Obtaining Linguistic Resources for Dialogue Systems from
Application Specifications and Domain Ontologies

Marta Gatius, Meritxell Gonzalez

Talp Research Center, Software Department, Technical University of Catalonia
{gati us, ngonzal ez} @si . upc. edu

Abstract

This paper describes the generation of application-restricted
linguistic resources in different languages for a dialogue
system. The dialogue system supports speech (through the
telephone) and text mode (through the web) in different
languages (English, Spanish, Catalan and Italian) for different
applications. The text processing and voice recognition
components use the same linguistic resources (grammars,
lexicons and system messages). The linguistic resources are
obtained from application specifications and domain
ontologies.

1. Introduction

One of the challenges in developing dialogue systems for
multiple applications is facilitating the generation or
adaptation of the linguistic resources for a new domain.
Although general resources are portable across domains they
present efficiency problems. For this reason, the most
common way to adapt a dialogue system to a new application
is to generate the new linguistic resources necessary to express
the domain concepts. The linguistic resources adapted to the
communication needs of the application reduce the run-time
requirements. The words in the lexicon are usually mapped to
the concepts in the domain model and the parser can quickly
and accurately obtain the semantic representations in the form
needed by the dialogue manager. Linguistic resources adapted
to the application have proven efficient especially when the
sentences introduced by the user are limited to those supported
by the grammar and lexicon. For this reason, they are
especially appropriate for system-driven dialogues.

However, application-restricted resources are expansive to
develop and difficult to reuse. Several ways have been
attempted to reduce the cost of creating these resources
([11,[2],[3].[4]). Most approaches consist of isolating and
representing in a declarative form the different types of
knowledge involved in the communication: the domain
conceptual knowledge, the knowledge controlling the
interaction and the linguistic knowledge. The modular
organization of the relevant knowledge into separate data
structures provides great flexibility for adapting the system to
different applications, languages, modes of communication
and types of users.

This paper describes the generation of application-
restricted linguistic resources in different languages for a
dialogue system supporting two different modes of interaction:
speech (through the telephone) and text mode (through the
web). The dialogue system deals with multilinguality, it
allows the user to choose the communication language
(English, Spanish, Catalan and Italian) and it also supports
interventions mixing two languages, that is, interventions in a
specific language that include words (or expressions) in

another language (i.e., when asking in Spanish information
about an English theatre company, the company name is
usually pronounced in English).

The approach we have followed when developing the
system consists of obtaining the domain-restricted linguistic
resources from the representation of the application
knowledge involved in communication. One of the most
relevant benefits of using a knowledge representation
describing specific domains and services is that it facilitates a
common semantic representation for different modes of
interaction. In our approach, this knowledge representation is
also used for obtaining the logical structure of the dialogues
and the linguistic resources (grammars, lexicons and system
messages) necessary for text and speech interactions in
different languages.

Next section gives an overview of the dialogue system.
Section 3 describes how the logical structure of dialogues can
be improved by using a semantic model of the application
requirements together with domain ontologies. Section 4
describes how this information can be used to obtain
application-restricted linguistic ~ resources in different
languages for the speech and text modes. Finally, last section
draws some conclusions.

2. An overview of the dialogue system

The dialogue system has been developed for the project HOPS
(“http://www.hops-fp6.org”). The HOPS project deals with the
delivery of information and online public services in the local
administration. The project is focused on developing a multi-
channel mass-scale e-government platform. The architecture
of the platform has been designed to support an easy
integration to new services. It supports interoperability
between components distributed over LAN or WAN
connections, mass-deployment of services for the citizens,
multiple languages and operating systems, synchronous
communication, interoperability behind corporate firewalls
and the incorporation of new services in run-time. The
architecture will support extending the number and
complexity of available channels.

We have selected FADA (“http://fada.techideas.info”) as
the integration tool for this project because it provides
integration between heterogeneous systems and applications
and it does not need administration. The project is based on
European standards and it is closely aligned with the work
carried out by the World Wide Web Consortium (W3C,
“http://www.w3.0org”), that is, the VoiceXML and ontology
standards. The architecture of the first prototype developed is
shown in Figure 1. The components used for user interaction
are described briefly next.

Texl Server

Na!gral

.

WML files Audio Web "! Language
W Server Parser
e Grammars _———

Grammars . g

e
_.___._ Application Manager

" Applications

Dialogues
Semantic
Wieh
Ontologies E

Cammon BackEnd Access .‘

Dialogue Manager

Action & Duery
Manager

Figure 1: The architecture of the prototype

The voice components are those of the Loquendo
VoiceXML platform (“http://www.loquendocafe.com”). We
have selected the standard VoiceXML because it allows a
rapid deployment of spoken dialogue systems to Internet-data
without knowing the specific details of speech-based human-
computer interaction over the telephone. That means
developers in charge of adapting the system to new services
do not need to be speech specialists. Besides, being
VoiceXML a standard widely adopted, the applications
developed using it can be adapted to several existing platforms

The user interactions are described in VoiceXML files.
The VoiceXML interpreter is in charge of controlling the
interactions with the user. The interpreter provides help to the
user and handles particular errors that can occur in speech
communication (i.e., there is no answer, the answer has not
been recognized).

The automatic speech recognition system uses grammars
to recognize and process user interventions. The speech
recognition engine could also use statistical language
modeling, but statistical language modeling has several
disadvantages. The first and the most important of them is the
high cost of creating a statistical language model because a
significant corpus (a huge corpus for complex domains) is
needed. With grammars, field data collection is useful but not
indispensable. Another advantage of using grammars is that
they can be easily updated when the application contents
change (statistical language models are difficult to update).
Besides, grammars for common recognition tasks such as date
expressions, telephone numbers can be easily reused across
applications.

In our system, voice grammars are represented following
the Speech Recognition Grammar Specification (SRGS), in
ABNF format. These grammars incorporate semantic
information to facilitate the interpretation of user
interventions.

The textual input is processed by a Natural Language
Parser (NLP) performing syntactic-driven semantic analysis.
In order to facilitate the system management, the grammars
and lexicons used by the NLP are very similar to those used
by the voice recognizer. The grammars used by the NLP are
context-free grammars that incorporated semantic
information. This semantic information in the grammar rules
indicates the order of interpretation of their constituents. The
lexicon entries can be words or groups of words. They
incorporate semantic information obtained from the
application model. The semantic formalism used is based in
lambda calculus. The NLP uses XML for exchanging the
information. The NLP input is an XML file containing the
text introduced by the user, the language and the dialogue
state. The output of the NLP is an XML file containing the
resulting semantic interpretation.

The Dialogue Manager (DM) controls both speech
(through the telephone) and textual interaction (through the
web). Once the DM obtains the semantic interpretation from
the speech and text components it plans next action. The next
action can be a new interaction with the user or a query to the
application back-end. The Module Action and Query
Manager can be incorporated for specific services in order to
optimize the back-end access. The Application Manager
module has been incorporated to control the specific
application/s the user requests for.

When a new interaction with the user is necessary, the
DM passes the speech and text components the files
containing the system messages, the language and the
dialogue state. These files are created dynamically. The
system messages guiding the user to introduce the
information needed by the system are generated manually
when adapting the system to a new application. Several of
these sentences include variables which values are
instantiated dynamically using information from previous
sentences and/or from the application. The files generated for
the speech module follows the VoiceXML specifications.
These files can include the address where the grammars
modeling the next expected user intervention are located. The
files created for the text mode are in XML.

The prototype developed has been applied to two
different types of applications: transactional and
informational. The current implementation of the system
supports two applications: a transactional service for
collecting large objects and a service giving information
about the cultural events.

3. The application knowledge

Well organized dialogues improve efficiency in
communication because they help users to understand the
information the service needs from them. The correct
dialogue design can help minimize the number of user/system
interactions and reduces the chance misunderstanding errors
will occur.

In the dialogue system we have developed, the logical
structure of the interaction is driven by the application
specifications. The system uses a semantic model
representing the data necessary to access the application and
the information that can be obtained from it. This application
model represents the information the system can ask/give to
the user. This model is represented by a set of related
concepts that are described by attributes. These attributes

correspond to the specific information about the concept that
is asked (or given) to the user. The goal of the dialogues
mainly consists of asking/giving the user the specific values
of these conceptual attributes. The dialogue system follows
the Information State Update approach [5] and the
information states are obtained from the application semantic
model. The sequence of interventions, the information to be
provided to the users and the error recovering policies are
obtained from this model.

We exemplify our approach by describing our work in the
transactional service for collecting large objects from houses
and companies, The Large Objects Collection Service. This
service performs three tasks: gives information, fixes a date
for collection and cancels a previous request. In the
application model these three tasks are described by the
concepts: Information, Collection and Cancellation. In Figure
2 we can see the representation of the information the system
needs from the user in order to fix a date for collection. This
information consists of the type of the object to be collected
(represented in the attribute object), whether the user is a
company or a private (userType), the user’s name (name),
address (address) and telephone (telephone). If the user is a
particular, the collection is free and if it is a company, the
price depends on the volume of the objects to thrown out.
Once all information is obtained, the service processes the
request and returns a date for collection (and a price, in case
the collection is for a company). The subconcepts Company
Collection and Private Collection represent the additional
information that has to be exchanged for the two types of
users.

Large Objects Collection
serviceType

/ A
Information

Cancellation

Collection
object
userType
name
address
telephone

Company Collection Private Collection
volume date

price
date

Figure 2: The Large Objects Collection service

The dialogue structure is defined using this model.
Initially, the system needs information about the task required
by the user. For this reason, the system will first ask the user
to select one of the three tasks the system can perform (i.e.,
This service gives information, fixes a data for collection and
cancels a previous request. What do you want?). Following
the application model the dialogue system asks the user to
give the information the application requires for performing
the task. For example, if the user intervention is / want to get

ride of a table. The system will ask the user if he/she is a
particular or a company and his/her name, address and
telephone.

Domain ontologies can be used when representing the
application requirements to avoid asking the user difficult
questions whose answer can be inferred from the ontologies.
For example, in The Large Objects Collection Service the
application needs information about whether the object to
throw out is pollutant or not. This information it is not asked
to the users because it could not always be correctly answered
by them and it can be obtained from domain ontologies.

Domain ontologies also improve the dialogue structure by
helping the system to detect an hiperonym or hipononym in
the user’s interventions [3]. For example, in the service for
collecting large objects, the system can detect an hiperonym
in the user’s intervention describing the object by using the
ontology classifying the different types of objects. In case the
user says [want to throw out some furniture, because the
concept furniture is classified in the objects ontology as an
hiperonym of the information the application needs, the
dialogue system would ask the user to be more specific.

4. Obtaining the linguistic resources

Using an independent base to represent the application
knowledge involved in communication is specially well
suited to deal with different modes (in our system, speech and
text) and different languages. The same conceptual
representation is used for interpreting the user intervention
expressed in different modes and languages. Furthermore, the
representation of the application requirements could facilitate
the obtaining of the linguistic resources most appropriate for
the communication. In the system we have developed, the
system’s messages as well as the grammars and lexicon for
voice and text are generated from the representation of the
application knowledge appearing in the communication.

In current implementation, the system messages asking or
giving the user the conceptual attribute values are written
manually. However, we are studying the possibility of using
a syntactic-semantic classification of the attributes describing
application concepts ([6]) to generate them semi-
automatically. The syntactic-semantic taxonomy relates each
attribute class to the different grammatical structures for
asking and giving the attribute value. Thus, if we classify an
specific attribute in the taxonomy we can obtain the
grammars structures necessary to generate the sentences
asking and describing the attribute values.

public $gramserviceType = SGARBAGE ($GramInfl{:ret} |
$GramC1{:ret} | $SGramT1{:ret}) SGARBAGE
{<@serviceType $ret>};
private $GramInfl = (information | green_point |
reciclying_point) { return("information") };
private $GramC1 = (cancel_a_request | cancel_collection |
cancel | cancellation | cancelling) { return("cancellation") };
private $GramT1 = (fix_a_collection | collection | request| take_out |
ask_for_a_collection_date | pick_up [) { return("collection")};

Figure 3: An example of ABNF grammar for English

public $gramserviceType = SGARBAGE ($GramlInfl {:ret} |
$GramC1{:ret} | $GramT1{:ret}) SGARBAGE
{<@serviceType $ret>};
private $§GramInfl = (informacién | punto_verde |
punto_de_reciclaje) { return("information") };
private §GramC1 = (cancelar_una_recogida | cancelar_una_cita|
cancelar_una_fecha | cancelar | cancelacién)
{ return(" cancellation") };
private $§GramT1 = (fijar_una_recogida |
solicitar_fecha_para_una_recogida |pedir_fecha | pedir_cita |
soliciar_cita | recogida) { return("collection") };

Figure 4: An example of ABNF grammar for Spanish

The grammars and lexicon necessary to process the users
interventions are also obtained from the application
knowledge model. These linguistic resources cover different
expressions for asking and giving the values of attributes
describing the application concepts. The semantic knowledge
associated with these linguistic resources is defined in terms
of the concepts and attributes modeling the application.

Figure 3 and Figure 4 show examples of voice grammars
used for the Large Objects Collection service. These ABNF
grammars were developed to recognize the user’s answer to
the first system question, asking the user to select the task to
perform (attribute serviceType in Figure 2, which value can
be information, cancellation or collection). Figure 3 shows
the grammar modeling the user answer in English and Figure
4 shows the Spanish grammar. The semantic information
incorporated into the grammar corresponds to the attribute
identifier and its possible values. Notice that the semantic
information associated with the English and Spanish
grammars is the same.

Domain ontologies are also used to obtain the terms that
represent the possible values of the conceptual attributes. For
example, in the service Large Objects Collection, the lexical
entries covering the expression of the objects to throw out
have been obtained from the terms in the ontology classifying
objects.

Using the application specification model favors the
reusability of linguistic resources across applications. The
linguistic resources (system messages, grammars and
lexicons) associated with the attribute representing
information required in several applications (such us a dates,
addresses, etc.) are easily identified and reused.

The use of application-restricted lexicons and grammars
improves accuracy and efficiency because it avoids the
production of interpretations that are inconsistent with respect
the application model. At each state of the communication the
system guides the user to introduce the data the application
needs. Thus, the speech and text processing components can
use the specific grammars that most probably model the next
user intervention. Furthermore, both modes incorporate a
garbage mechanism that eliminates all words in the user
interventions that do not express the information the system
needs.

5. Conclusions and future work

In this paper we have described how application-restricted
linguistic resources can be obtained from the representation of
the application knowledge involved in communication.
Representing the different types of knowledge involved in

communication in separate bases facilitates the generation of
resources for different applications, different modes of
communication and different languages. We propose the use
of a semantic model of the application needs and domain
ontologies for improving both, the communication and the
engineering process of adapting the system to new
applications.

Following this proposal, we have developed a dialogue
system supporting speech and text in different languages
(English, Spanish, Catalan and Italian). The current
implementation supports a transactional service for collecting
large objects and a service giving information about cultural
events. Although the system works properly when tested by
developers, tests with users pointed out that it lacks of
friendliness and flexibility. The linguistic resources obtained
from applications do not cover the different ways users
express themselves, neither the most common mistakes. For
this reason, we are planning to test the current
implementation of the system with different types of users
(different languages, ages, skills) and enriching the linguistic
resources using the samples obtained. To improve the
robustness of the system we are developing new components
dealing with the most frequent problems for each mode (i.e.,
typing mistakes in text). Future work will also be done to
combine system-driven dialogues with mixed-initiative
dialogues.

6. Acknowledgements

This work has been supported by the EU IST FP6 project
HOPS (IST-2002-507967).

7. References

[1] Dzikovska, M. Allen, J. and Swift, M.. Finding the
balance between generic and domain-specific knowledge:
a parser customization strategy. 3rd Workshop on
Knowledge and Reasoning in Practical Dialogue
Systems, 2003.

[2] Hamerich, S.W.,Wang, Y. F.,Schubert, V., Schless, V.
and Igel, S. XML-Based Dialogue Descriptions in the
GEMINI Project. In the Proceedings of the Berliner
XML-Tage 2003.

[3] Milward, D., Beveridge, M. Ontologies and the structure
of dialogue. In the Proceedings of the Eight Workshop on
the Semantics and Pragmatics of Dialogue Catalog, 2004.

[4] Porzel, R., Pleger, N., Merten, S., Lokelt, M., Gurevych,
I. Engel, R. and Alexandersson, J. More on Less: Further
Applications of Ontologies in Multi-Modal Dialogue
Systems. 3rd Workshop on Knowledge and Reasoning in
Practical Dialogue Systems, 2003.

[5] Traum, D., Bos, J., Cooper, R., Larson S., Lewin, L.,
Mathesson, C., Poesio, M. A model of Dialogue Moves
and Information State Revision. Technical Report D2.1,
Trindi Project, 1999.

[6] Gatius, M. and Rodriguez, H. Natural Language Guided
Dialogues for Accessing the web. In the Proceeding of
the 5" International Conference, Text, Speech and
Dialogue, 2002.

