Regular expressions and automata

Introduction

Finite State Automaton (FSA)
Finite State Transducers (FST)
Regular expressions \((I)\) (Res)

Standard notation for characterizing text sequences

Specifying text strings:
- Web search: \textbf{woodchuck}
 (with an optional final \texttt{s}) (lower/upper case)
- Computation of frequencies
- Word-processing (Word, Emacs, Perl)
Regular expressions (II)

A RE formula is a special language (an algebraic notation) to specify simple classes of strings: a sequence of symbols (i.e., alphanumeronic characters).

woodchucks, a, song,!,Mary says

REs are used to

- Specify search strings - to define a pattern to search through a corpus
- Define a language
Regular expressions (III)

• Basically they are combinations of simple units (character or strings) with connectives as concatenation, disjunction, option, kleene star, etc.

• Used in languages as Perl or Python and Unix commands as grep, replace,...
Regular expressions (IV)

- Case sensitive: woodchucks different from Woodchucks
- [] means disjunction
 [Ww]oodchucks
 [1234567890] (any digit)
 [A-Z] an uppercase letter
- [^] means cannot be
 [^A-Z] not an uppercase letter
 [^Ss] neither 'S' nor 's'
Regular expressions (V)

- ? means preceding character or nothing

Woodchucks? means Woodchucks or Woodchuck

colour?r color or colour

- * (kleene star) - zero or more occurrences of the immediately previous character
 a* any string or zero or more as (a, aa, hello)

[0-9][0-9]*/ - any integer

- + one or more occurrences

[0-9]+
Regular expressions (VI)

- Disjunction operator | cat|dog
- There are other more complex operators
- Operator precedence hierarchy
- Very useful in substitutions (i.e. Dialogue)
Regular expressions (VII)

Useful to write patterns:
Examples of substitutions in dialogue

User: Men are all alike

ELIZA: IN WHAT WAY
\[s/.*all.*/ \text{IN WHAT WAY}\]

User: They're always bugging us about something

ELIZA: CAN YOU THINK OF A SPECIFIC EXAMPLE
\[s/*always.*/ \text{CAN YOU THINK OF A SPECIFIC EXAMPLE}\]
Acronym detection patterns acrophile

acro1 = re.compile('^[A-Z][-,./_]+$')
acro2 = re.compile('^[A-Z]+$')
acro3 = re.compile('^[0-9]*[A-Z](0[A-Z])*$')
acro4 = re.compile('^[A-Z][A-Z][A-Z][A-Za-z]+$')
acro5 = re.compile('^[A-Z][A-Z][A-Za-z][A-Z]+$')
acro6 = re.compile('^[A-Z][-,./_]{2,9}(s|s)?$')
acro7 = re.compile('^[A-Z]{2,9}(s|s)?$')
acro8 = re.compile('^[A-Z][-,./_]?[A-Z]+$')
acro9 = re.compile('^[A-Z][A-Za-z][A-Z]+$')
acro10 = re.compile('^[A-Z][-/][A-Z]+$')
Some readings

References to Finite-State Methods in Natural Language Processing http://www.cis.upenn.edu/~cis639/docs/fs.refs.html
Some toolbox

ATT FSM tools
http://www2.research.att.com/~fsmtools/fsm/

Beesley, Kartunnen book
http://www.stanford.edu/~laurik/fsmbook/home.html

Carmel
http://www.isi.edu/licensed-sw/carmel/

Dan Colish's PyFSA (Python FSA)
https://github.com/dcolish/PyFSA
Regular expressions and automata

• Regular expressions can be implemented by the finite-state automaton.
• Finite State Automaton (FSA) a significant tool of computational linguistics. They are related to other computational tools:
 - Finite State Transducers (FST)
 - N-gram
 - Hidden Markov Models
Equivalence

Regular Expressions
Regular Languages
Finite State Automaton
Regular Languages (RL)

Alphabet (vocabulary) Σ
Concatenation operation Σ^* strings over Σ (free monoid)
Language $L \subseteq \Sigma^*$
Languages and grammars
L, L₁ y L₂ are languages

operations

concatenation

\[L_1 \cdot L_2 = \{ u \cdot v \mid u \in L_1 \land v \in L_2 \} \]

union

\[L_1 \cup L_2 = \{ u \mid u \in L_1 \lor u \in L_2 \} \]

intersection

\[L_1 \cap L_2 = \{ u \mid u \in L_1 \land u \in L_2 \} \]

difference

\[L_1 - L_2 = \{ u \mid u \in L_1 \land u \notin L_2 \} \]

complement

\[\overline{L} = \Sigma - L \]
<\Sigma, Q, i, F, E>

\begin{align*}
\Sigma & \quad \text{alphabet} \\
Q & \quad \text{finite set of states} \\
i & \in Q \\
F & \subseteq Q \\
E & \subseteq Q \times (\Sigma \cup \{\varepsilon\}) \times Q \\
E: & \{d \mid d: Q \times (\Sigma \cup \{\varepsilon\}) \rightarrow 2^Q\} \quad \text{transitions set}
\end{align*}
Example 1: Recognizes multiple of 2 codified in binary

Examples of numbers recognized:
- 0
- 10 (2 in decimal)
- 100 (4 in decimal)
- 110 (6 in decimal)

State 0:
The string recognized till now ends with 0

State 1:
The string recognized till now ends with 1
Example 2: Recognizes multiple of 3 codified in binary

State 0: The string recognized till now is multiple of 3
State 1: The string recognized till now is multiple of 3 + 1
State 2: The string recognized till now is multiple of 3 + 2

The transition from a state to the following multiplies by 2 the current string and adds to it the current tag
Tabular representation of the FSA

Recognizes multiple of 3 codified in binary
Properties of regular languages (RL) and FSA

Let A a FSA

$L(A)$ is the language generated (recognized) by A

The class of RL (o FSA) is closed under

- union
- intersection
- concatenation
- complement
- Kleene star (A^*)

FSA can be determined

FSA can be minimized
Example of the use of closure properties

Representation of the Lexicon

Let S the FSA:
Representation of the sentence with POS tags
We are interested on

\[S - (\Sigma^* \cdot C_1 \cdot \Sigma^*) - (\Sigma^* \cdot C_2 \cdot \Sigma^*) = S - (\Sigma^* \cdot (C_1 \cup C_2) \cdot \Sigma^*) \]
From the union of negative rules we can build a Negative grammar \(G = \Sigma^* \cdot (C_1 \cup C_2 \cup \ldots \cup C_n) \cdot \Sigma^* \)
The difference between the two FSA S - G will result on:

Most of the ambiguities have been solved
Finite State Transducers (FST)

\[<\Sigma_1, \Sigma_2, Q, i, F, E> \]

\[\Sigma_1 \]
input alphabet

\[\Sigma_2 \]
output alphabet

frequently \(\Sigma_1 = \Sigma_2 = \Sigma \)

\[Q \]
finite states set

\[i \in Q \]
initial state

\[F \subseteq Q \]
final states set

\[E \subseteq Q \times (\Sigma_1^* \times \Sigma_2^*) \times Q \]
arcs set
Example 3

Td3: division by 3 of a binary string

\[\Sigma_1 = \Sigma_2 = \Sigma = \{0, 1\} \]
Example 3

input	output
0 | 0
11 | 01
110 | 010
1001 | 0011
1100 | 0100
1111 | 0101
10010| 00110

Td3: division by 3 of a binary string
\[\Sigma_1 = \Sigma_2 = \Sigma = \{0,1\} \]
State 0:
Recognized: 3k
Emitted: k

State 1:
Recognized: 3k+1
Emitted: k

State 2:
Recognized: 3k+2
Emitted: k

Invariant:
emitted * 3 = Recognized

Invariant:
emitted * 3 + 1 = Recognized

Invariant:
emitted * 3 + 2 = Recognized

NLP FS Models
state 0:
Recognized: 3k
Emitted: k
\[\text{consums: 0} \]
\[\text{emits: 0} \]
\[\text{recognized: } 3 \times k \times 2 = 6k \]
\[\text{emitted: } k \times 2 = 2k \]

State 0 satisfies invariant

state 1:
\[\text{consums: 1} \]
\[\text{emits: 0} \]
\[\text{recognized: } 3 \times k \times 2 + 1 = 6k + 1 \]
\[\text{emitted: } k \times 2 = 2k \]

State 1 satisfies invariant
State 0 satisfies invariant

State 1:
- Consums: 0
- Emits: 0
- Recognized: 3k + 1
- Emitted: k

State 2 satisfies invariant

State 0:
- Consums: 1
- Emits: 1
- Recognized: (3k + 1) * 2 + 1 = 6k + 3
- Emitted: k * 2 + 1 = 2k + 1
State 1 satisfies invariant

State 2 satisfies invariant

state 2:
recognized: 3k+2
emitted: k

consums: 0
emits: 1
recognized: \((3k+2)\times 2 = 6k + 4\)
emitted: \(k\times 2 + 1 = 2k + 1\)

consums: 1
emits: 1
recognized: \((3k+2)\times 2 + 1 = 6k + 5\)
emitted: \(k\times 2 + 1 = 2k + 1\)
FSA associated with a FST

\[
\text{FST } <\Sigma_1, \Sigma_2, Q, i, F, E> \\
\text{FSA } <\Sigma, Q, i, F, E'> \\
\Sigma = \Sigma_1 \times \Sigma_2 \\
(q_1, (a,b), q_2) \in E' \iff (q_1, a, b, q_2) \in E
\]
Traverse the FST in all forms compatible with the input (using backtracking if needed) until reaching a final state and generate the corresponding output

Consider input as a FSA and compute the intersection of the FSA and the FST
Aplications of FSA(and FST)

Increasing use in NLP

Morphology
Phonology
Lexical generation
ASR (Automatic Speech Recognition)
POS tagging
Simplification of Grammars
Information Extraction
• Why FSA (and FST)?
 • Temporal and spatial efficiency
 • Some FSA can be determined and optimized for leading to more compact representations
 • Possibility to be used in cascade form
Not all FST are determinizable, if it is the case they are named **subsequential**

The **non deterministic** FST is equivalent to the **deterministic** one