Semantics

- Introduction to main challenges
- Semantic representation
 - Logic formalism
 - Frame based and ontologies
 - Lexical semantics
- Semantic interpretation
Introduction to main challenges

- Semantics is the study of the meaning of linguistic sentences
- It involves
 - **Semantics Representation.** Formal representations of meaning
 Usually based on one of the following:
 - First predicate calculus
 - Semantic Networks
 - Frame-based and ontologies
 - **Semantic interpretation.** Theories and algorithms for mapping sentences and its formal representations –
 Usually based on semantics compositional: an object is obtained from the semantic interpretation of its components.
Introduction to main challenges

- Semantic representation and interpretation must be based in a formal theory, not in an "ad-hoc" process. This theory must support:
 - ambiguity
 - complex phenomena: negation, quantification, inferences, etc.
 - an interface mechanism between syntax and semantic must be defined
- The semantic interpretation of an object is obtained from the semantic interpretation of its components
Introduction to main challenges

SEMANTIC AMBIGUITY

- More than one semantic interpretation is possible for a given sentence

- *Peter gave a cake to the children*
Resolving ambiguous input

- Multiple alternative linguistic structures can be built
 - *I made her duck*

 - Ambiguities in the sentence
Resolving ambiguous input

• Multiple alternative linguistic structures can be built
 – *I made her duck*
 • *I cooked waterfowl for her*
 • *I cooked waterfowl belonging to her*
 • *I created the (plaster?) duck she owns*
 • *I caused her to quickly lowed her head or body*
 • *I waved my magic wand and turned her into undifferentiated waterfowl*

– **Ambiguities in the sentence**
 • *Duck* can be noun(waterfowl) or a verb (go down)
 -> syntactic and semantic ambiguity
 • *Her* can be a dative pronoun or a possessive pronoun
 -> syntactic ambiguity
 • *Make* can be create or cook
 -> lexical ambiguity
Introduction to main challenges

• Different forms of inferences

 The red car -> The car is not completely red but only the external part

 The same adjective could have several meaning depending on the object

Examples obtained from recipes for cooking

 One coffee spoon of sugar -> the quantity of sugar that corresponds to that in a coffee spoon

• Different levels of granularity and abstraction

 350 gr. of beans, two pieces of fruit, plenty of oil
Introduction to main challenges

Objects not quantified

- Mass

 \textit{3 Kg de rice}

- Not formal metrics

 \textit{A cup of rice}

- Not specific quantities

 \textit{A little bit of salt, some sugar}
Introduction to main challenges

• Enumeration

Three potatoes, salt and pepper

• Global reference

Fresh fruit, garlic

• Quantification

A tea spoon of sugar

• Disjunction

One big potato or two small ones

• Not exhaustive lists

Apples, bananas, oranges, etc...
Meaning Representation based on logic

input:

¿Who organizes the party?

logical form:

(\text{question} \\
 \text{(referent (X))} \\
 (\exists X \text{ instance (X, persona)} \\
 (\text{el1 (Y instance(Y, party))} \\
 (\exists Z \text{ instance(Z, organizes)} \\
 \text{present(Z)} \\
 \text{value_prop(Z, agent, X)} \\
 \text{value_prop(Z, patient, Y))))))
Meaning Representation based on logic

• This form includes four different types of knowledge:
 • Logical: The form
 • Conceptual: person, party, organize, agent, patient
 • Speech act: question
 • Pragmatics: searching for an answer, the value of X (instance of person)

• The semantic formalism must support these different types of knowledge
Meaning Representation based on logic

- A finite set of **functions** with arguments
- A finite set of **predicates** (functions that return a boolean value) with arguments
- A finite set of **constants** and **variables**
- A finite set of logical **connectors**
- A finite set of **quantifiers**, that will be applied over the predicates
Meaning Representation based on logic

• Three types of objects:
 • Boolean
 • True or false
 • Entities
 • Classes and their elements
 • Specifications of space and time
 • Functions or predicates

A cat eats a fish

\[(\exists \ X:\text{cat} \ (\exists \ Y:\text{fish} \ \text{eats} \ (X, Y)))\]
Meaning Representation based on logic

- Quantification
- Negation
- Conjuntion
- Disjuntion
The Semantic Networks

- Labeled directed graphs
 - nodes ==> concepts (classes or types) / objects (instances)
 - edges ==> binary relations (binary predicates) between concepts

- Global organization of the knowledge base
- Inference rules (basically, inheritance)
The Semantic Networks

• Advantages
 • Visibility
 • Associative representation. Efficient access
 • Appropriate for knowledge searching and inference
 • Representation of both general and specific knowledge
 • Supporting complex matching processes
The Semantic Networks

• Disadvantages
 • Representation of relations of arity higher than two is difficult (unary and binary relations are easily represented)
 • Representation of logic operations such as negation, implication and disjuntion is difficult
 • Representation of quantification is difficult
Frames

- A flexible way of representing concepts
- Representing not standard objects
- Concepts described by properties (or attributes)

Cat
- eats: fish
- Domestic: yes

Meal
- Who_eats: cat
- What_eats: fish
Frames

- A flexible way of representing concepts
- Representing not standard objects
- Concepts described by properties (or attributes)
- Classes and instances
- Two basic standard relationships between classes and instances
 - *isa* and *instance*
- Inheritance of properties
- New relationships between objects can be defined
- Facetts describing attributes
Looking for Medical Specialists
Frames and ontologies

- Ontologies are based on frame formalism
- Ontologies present a more formal representation of concepts and relations than frames
- Ontologies support inference and more complex reasoning than frames
- They can differ in
 - Type, granularity and domain
Lexical Semantics

• Semantic dictionaries versus Ontologies
• Examples
 • WordNet
 • EuroWordnet
 • UMLS
 • Verbnet
Lexical Semantics
Example: WordNet

- **WordNet**
 - University de Princeton (Fellbaum, 1998)
 - Lexicalized concepts (words)
 - synsets: set of synonyms
 - Includes nouns, verbs, adjectives and adverbs
 - Related by semantic relationships
 - Sinonima
 - antonyms
 - hyperonym-hyponym
 - implication
 - cause
 - ...
 - Wn1.5, Wn1.6, Wn 1.7: 120,000 words, 100,000 synsets
 - Wn2.0, Extended WordNet

Fragmento de WN1.5
Lexical Semantics
EuroWordNet

- Project LE-2 4003 Telematics Application Programme of the European Community
- Semantic networks in different languages (Integrated)
 - English Universidad de Sheffield
 - Dutch Univ. de Amsterdam
 - Italian I.L.C. de Pisa
 - Spanish UB, UPC, U.N.E.D
- Covers basically nouns and verbs (50,000 meanings for each language)
- Rich in semantic relationships
 - inter/intra lingual, inter/intra category
- EWN2
 - German, Czech, Estonian, French
- Extensions to Catalan, Galician and Basque
- Improvements

http://www.hum.uva.nl/~ewn/
http://www.lsi.upc.es/~nlp/
Architecture of the EuroWordNet Data Structure

Language Independent Modules

Domain-Ontology
- Traffic
 - Air Traffic
 - Road Traffic

Top-Ontology
- 2ndOrderEntity
 - Location
 - Dynamic

Inter-Lingual Index

ILI-record (drive)

EN Lexical Items Table
ES Lexical Items Table
NE Lexical Items Table
IT Lexical Items Table

English Wordnet
Dutch Wordnet
Spanish Wordnet
Italian Wordnet

I = Language Independent link
II = Link from Language Specific to Inter-Lingual Index
III = Language Dependent Link
Lexical Semantics
Example: UMLS

- UMLS (Unified Medical Language System)
 - National Library of Medicine, USA Department of Health and Human Services
- Resources set
 - Metathesaurus
 - 330,000 concepts, 735,000 terms
 - Semantic Network
 - Set of predefined semantic categories (135 semantic types, 51 relationships)
 - Links to the source vocabularies
 - 30 sources (multilingual)
 - Specialized lexicon with morpho-syntactic information
Lexical Semantics
VerbNet

- Computational Verbal lexicon
- Associations between syntax and semantics
 - Syntactic frames (subcategorization patterns) and selection restrictions.
 - Lexical semantic information—predicate/argument structure
 - Semantic components represented as predicates
 Links to WordNet synsets
- Entries based on precise description of Levin classes
- Temporal properties represented in an explicity form
 - during(E), end(E), result(E)
Lexical Semantics

VerbNet

Hit Class

<table>
<thead>
<tr>
<th><<MEMBERS>></th>
<th>[<hit1>, <kick1>, <slap1>…]</th>
</tr>
</thead>
<tbody>
<tr>
<td><<THEMATIC ROLES>></td>
<td>Agent(A), Patient(P), Instrument(I)</td>
</tr>
<tr>
<td><<SELECT RESTRICTIONS>></td>
<td>Agent [+animate], Patient [+concrete], Instrument [+concrete,-animate]</td>
</tr>
</tbody>
</table>

<<FRAMES and PREDICATES>>

| Basic Transitive | A V P | Manner (during(E), directedmotion, A)^¹
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Manner (end(E), forceful, A)^<sup>1</sup></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Contact (end(E), A, P)</td>
</tr>
</tbody>
</table>
| Transitive with Instrument| AVP with I | Manner (during (E)directedmotion, I)^¹
| | | Manner (end (E), forceful, I)^¹ |
| | | Contact (end(E), I, P) |
| Conative | AV at P | Manner (during (E), directedmotion, A) |
| With/against alternation | A V I against/on P | Manner(during (E), directedmotion, I)^¹
| | | Manner(end(E), forceful, I)^¹ |
| | | Contact (end(E), I, P) |
Lexical Semantics
Levin classes (3100 verbs)

• Intermediate level between syntax and semantics
• 47 top level classes, 193 second and third level

• Based on pairs of syntactic patterns.
 John broke the jar. / Jars break easily. / The jar broke.
 John cut the bread. / Bread cuts easily. / *The bread cut.
 John hit the wall. / *Walls hit easily. / *The wall hit.

• Reflect implicit semantic component
 contact, directed motion,
 exertion of force, change of state

• Synonymy, syntactic patterns (subcategorization patterns)
Lexical Semantics

Intersective Levin classes

"Cut" Verbs
scrape
(clip)
(chip)
hack
hew

"Split" Verbs

"Carry" Verbs

"Push/Pull" Verbs

pull
(draw)
(kick)
(yank)
tug

push
shove
Lexical Semantics

Regular Sense Extensions

John pushed the chair. +force, +contact
John pushed the chairs apart. +ch-state
John pushed the chairs across the room. +ch-loc
John pushed at the chair. -ch-loc

The train whistled into the station. +ch-loc
The truck roared past the weigh station. +ch-loc