
Lecture 6. Evolving data streams

Ricard Gavaldà

MIRI Seminar on Data Streams, Spring 2015

1 / 39

Contents

1 Time in data streams: Philosophical Intro

2 Sliding window model. Exponential histograms

3 Tracking statistics

4 Change detection

2 / 39

Time in data streams: Philosophical Intro

3 / 39

Time in data streams

Model up to now:

All items seen since time 0 taken into account
Order of the items in the stream is adversarial
= Algorithms must good answers even for worst-case order

But:

Most streams in real life change over time
Most recent elements are more relevant

4 / 39

Time in data streams

“Most streams in real life change over time”

Q. What does this really mean?

Statistical answer. Occurrence of items now does not follow the
same statistical laws as e.g. yesterday or last year.
In particular, there are statistical laws!

Metaphysical answer: Streams probabilistically reflects the
current state of the world, which evolves over time

5 / 39

Time in data streams

“Most recent elements are more relevant”

Q. Really? Why?

My-boss-tells-me-so answer: I need to count packets sent
during last month, for billing each customer

Machine learner answer: Because they help me better to
predict the immediate future

This relies on the statistical interpretation!

Why should prediction be possible at all?

For discussion: and on the metaphysical interpretation?

6 / 39

A statistical (& metaphysical) setting

Rarely formalizd, but implicit in many works

for each time t , distribution Dt on universe of items
t-th stream item independently generated according to Dt

each Dt possibly different from previous ones

but either change occurs infrequently (“shift”)
or else they are very small (“drift”)
so that statistics has some time to converge
and adversarial cannot be totally adversarial

7 / 39

A statistical (& metaphysical?) setting

Ignore at your own risk: Autocorrelation, bursts, varying rates of
arrival. . .

Example:

Pr[rain tomorrow|rain today] > Pr[rain tomorrow]

But even if Pr[rain today] = 1/5,

Pr[4 years with zero rain, followed by 1 year raining every day]'0

8 / 39

Sliding window model. Exponential histograms

9 / 39

The Sliding Window Model

Only last n items matter
Clear way to bound memory
Natural in applications: emphasizes most recent data
Data that is too old does not affect our decisions

Examples:

Study network packets in the last day
Detect top-10 queries in search engine in last month
Analyze phone calls in last hours

10 / 39

Statistics on Sliding Windows

Want to maintain mean, variance, histograms, frequency
moments, hash tables, . . .
SQL on streams. Extension of relational algebra
Want quick answers to queries at all times

11 / 39

Basic Problem: Counting 1’s

Obvious algorithm, memory n:

Keep window explicitly
At each time t , add new bit b to head, remove oldest bit b′

to tail,
Add b and subtract b′ from count

Fact:
Ω(n) memory bits are necessary to solve this problem exactly

12 / 39

Counting 1’s

[Datar, Gionis, Indyk, Motwani, 2002]

Theorem:
There is a deterministic algorithm that estimates the number of
1’s in a window of length n with multiplicative error ε using

O(
1
ε

logn) counters up to n

which means O(
1
ε

(logn)2) bits of memory

Example:

n = 106; ε = 0.1→ 200 counters, 4000 bits

13 / 39

Idea: Exponential Histograms

Each bit has a timestamp - time at which it arrived
At time t , bits with timestamp ≤ t−n are expired
We have up to k buckets of size 1, 2, 4, 8 . . .
We keep the counts of 1s in each bucket
Errors: expired bits in the last bucket
Last bucket ≤ all buckets / k ' n/k

14 / 39

Exponential Histograms

Questions:

How do we maintain the buckets when new items arrive

How do we obtain error (# 1’s)/k , rather than n/k

15 / 39

Exponential Histograms

Instead of keeping buckets with 2i bits, with number of ones,

Store buckets with 2i ones, with timestamps,

16 / 39

Exponential Histograms

Init: Create empty set of buckets

Query: Return total number of bits in buckets - last bucket / 2

17 / 39

Exponential Histograms

Insert rule(bit):

If bit is a 0, ignore it. Otherwise, if it’s a 1:
Add a bucket with 1 bit and current timestamp t to the front
for i = 0, 1, . . .

If more than k buckets of capacity 2i ,
merge two oldest as newest bucket of capacity 2i+1,
with timestamp of the older one

if oldest bucket timestamp < t−n, drop it (all expired)
18 / 39

Why Does This Work?

Let 2C be capacity of largest (oldest) bucket:

Claim 1: All buckets except oldest one are totally full with
non-expired bits
Claim 2: Oldest bucket contains between ≥ 1 and ≤ 2C

non-expired bits
Claim 3: For each capacity except that of the largest
bucket there are k or k −1 buckets
Claim 4: Sum of all buckets except those of largest
capacity is in [(k −1)(2C−1),k(2C−1)]

Claim 5: Estimate is within [1− 1
2k ,1 + 1

2k] of correct
number of 1s

So take k = 1
2ε

, we’re done

19 / 39

Memory Estimate

Largest bucket needed: k ∑
C
i=0 2i ' n→ C ' log(n/k)

Total number of buckets: k · (C + 1)' k log(n/k)

Each bucket contains a timestamp only (perhaps its
capacity, dep. on implementation)

timestamps are in t−n . . . t : recycle timestamps mod n

Memory is O(k log(n/k) logn) bits, k = 1/ε

20 / 39

Generalizations

Technique can be applied to maintain many natural aggregates,
those satisfying well-defined conditions:

Distinct elements
Max, min
Histograms
Hash tables
Frequency moments

21 / 39

Simpler version: “Linear” histograms

A simpler version:

Queue of n/k buckets
each of equal capacity k
Memory O(n/k · logk) bits

Exercise 1
Analyze this simpler version:

k to obtain error ε?
Memory to obtain error ε? (relative to n? relative to
number of 1’s?)
When is it worth using the exponential histograms?

22 / 39

Tracking statistics

23 / 39

Tracking Statistics

Many mining / learning algorithms compute statistics on data
and combine them

MODEL /

/ PATTERNS

PROCESS

DATA

ACTIONS

24 / 39

Tracking Statistics

Many mining / learning algorithms compute statistics on data
and combine them

MODEL /

/ PATTERNS

PROCESS

DATA

ACTIONS

Comb

.

.

.

.

25 / 39

Tracking Statistics

Fix a statistic φ on distributions
Want to compute φ on a stream S = {xt}t , making recent
samples more important
General method:

Choose a decay function f : N→ [0,1], of sum 1
At time t , assign importance f (i) to xt−i
Compute yt = φ({f (i) ·xt−i}i)

26 / 39

Tracking Statistics

Special cases, for xt ∈ R, φ = avg:

Memory-based: Sliding window of size W
yt = avg(xt , . . . ,xt−W+1)

f (i) =

{
1/W for i < W
0 for i ≥W

Memoryless: EWMA: Exponentially Weighted Moving
Average

y1 = x1,
yt = λ ·xt + (1−λ) ·yt−1, for fixed λ < 1
inductively, yt = ∑i λ (1−λ)ixt−i
f (i) = λ (1−λ)i

27 / 39

Change detection

28 / 39

Tracking Statistics, reviewed

Stream of numbers, want to keep mean of most recent ones
My-boss-told-me-so setting:

Sliding window: yt = avg(xt , . . . ,xt−W+1)

EWMA: yt = ∑i λ (1−λ)ixt−i

Statistical setting:
Each xt is the realization of a random variable Xt ' Dt

We want to have an estimation of E [Xt]

We can average xt , xt−1, xt−2 . . . if Dt ' Dt−1,Dt−2, . . .

29 / 39

The variance / reaction time tradeoff

Average (xt + xt−1 + · · ·+ xt−W+1)/W

Two sources of inaccuracy:

Variance of each xt−i

Decreases as we average more values

Drift as we consider older values
Increases as we average over more values

Where is the sweet spot?
Depends on variance and change rate, unknown

30 / 39

Change detectors

A simple, memoryless change detector is CUSUM, CUmulative
SUM test:

g0 = 0
gt = max(0,gt−1−v + εt)

if gt > h declare change, set gt = 0, reset εt

Idea: v , h, ε control sensitivity
v ' σ , “normal” deviation
h = kσ , “alarming” deviation
εt → 0

Similar to: Page-Hinkley test

31 / 39

Window-based change detection

“If d(W1,W2) > ε then declare change”
[Kifer - Ben-David - Gehrke 04]:

W1 reference, W2 sliding, fixed size
Window size choice is an issue

32 / 39

Window-based change detection

“If d(W1,W2) > ε then declare change”
[Gama et al, 04]: Specific for classifier error monitoring
W1 achieves min error, W2 all data, varying size
Slow to react after long stretches with no change

33 / 39

Window-based change detection: ADWIN [Bifet-G 07]

ADaptive Windowing: Look at the data to find the optimal
tradeoff variance - current rate of change

No need to guess parameters a priori, or assume that “optimal
parameters” are optimal forever

Idea: Keep W as long as possible while consistent with

“there is no clear evidence of change within W ”

34 / 39

ADWIN [Bifet-G 07]

Fix a distance among probability distributions d and a statistical
test test such that for two samples S1, S2 from distributions D1,
D2,

Pr[test(S1,S2,δ) = true] =

≤ δ if D1 = D2

> 1−δ if d(D1,D2)≥ ε

? otherwise

(Actually, ε = ε(|S1|, |S2|,δ))

Try test(W1,W2,δ) for every partition of W = W1 + W2

If the test for W1, W2 returns true, shrink W to W2
35 / 39

ADWIN: The Guarantees

Theorem
At every time t ,

(No false positives) If there is no change in average within
W , ADWIN does not cut W , with prob ≥ 1−δ

(No false negatives) If there is a split W = W1 + W2 such
that d(D1,D2)≥ ε(. . .) then ADWIN shrinks W with
probability ≥ 1−δ

For general sets of items, Kolmogorov-Smirnov test
For windows of bounded real numbers, a simple test using
d(D1,D2) = |avg(D1)−avg(D2)| can be based on Hoeffding

In practice, use heuristics variants

36 / 39

ADWIN2: Going for efficiency

Built on top of exponential histograms:

Initialization:
Empty all buckets (=empty window)

At each time t ,
for all partitions of W into W1 + W2,

where W2 comprises exactly a number of buckets do
if test(W1,W2,δ)≥ ε(|W1|, |W2|,δ) then

declare change; drop oldest bucket
end if

end for

37 / 39

ADWIN: The Guarantees

ADWIN uses memory O(logW) for a window of length W
Time per item is O(logW); can be made amortized O(1)

Can be used both as estimator and as change detector
It cuts W if and only if change has occurred
Keeps longest window statistically consistent with the
hypothesis “no change within window”
Autonomously solves the variance - reaction time tradeoff
Parameter-free (only δ), scale-free (no guessing)

38 / 39

ADWIN: The Use

Pluses:

Black box, guesswork-free module to deal with change
Change detector + “intelligent counter”
O(logW) memory & time
Parameter-free, scale-free algorithm

Cons:

Memory is not O(1) like EWMA+CUSUM
Much slower than EWMA+CUSUM (100-500 times) in
direct implementation
Optimizations should be possible
Still, OK when in the middle of other computation or disk
access

39 / 39

	Time in data streams: Philosophical Intro
	Sliding window model. Exponential histograms
	Tracking statistics
	Change detection

