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Abstract. Known algorithms for learning PDFA can only be shown to
run in time polynomial in the so-called distinguishability u of the target
machine, besides the number of states and the usual accuracy and con-
fidence parameters. We show that the dependence on p is necessary for
every algorithm whose structure resembles existing ones. As a technical
tool, a new variant of Statistical Queries termed Loo-queries is defined.
We show how these queries can be simulated from samples and observe
that known PAC algorithms for learning PDFA can be rewritten to access
its target using Loo-queries and standard Statistical Queries. Finally, we
show a lower bound: every algorithm to learn PDFA using queries with
a resonable tolerance needs a number of queries larger than (1/u)¢ for
every ¢ < 1.

1 Introduction

Probabilistic finite automata (PFA) are important as modeling formalisms as
well as computation models. They are closely related to Hidden Markov Models
(HMM’s) in their ability to represent distributions on finite alphabets and also
to POMDP’s; see e.g. [8,17,18] for background.

One of the main associated problems is that of approximating the distribution
generated by an unknown probabilistic automaton from samples. The problem
is relatively simple if the structure of the automaton is somehow known and only
transition probabilities have to be estimated, and much harder and poorly-solved
in practice if the transition graph is unknown. Probabilistic Deterministic Finite
Automata (PDFA) — in which the underlying automaton is deterministic but
transitions still have probabilities — have been often considered as a restriction
worth studying, even though they cannot generate all distributions generated by
PFA [g].

The grammatical inference community has produced a substantial number of
methods for learning (distributions generated by) PFA or PDFA, most of them
using so-called “state split-merge” or “evidence-driven” strategies; see the refer-
ences in [6,17,18,7]. Many of these methods are only proved valid empirically,
but some have proofs of learning in the limit.

The problem has also been intensely studied in variants of the PAC model
adapted to distribution learning. Abe and Warmuth showed in [1] that hardness
is not information-theoretic: one can learn (distributions generated by) PFA



with samples of size polynomial in alphabet size, number of states in the target
machine, and inverses of the accuracy and confidence parameters (e and §); but
also that the problem is computationally intractable for large alphabet sizes,
unless RP = NP. Kearns et al. [13] showed that learning PDFA even over 2-
letter alphabets is computationally as hard as solving the noisy parity learning
problem, of interest in coding theory and for which only super-polynomial time
algorithms are known.

It was later observed that polynomial-time learnability is feasible if one allows
polynomiality not only in the number of states but also in other measures of the
target automaton complexity. Specifically, Ron et al. [16] showed that acyclic
PDFA can be learned w.r.t the Kullback-Leibler divergence in time polynomial
in alphabet size, 1/¢, 1/§, number of target states, and 1/u, where u denotes
the distinguishability of the target automaton, to be defined in Sect. 2. Clark
and Thollard extended the result to general PDFA by considering also as a
parameter the expected length of the strings generated by the automata [6].
Their algorithm, a state merge-split method, was in turn extended or refined in
subsequent work [10, 15,9, 4]. Furthermore, in [11] a PAC algorithm for learning
PFA was given, similar in spirit to [7], whose running time is polynomial in the
inverse of a condition parameter, intuitively an analog of y for PFA.

Here we consider the dependence on the distinguishability parameter p of
known algorithms. We know that the sample complexity and running time of the
Clark-Thollard and related algorithms is polynomially bounded on 1/4 (as well
as other parameters), but it is conceivable that one could also prove a polynomial
bound in another parameter, much smaller but yet unidentified. We rule out this
possibility for a large class of learning algorithms, intuitively those that proceed
by applying statistical tests to subsets of the sample to distinguish distributions
generated at different states of the target automaton. To this end, we define
a variant of Kearns’ statistical queries [12], called Loo-queries. We observe that
known algorithms for learning PDFA, such as Clark-Thollard and our variant [4],
can be rewritten accessing the target distribution only through L.,-queries (to
infer the structure) plus standard statistical queries (to approximate transition
probabilities). We then show that any algorithm that learns the class of PDFA
with a given distinguishability p from L.,-queries and statistical queries with
reasonably bounded tolerance will require more than (1/p)¢ queries for every
¢ < 1. Our result thus indicates that, if PDFA learning algorithms of complexity
substantially smaller than 1/u do exist, they must use their input sample quite
differently from known algorithms.

While we introduce our L..-queries as a technical concept to formulate a
lower bound, we believe they may deserve further study. Interestingly, the hard
targets that force our lower bound are essentially the noiseless parity functions,
which are learnable in time polynomial in the number of variables, but by our
result not from L.,-queries. Recalling that noisy parity functions seem compu-
tationally hard to learn, this suggests a connection to investigate between our
Loo-queries and noisy distribution learning, as there is one between SQ and noisy



concept learning. Additionally, we give several indications (not rigorous proofs)
that Lo,-queries cannot be efficiently simulated by standard SQ.

2 Preliminaries

We consider several measures of divergence between distributions. Let D; and
D5 be probability distributions on a discrete set X. The Kullback—Leibler (KL)
divergence is defined as

KL(D1ID) = Y- Dr(a)log A 0

zeX

where the logarithm is taken to base 2. The KL is sometimes called relative
entropy. The supremum distance is Lo (D1, D2) = maxgex |D1(z) — Da(z)],
and the total variation distance is Li(D1, D2) = > v [Di(z) — Da(x)].

An algorithm learns a class of distributions D over some set X if for any
D € D and € > 0 it is given access to D through some oracle and outputs a
hypothesis D that is e-close to D w.r.t. the KL divergence, that is, KL(D||ﬁ) <e.

A PDFA Aisatuple (Q, X, 7,7, £, qo) where @ is a finite set of states, X is the
alphabet, 7 : Q x X — @ is the transition function, v: Q x (X' U{¢{}) — [0, 1]
defines the probability of emitting each symbol from each state (y(¢g,0) = 0
when o € X and 7(q, o) is not defined), £ is a special symbol not in X' reserved
to mark the end of a string, and ¢y € @ is the initial state. It is required that
ZogZU{f} v(q,0) = 1 for every state g. Transition function 7 is extended to
@ x X* in the usual way. Also, the probability of generating a given string z&
from state g can be calculated recursively as follows: if z is the empty word
A the probability is v(q, &), otherwise z is a string ogoy ...o0 with k& > 0 and
v(q, 0001 - ..0kE) = (¢, 00)Y(7(q,00), 01 - . . 0k€). Assuming every state of A has
non-zero probability of generating some string, one can define for each state q a
probability distribution D, on Z*: for each z, probability Dy(z) is (g, z€). The
one corresponding to the initial state D, is called the distribution defined by
A.

Definition 1. We say distributions Dy and Dy are p-distinguishable when p <
Lo (D1, Ds). A PDFA A is u-distinguishable when for each pair of states ¢1 and
gz their corresponding distributions Dy, and Dy, are p-distinguishable.

Given a multiset S of strings from X* we denote by S(z) the multiplicity of
z in S, write |S| = > 5. S(z). To each multiset S corresponds an empirical
distribution S defined in the usual way, S(z) = S(x)/|S|.

A parity on n variables is a function h : {0,1}" — {0,1} of the form
h(z1,...,2n) =Y, a;z; mod 2, for some (aq,...,a,) € {0,1}™

The following is a simple consequence of Chebyshev-Cantelli inequality that
will be used when proving the lower bound.



Lemma 1. Let X be a random variable with expectation u and variance o?. If
t > 2|p| then:

0.2

PIX|2 6 20

(2)

3 Lo.-queries

In this section we present a new kind of query, the L,-query, which we describe
as a call to an oracle DIFF . Roughly speaking, these queries can be used when-
ever the learning task is to approximate a probability distribution whose support
is contained in a free monoid X*. This query is an abstraction of a pattern of
access to distributions appearing in algorithms that learn (distributions gener-
ated by) PDFA [3,16,6,10,15,9,4]. At some point, all algorithms described in
these papers use samples from suffix distributions to test for state-distinctness
w.r.t. the supremum distance.

Let D be a distribution over X*, where X' is a finite alphabet. If A C X* is
prefix-free, we denote by D# the conditional distribution under D of having a
prefix in A. That is, for every y € X* we have

DUy Yaes D)
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where D(xX™*) is the probability under D of having x as a prefix. The oracle
DIFF (D) answers queries of the form (A, B, «, 3), where A, B C X* are (en-
codings of) disjoint and prefix-free sets, and «, 8 € (0, 1) are real numbers. Let
i denote the supremum distance between distributions D4 and DP; that is,
p = Loo(DA, DB). Then oracle DIFF (D) must answer a query (A, B,«,f3)
according to the following rules:

1. If either D(AX*) < § or D(BX*) < (3, it answers “?”.

2. If both D(AX*) > 30 and D(BX*) > 30, it answers some number /i such
that |p— 4] < a.

3. Otherwise, the oracle may either answer “?” or give an a-good approximation
[ of p, arbitrarily.

To be precise, the algorithm asking a query will provide A and B in the form of
oracles deciding the membership problems for AX* and BX*.

Similarly to oracles answering statistical queries [12], the price an algorithm
has to pay for a call to DIFF (D) depends on the parameters of the query. As
will be seen in the next section, a call to DIFF (D) with a query (A, B, «, 3)
can be simulated with O(a~2372) samples from D. Accordingly, we make the
following definition.

Definition 2. An algorithm for learning a class of distributions D over X*
using Lo -queries will be called sample efficient if there exists polynomials p,q,r
such that for each D € D the algorithm makes at most r(1/¢,|D|) queries with
a > 1/p(1/e,|D]) and B > 1/q(1/€,|D|) for each query, where |D| is some
measure of complezity, and it outputs a hypothesis D which is e-close to D.



Remark 1 (The role of 3). An algorithm asking an L..-query does not know a
priori the probability under D of having a prefix in A. It could happen that
the region AX™* had very low probability, and this might indicate that a good
approximation of D in this region is not necessary in order to obtain a good
estimate of D. Furthermore, getting this approximation would require a large
number of examples. Thus, 3 allows a query to fail when at least one of the
regions being compared has low probability. This prevents a learner from being
penalized for asking queries whose answer might be irrelevant after all.

Remark 2 (Representation of A and B). From now on we will concentrate on the
information-theoretic aspects of L,-queries. Hence, only the number of samples
needed to simulate queries and the number of such queries needed to learn a
specific class of distributions will be taken into account. We are not concerned
with how A and B are encoded or how membership to them is tested from the
code: the representation could be a finite automaton, a Turing machine, a hash
table, a logical formula, etc.

3.1 Relation with Statistical Queries

Although L,-queries compute a value which is statistical in nature, it is not
clear whether they can be simulated by statistical queries (or the other way
round). Indeed, we provide some evidence suggesting that they cannot, at least
efficiently.

To begin with, one has to say what would be the equivalent of statistical
queries when the target of the learning process is a distribution instead of a
concept. Recall that in the usual statistical query model one asks queries of the
form (x,«) where x : X x {0,1} — {0,1} is a predicate and 0 < a < 1 is
some tolerance. If D is a distribution over X and f: X — {0,1} is a concept, a
query (x,a) to the oracle SQ(f, D) answers with an a-good approximation p,
of py, = Pyx(x, f(z)) = 1], where x is drawn according to D. Kearns interprets
this oracle as a proxy to the usual PAC example oracle EX(f, D) abstracting the
fact that learners usually use samples only to obtain statistical properties about
concept f under distribution D. Note that oracle SQ(f, D) can be simulated
online using EX(f, D): seeing one example (z, f(x)) at a time, check whether
x(z, f(x)) = 1 and discard it, only keeping track of the number of examples seen
so far and how many of them satisfied the predicate. An obvious adaptation of
statistical queries for learning distributions over X is to do the same forgetting
about labels. Then x : X — {0,1} is again a predicate, and the oracle SQ(D)
returns an a-good approximation of P,[x(z) = 1]. Since x is the characteristic
function of some subset of X, learners can ask the oracle for an approximation
to the probability of any event. We assume that this is the natural translation
of statistical queries for distribution learning.

As in the case of concept learning, statistical queries for distributions can
be simulated online with essentially constant memory: just count elements in
the sample satisfying the predicate. Now, this does not seem possible for L.-
queries, where in order to compute the supremum distance between two empirical



distributions one needs to collect sets of examples, estimate the probabilities of
elements in the sets and compare these probabilities to see which one defines
the maximum difference. This indicates that a single statistical query can not
be used to simulate a L.,-query. However, this does not preclude the possibility
that L..-queries can be simulated with a larger number of statistical queries.

An obvious such simulation is: given access to oracles SQ(D*) and SQ(D?),
obtain approximations of D*(z) and D (x) for each z in the support and then
return the largest difference | D4 (x) — D (x)|. This is not feasible when the sup-
port is infinite, although for most reasonable classes of distributions with infinite
support the string defining the supremum distance cannot be very long. But even
for statistical queries that return exact probabilities, this approach amounts to
finding a string where the supremum distance between two distributions is at-
tained. A problem that was shown to be NP-hard for the case of distributions
generated by probabilistic automata in [14]. On the other hand, when one is not
asking for particular probabilities, but samples from the distributions are avail-
able instead, the empirical supremum distance is usually a good approximation
of the actual distance provided enough examples are available. This is the topic
of next section.

We currently have a candidate class of distributions which we believe can
rule out the possibility of simulating L.-queries using a polynomial number of
statistical queries.

3.2 Simulation

In this section we show how to simulate calls to DIFF o (D) using examples from
D provided by the classical PAC example oracle EX(D). Our fist lemma says
that the supremum distance between two arbitrary distributions over X* can be
approximated with a moderate number of examples provided a similar number
of examples from both distributions is available.

Let D4 and D be two distributions over X*. Let S4 be a sample of size n4
from D# and SE a sample of size np from D®. Define u = Lo, (D#, D®) and
its empirical estimation ji = Loo (54, SB). Fix some error probability 0 < § < 1,
an approximation factor 0 < o < 1, and an arbitrary constant 0 < ¢ < 1. Now

define
6 24

Ny = 3. (4)

Lemma 2. If ng,ng € [cN,N] for some N > Ni, then | — p| < a with
probability at least 1 — /2.

n—-— .
o2c a2cd

The proof is based on Chernoff bounds and is omitted.

Now we describe a simulation of Lo,-queries using the usual EX(D) oracle
from the PAC model. For any distribution D, each call to EX(D) takes unit
time and returns an example drawn according to D. As it is usual in the PAC
model, the simulation will have some error probability to account, among other
things, for the fact that with low probability examples provided by EX(D) can
be unrepresentative of D.



Let D be a distribution over X*. Fix some Ly-query (A, B, a, 3) and some
error probability §. Now D4 and DP will be suffix distributions of D; that
is, conditional distributions obtained when words have a prefix in A or B. Let
pa = D(AX™*) (respectively, pg = D(BX*)) denote the probability that a word
drawn according to D has a prefix in A (respectively, in B). As before, u will be
the supremum distance between D4 and DB.

Given a sample S from D, a sample S# from D* is obtained as follows. For
each word x € S, check whether x = yz with y € A. If this is the case, add z to
SA. The multiset obtained,

SA4={z:yze€Sandyec A}, (5)

is a sample from D“. Note that since A is prefix-free, each word in S contributes
at most one word to S, and thus all examples in S4 are mutually independent.
Similarly, a sample SZ from D? is obtained. Let n4 and np denote the respective
sizes of 84 and SB.

In order to simulate a call to DIFF, (D) with query (A4, B,«, (), draw a
sample S of size N from D using EX(D). Then, build samples S4 and S%
from S and obtain approximations p4 = na/N and pp = np/N of py and
pB, respectively. If either p4 < 20 or pp < 20, return “?”. Otherwise, return
fi = Loo(S4, 5P).

The following theorem shows that O(a~24~2) samples are enough for the
simulation to succeed with high probability.

Theorem 1. For any distribution D over X*, a Loo-query (A, B,«, ) to the
oracle DIFF o (D) can be simulated with error probability smaller than § using
N > Ny calls to the oracle EX(D), where

3 12 1 8
N():max{azﬁlnoﬂﬂa,wlné} . (6)

Proof. Tt follows from Chernoff bounds that p4 and pp will both be B-good
approximations with probability at least 1 — §/2 if N > (1/23?)1In(8/§). Thus,
the simulation will answer “?” correctly with high probability. On the other side,
if both pa > 206 and pg > 203, then by Lemma 2 with ¢ = 20 the estimate i will
be a-good with probability at least 1 — /2. a

Remark 3 (Running time of the simulation). Although the number of examples
required by the simulation bounds its running time from below, this number does
not completely determine how long the simulation will take. In fact, the time
required to check if z € X* belongs to AX* or BX™* affects the total running time.
Furthermore, depending on the representation of A and B, checking whether
x has a prefix in one of them may depend on its length |z|. Thus, if T4(m)
and Tp(m) represent the time needed to check if a string of length m has a
prefix in A and B, respectively, the expected running time of the simulation
using N examples is O(N E,(max{Ta(|z|), Tg(|z])})). Note that if A and B are
represented by automata, then T (m), Tg(m) < ¢m for some constant ¢. In this



case, the expected running time of the simulation is O(NL), where L = E,[|z|]
is the expected length of D. This justifies the appearance of L in running time
bounds for algorithms learning PDFA in the PAC model.

4 Lower Bound

In this section we prove that no sample efficient L.,-query algorithm satisfying
some restrictions can learn a certain class of distributions D,,. Since this class is a
subclass of all PDFA with ©(n) states, it will follow that the class of distributions
generated by PDFA is not learnable sample efficiently from L.,-queries.

Let P, be the set of parities on n variables. Consider the class of distributions
D,, over {0,1}"*! where there is a distribution Dy, for each parity h € P,, which
for any = € {0,1}" and y € {0,1} satisfies Dp(zy) = 27" if h(z) = y and
Dy, (xy) = 0 otherwise. The class D,, contains 2™ distributions. Note that each
one of these distributions can be represented by a PDFA with at most 2n + 2
states.

We will show that for n large enough, the class D,, can not be learned with
a sample efficient Ly,-query algorithm. To do so, an adversary answering the
queries asked by a learning algorithm is provided. Then it is shown that very
little information about the underlying distribution can be gained with a sub-
exponential number of such queries when answers are provided by the adversary.
The argument is similar in nature to that used in [12] to prove that parities can
not be learned in the statistical query model. Basically, we show that for each
answer the number of distributions in D,, that are inconsistent with it is at most a,
sub-exponential number. Since there are an exponential number of distributions
in D, after a sub-exponential number of queries only a small fraction of the
whole set of distributions has been ruled out. Thus, the adversary can always
find a distribution which is consistent with every answer given to the algorithm
but still has large error with respect to the hypothesis provided by the learner.

We present our lower bound for algorithms using L..-queries only. The ar-
gument for dealing with standard SQ queries, in case the algorithm uses both
types, is exactly as in the lower bound proved by Kearns for concept learning
parities, and we omit it for brevity. Let L be a sample efficient algorithm for
learning D,, using L,-queries only. Fix € to be some constant smaller than 1/9.
Now, let p(n) and ¢(n) be two functions such that for each query (A, B,«, )
asked by L the following holds: 1) a > 1/p(n), 2) 8 > 1/q(n), 3) p(n) and g(n)
are 2°M)and 4) there exist positive k4 and kp such that A C {0,1}¥4 and
B C {0,1}*2. A query (A, B, a, 3) satisfying 4 will be called strict. Restricting
to strict queries is a technical condition which we believe can be removed in a
more careful analysis. Nonetheless, this condition holds for the PDFA learning
algorithms we are aware of when restricted to target PDFA representing pari-
ties. That is because a non-strict query in this setting means the algorithm is
considering states generating words of different lengths, and this in turn means
hypotheses having infinite KL with any D € D,,.



The following theorem states our lower bound formally. Its qualitative corol-
lary is immediate.

Theorem 2. Let functions p(n) and q(n) be 2°M. If € < 1/9 and n is large
enough, an algorithm using strict Loo-queries where o > 1/p(n) and 8 > 1/q(n)
for any query (A, B,a,3) cannot learn D,, with o(2"/max{p(n)3q(n),q(n)?})
queries.

Corollary 1. For e < 1/9 and n large enough, the class D,, cannot be learned
sample efficiently with Ly -queries.

Proof (of Theorem 2). Let (A, B, a, 3) be a strict Lo-query asked by L. Without
loss of generality we assume that k4 > kp. If ka < n, for any a € {0,1}, we
define the quantity 04 , as (—1)*/2 if the all zero string belongs to A and as 0
otherwise. If k4 = n—+1, the quantity ', is defined as (—1)*/2if0---0a € A and
0---0a ¢ A, where a € {0,1} and @ means negation; we let 6/, = 0 otherwise.
Quantities 0p 5 and 6 are defined similarly.

The adversary is defined and analyzed in two parts. In the first part we
consider the cases where it answers “?”, while the situations where some /i is
answered are considered in the second part. Our analysis begins by considering
the following three cases, where the adversary answers the query with “?”:

1. If either ka, kg >n + 1.

2. If either k4 < n with |A| < 243 or kg < n with |B| < 2*&3.

3. If either k4 = n + 1 with |A| < 2"*28 — 20/, or kg = n + 1 with |B| <
223 — 20/,

Recall that an oracle answering L,.-queries may answer “?” whenever the prob-
ability of the words with a prefix in A or B is smaller than 33. We will only
reason about A; by symmetry, the same arguments work for B. In case 1, it is
obvious that Dp(A{0,1}*) = 0 for any parity h € P,, and therefore the answer
“?” is consistent with all distributions in D,,. Now, in case 2, if k4 < n then
Dy, (A{0,1}*) = 27%4| A| independently of h. Thus, the answer “?” is consistent
with all parities if |A| < 2%4 3. Lastly, for case 3 assume that k4 = n + 1. Now
Dy (A{0,1}*) = Dp(A), and this probability does depend on h since it equals
27" times the number of words xy € A such that h(xz) = y. Hence, it is not
possible for the answer “?” to be consistent with all distributions, although we
show that it is consistent with most of them. If parity h is chosen uniformly at
random, by a routine calculation one shows that

(1A

EaDu(a)] =2 (15 +64) ©

So, our adversary answers “?” whenever E;[Dy(A)] < 23. The number of dis-

tributions in D,, inconsistent with this answer can be upper bounded using a
probabilistic argument. By Chebyshev’s inequality,

Vi [Dn(A)]

Py[Dn(A) > 38] < Pp[|Dp(A) — En[Dr(A)]] > 8] < oz

(®)



The leftmost probability in this equation is the number of inconsistent distri-
butions times 27". Now, write A as the disjoint union A = Ap; U A’, where for
any z € {0,1}" the words 20 and z1 belong to Ag; if and only if 0,21 € A.
This partition implies that for any parity h exactly a half of the words zy € Agy
satisfy h(z) = y. It follows then that a part of Dp(A) does not depend on h:
Dp(A) =27""1Ap1|+Dp(A4’). Thus only the part A’ contributes to the variance
of Dp(A). Taking this into account, a computation with indicator variables and
a standard linear algebra argument show that

/
won(ay =2 (017 0
Applying the bounds 1/¢(n) < 8 < 1, the definition of #, and recalling the
assumption |A| < 223 — 26',, we see that (8) and (9) imply that the number
of distributions inconsistent with the answer “?” is, in this case, smaller than
q(n)*.

So far, we have shown that whenever the adversary answers “?”, at most
q(n)? distributions in D,, are inconsistent with this answer. Now we move ahead
to the second part of the analysis. In the rest of the cases the adversary answers
with some fi. In particular:

1. If kg < ka <n+1 then g = 2ka—n-1,
2. If kg <ks=n+1then o= 1.
3. If kg = k4 then i =0.

In what follows we show that, if n is large enough, the number of distributions
inconsistent with the answer is, in each case, bounded by max{p(n)2q(n), q(n)?}.

Before proceeding, observe that in all these cases k4 < n+1 and for any parity
h the conditional distribution D! has support {0, 1}"*1=%4 with the convention
that {0,1}° = {\}, the set with the empty string. Furthermore, if k4 < n we
can write any parity h € P, as h = f 4+ g where f € P, and g € Pp,_j,, with
the convention that Py contains only the constant 0. Then, for any x = yz with
y € {0,1}%4 and z € {0,1}" %4 we have h(z) = f(y) + g(z). Everything holds
equally when replacing A by B.

We start now with case 1. Like before, we have Dy, (A{0,1}*) = 27k4|A| = pyu
and Dy (B{0,1}*) = 27%2|B| = pp for any parity h. Now, given y € {0,1}"*a
and z € {0,1}, by definition we can write

>_wea Dnlzyz)
pa '

Writing h = f + g, define A% = {zx € A: f(z) = a} for a € {0,1}. This yields
the partition A = A} U A}. The numerator in (10) can then be written as

> Du(xyz) = > Du(xyz)+ > Dp(ryz) . (11)

€A mEA?, zeA}

D (yz) = (10)

Recall that Dp(xyz) = 27" if and only if h(zy) = f(z) + g(y) = z. Hence, if
9(y) = 2 then Dy(zyz) = 27" for all z € A}. Similarly, Dy, (zyz) = 27" for all



x € A} if and only if g(y) # 2. Thus, the following expression for the conditional
distribution D,‘:‘ holds:

a2 JIAY] ifg(y) =z,
Dilvs) =3 {IA}I if g(y) # 2z . (12)

Note that for any parity h both values can be attained for some choice of y and
z. With the obvious modifications, these expressions hold for B too.

Now we compute the supremum distance between D{L1 and Df for any h €
Pn. Write h = f+g = f'+ ¢ where f € Pr,, ' € Prp, 9 € Pn_i, and
g € Po_iy- Then Lo (D7, DP) equals

2k:A—n B—N
max{wmaxﬂA [, |Af|} | max{|Bf/| |Bf’|}} (13)

because D7 and DP are distributions over suffixes of different lengths. Since
max{|A}|, |A}|} > |A|/2 and max{|BY}.|, |B}.|} < |B|, we sce that

ka—n

2

S max {49, |4} . (14)

Note this distance only depends on the first k4 bits of the parity h.
In order to count how many distributions in D,, are inconsistent with the an-
swer fi = 247" /2 given by the adversary we use another probabilistic argument.
Assume that a parity h € P, is chosen uniformly at random and let f € Py, be
the parity obtained from the first k4 bits of h. Then it is easy to verify that for
a € {0,1} we have
|A| \AI 4 4a
5 -

Exn[|A}]] = + 04,0, and Vi [|A%]] = (15)
Using these computations and recalling that o > 1/p(n) and pa = |A|/2F4 >
B> 1/q(n), we apply Lemma 1 and get, after some calculations,

A 2 2ka 4+ 2¢(n)fa.,
{ A5 1‘ - O‘Qn_m} < P(n)1Q(n)( +2q(n)04.0) (16)
Al 2 2n+1(2m = 2p(n)q(n)|0a.al)
Since ka <mn, [0a4] <1/2 and 04,0+ 04,1 =0, a union bound yields
gka—n p(n)?*q(n)
Py, ||Loo (DY, DE) — >a]§. 17
et o) 7 — pln)a(n) i

Therefore, the number of distributions in D,, inconsistent with the answer given
by our adversary in this case is asymptotically bounded from above by p(n)%q(n).

Case 2 is next. Because the adversary has not answered “?” we know that
|A| > 2"+23 —20', and |B| > 22 3. Since k4 = n + 1 it follows that Di}()\) = 1



if D;,(A{0,1}*) # 0, otherwise we define D#(\) = 0. Hence, for any parity h the
supremum distance between D,‘? and Df can be written as

kp—n

Lo (D1 DF) = { D0, 2 maxBLIBIY | L 1s)
where f corresponds to the first kg bits of h. Note that Lo, (D}, DP) # 1 implies
that Dy (A{0,1}*) = 0. Now there are two possibilities. If Ag; # & then for any
parity h we have Dy (A{0,1}*) # 0 and therefore the answer ji = 1 is consistent
with every parity. On the other hand, Ayp; = & implies that A = A" and |A| < 2"
because for each prefix x € {0,1}" at most one of 20 and z1 belongs to A. In
the latter situation we have P,[|Loo(Dit, DE) — 1| > o] < Pp[Loo(Di, DP) #
1] = Py [Dy(A{0,1}*) = 0]. This last probability is bounded by

Py [[Dn(A{0,1}7) — Ep [Dn(A{0, 1}7)]| > En [Da(A{0,1}9)]] ,  (19)
which in turn can be bounded using Chebyshev’s inequality by
Vi [Dp(A{0,11)]
Ey, [Dy(A{0,1}%))*

Therefore, by (7) and (9) and the bounds on |A|, 'y and 3, we see that the at
most ¢(n)?/16 distributions in D,, are inconsistent with the answer i = 1.

Now we consider case number 3, where £ = k4 = kp and the adversary
responds 1 = 0. Two distinct situations need to be considered: k¥ = n + 1
and £ < n. Assume first that K = n + 1. An argument already used in case
2 shows that if both Ayp; # @ and By; # &, then for each parity h it holds
that D*(\) = DP(\) = 1 and therefore Lo, (Di!, DP) = 0 irrespective of h.
In this case the answer is consistent with every distribution. If exactly one of
Ap1 = @ and By; = @ holds, suppose it is Agy = @ without loss of generality,
then Lo, (D}, D) # 0 whenever Dj,(A{0,1}*) = 0, which, by case 2, happens
for at most q(n)?/16 distributions in D,,. Now, if both Ag; = @ and By, = @,
it is easy to see using a union bound that i = 0 is inconsistent with at most
q(n)?/8 distributions.

Assume now that k < n. Then, from the fact that |A| = |A(}| + |A}| and
|B| = |BY| +|Bj}l, the following expression for the Lo, distance between Dj' and

Df can be deduced:
} — 2k—n

where f € Py is formed with the first k& bits of h. We will show that in this
case (1 = 0 is a response consistent with most of the distributions in D,,. Write
Xy = |AY]/|A| = |BY|/|B| and note that by (15) we have En[X;] = 0a/|A| —
05/|B|, where, for simplicity, we write 84 and 6p for 64 ¢ and 6p ¢ respectively.
Performing further computations one sees that

9 1 1 04 0p

By (X2 = — 4 — 4 %A UB
I T IRV TER-T:

(20)

Al B}l

A9 B
Loo DA DB :2k—n Ll A i} f f
(Dics Di’) aér%%?i}{ Al B

VT

(22)



Combining the last two expressions and observing that 8405 = 0, the following
formula for the variance of Xy is obtained:

1 1 04 OB

Vi X¢] = A + 15| + P + 2B (23)

Since 3 > 1/q(n) implies |A|, |B| > 2¥/q(n), plugging these bounds in previ-
ous formulas yields:

q(n) q(n) | q(n)?
[En[X5]] < ok+1’ and Vi,[X;] < okl T D2k (24)
Lemma 1 then yields the bound
2 1 on
Ph[Loo(D}?,DE) > a] _ PhHXf| > a2n7k] S p(n) Q(n)( + q(n)/ ) (25)

2n+1 — 2p(n)q(n) ’

where we have used that « > 1/p(n) and k < n. From this bound, the number of
distributions for which the answer is inconsistent is asymptotically p(n)2q(n)/2.

So far we have seen that, if n is large enough, for any strict L..-query
issued by L, the answer given by the adversary is inconsistent with at most
max{p(n)2q(n), q(n)?} distributions in D,,. Since there are 2" distributions for
any given n, after sub-exponentially many queries there will be still many differ-
ent distributions in D,, consistent with all the answers provided to the learner.

Now, note that the relative entropy between any two distributions in D,
is infinite because they have different supports. Thus, for n big enough, if L
outputs a hypothesis in D, it will have infinite error with high probability
with respect to the random choice of a target distribution in D,,. Recalling
that for each pair of distributions in D,, we have L1(Dy, Dy) = 1, we also get
a lower bound for learning D,, using the variation distance as error measure.
Now assume L outputs some distribution D, not necessarily in D,,, such that
KL(D;|| D) < ¢ for some Dy € D,. Then it follows from Pinsker’s inequality [5]
that KL(D, || D) > (1/21n2)(1—+/21n 2¢)? for any other distribution D, different
from D;. Since € < 1/9, we then have KL(D,||D) > 2/9. Therefore, if a target
distribution in D,, is chosen at random, then L will have large error with high
probability. a

4.1 A Lower Bound in Terms of Distinguishability

A lower bound on the complexity of learning the class of PDFA with a given
distinguishability now follows easily using a padding argument. We ignore the
dependence on € in the statement.

An Loo-query algorithm is (p, ¢)-bounded if, for every query (A, B, «, ) it
asks, a > 1/p and 8 > 1/q, where p and ¢ may depend on inputs of the algorithm
and the complexity of the target distribution.

Corollary 2. Let p and q be functions in n©™) . (1/u)"(1). For every ¢ < 1,
there is no (p,q)-bounded Loo-query algorithm that, for every n and p, learns



the class of distributions generated by PDFA with n states and distinguishability
w with (1/u)¢ queries.

Proof. Recall the class of distributions Dy, from the proof of Theorem 2. For every
m and k, define the class of distributions C,, ; as follows: for every distribution
D in Dy, there is a distribution in C,, ; that gives probability D(x) to each
string of the form 0™z, and 0 to strings not of this form. Every distribution in
Dy, is generated by a PDFA with 2k states and distinguishability 2. It follows
that every distribution C,,  is generated by a PDFA with m + 2k states and
distinguishability also 27%.

Now let m = m(k) grow as 2°(*). Assume for contradiction the existence of an
algorithm as in the statement of the theorem. This algorithm is (p, ¢)-bounded
with p and ¢ that grow like (m 4 2k)°™) . (1/27%)°(1) = 20(k) By an immediate
reduction, the algorithm can be used to learn the classes of distributions Dy
with 2F¢ queries for some ¢ < 1. But since 2¥¢ is in 0(25~°(%)), this contradicts
Theorem 2. ad

5 Conclusion

Let us remark that the lower bound in the previous section, as other lower bounds
for learning from statistical queries, is strangely both information-theoretic and
complexity-theoretic. We know, by the results in [1], that the barrier for learning
PDFA is complexity-theoretic, not information-theoretic. Yet, our result says
that, for algorithms that can only see their target through the lens of statistical
and L.o-queries, the problem becomes information-theoretic.

As open problems on which we are working, we shall mention possible rela-
tions between L.,-queries and other variants of SQ proposed in the literature,
and in particular those by Ben-David et al. [2] for distribution learning. Another
problem is narrowing the gap between lower and upper bound: our lower bound
plus the simulation we describe does not forbid the existence of algorithms that
learn from O(1/p) samples. Yet, the best bounds we can prove now for the
Clark-Thollard algorithm and its variants are larger, namely ©(1/u?) at best.
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