states out of initial state, one per letter;
- 3. while there are samples left do
- run next sample through current graph;
- 5. **if** it ends in a candidate state (s, σ) **then**
- 6. let w be the unprocessed part of sample;
- 7. store w in $D_{s,\sigma}$;
- 8. if $D_{s,\sigma}$ large enough, either merge or promote (s,σ) ;
- 9. endif
- 10. endwhile
- 11. build PDFA from current graph

Largeness condition: $D_{s,\sigma}$ has size at least

$$T = \frac{c}{\mu^2} \cdot \ln \frac{n|\Sigma|}{\delta}$$

- if distributions observed at (s, σ) and some safe state s' are $\mu/2$ -close \rightarrow identify (s, σ) and s', i.e., set $next(s, \sigma) = s'$
- else, (s, σ) is $\mu/2$ -far from *all* safe states \rightarrow promote (s, σ) to safe state labelled $s\sigma$, create new candidate states
- rerun strings in $D_{s,\sigma}$ from merged/promoted state

Largeness condition: $D_{s,\sigma}$ has size at least

$$T = \frac{c}{\mu^2} \cdot \ln \frac{n|\Sigma|}{\delta}$$

- if distributions observed at (s, σ) and *some* safe state s' are $\mu/2$ -close \rightarrow identify (s, σ) and s', i.e., set $next(s, \sigma) = s'$
- else, (s, σ) is $\mu/2$ -far from all safe states \rightarrow promote (s, σ) to safe state labelled $s\sigma$, create new candidate states
- rerun strings in $D_{s,\sigma}$ from merged/promoted state

Largeness condition: $D_{s,\sigma}$ has size at least

$$T = \frac{c}{\mu^2} \cdot \ln \frac{n|\Sigma|}{\delta}$$

- if distributions observed at (s, σ) and some safe state s' are $\mu/2$ -close \rightarrow identify (s, σ) and s', i.e., set $next(s, \sigma) = s'$
- else, (s, σ) is $\mu/2$ -far from *all* safe states \rightarrow promote (s, σ) to safe state labelled $s\sigma$, create new candidate states
- rerun strings in D_{s,σ} from merged/promoted state

Largeness condition: $D_{s,\sigma}$ has size at least

$$T = \frac{c}{\mu^2} \cdot \ln \frac{n|\Sigma|}{\delta}$$

- if distributions observed at (s, σ) and some safe state s' are $\mu/2$ -close \rightarrow identify (s, σ) and s', i.e., set $next(s, \sigma) = s'$
- else, (s, σ) is $\mu/2$ -far from *all* safe states \rightarrow promote (s, σ) to safe state labelled $s\sigma$, create new candidate states
- rerun strings in $D_{s,\sigma}$ from merged/promoted state

Building the PDFA from the graph

- Identify each remaining candidate states with a closest safe state;
- Compute transition probabilities in obvious way:

$$\Pr[s \xrightarrow{\sigma} s'] = \frac{\text{#samples using } (s \xrightarrow{\sigma} s')}{\text{#samples passing through } s}$$

(maybe with some smoothing)

Main claim 1: time to learn topology

Lemma

Suppose a target state q is reachable by a path of length ℓ all whose edges have absolute probability $\geq p$. Then q has a corresponding safe state in the graph by time at most

$$rac{\ell}{oldsymbol{
ho}} \cdot \mathsf{O}(T) = \mathsf{O}\left(rac{\ell}{\mu^2 \, oldsymbol{p}} \cdot \mathsf{ln} \, rac{oldsymbol{n} |\Sigma|}{\delta}
ight)$$

- Time depends on unknown ℓ and p: easier states are found faster
- No dependence on ϵ ; on L, indirectly via p

Main claim 2: time to learn parameters

Lemma

Suppose the built graph is isomorphic to target graph; if we see

$$poly(n, 1/\epsilon, ln(1/\delta), 1/\mu, L)$$

additional samples, the PDFA obtained from the graph satisfies the PAC-learning criterion

[proof basically as in Clark&Thollard04]

Wrap-up

- Lemma 1 states time to identify non-negligible states
- Lemma 2 states time to approximate transition probabilities
- Together, we recover [Clark&Thollard04] PAC-guarantees
- But with less parameters, faster in non-worst-case situations

Simple text generation

- alphabet = $\{a, b, \#\}$, # as word separator
- HMM generates only {abb, aaa, bba}

Simple text generation

- alphabet = $\{a, b, \#\}$, # as word separator
- HMM generates only {abb, aaa, bba}

Simple text generation

- alphabet = {a, b, #}, # as word separator
- HMM generates only {abb, aaa, bba}
- Noisy: flip letter with probability 0.1

Samples to achieve desired prediction

Cheese maze experiment

- observations: a = 1 wall; b = 2 walls; c = 3 walls
- move to random neighbor
- task resets whenever we reach s10
- each state of learned PDFA has natural interpretation
- e.g. N₅ = "We're at S5 or S7, prob. 0.5 each"

S0	S1	S2	S 3	S4
S5		S6		S7
S8		S10		S9

Conclusions

- A PAC-learning algorithm for learning HMM as PDFA
- Learns state structure as well as transition probabilities
- # samples order of 10⁵ where theory said > 10²⁰

Future work:

- Extend to distances other than L_{∞}
- No need to input μ
- Reduce number of samples (by tighter analysis)
- [Denis et al 06] PAC-learn full class of PNFA. Practical?

Conclusions

- A PAC-learning algorithm for learning HMM as PDFA
- Learns state structure as well as transition probabilities
- # samples order of 10⁵ where theory said > 10²⁰

Future work:

- Extend to distances other than L_{∞}
- ullet No need to input μ
- Reduce number of samples (by tighter analysis)
- [Denis et al 06] PAC-learn full class of PNFA. Practical?