
Adapting general linguistic
knowledge to applications
in order to obtain friendly
and efficient NL interfaces

M. Gatius and H. Rodr’guez
Universitat Polit•cnica de Catalunya
e-mail:
gatius@lsi.upc.es, horacio@lsi.upc.es

Abstract:
This work, supported by the project ITEM1 and the
project BASURDE2 and the GRUPS DE RECERCA
CONSOLIDATS3 proposes a mechanism for
adapting general linguistic knowledge to
applications in order to obtain automatically
application-restricted NL interfaces. The knowledge
involved in the process is represented in separate
data structures: a conceptual ontology, a linguistic
ontology, a general lexicon and a set of control
rules. The general and application-dependent
knowledge relevant to the communication tasks is
represented in a conceptual ontology. The general
linguistic information is represented in a linguistic
ontology. The core of our approach consists of
describing the application elements (both entities
and operations) relevant to the communicative tasks
in terms of the existing conceptual ontology. Lexical
coverage of these elements has to be provided as
well. A general basic set of control rules will then
relate the application specifications to the linguistic
ontology in order to obtain application-restricted NL
interfaces. The system has been applied to provide
NL interaction to SIREDOJ, an already existing
expert system in the legal domain.

1 The development of the project ITEM (Textual
Information Retrieval in a multilingual environment
using NL Techniques) has been supported by the
Interministerial Science Technology Comission
(CICYT) and registered as TIC96-1234-C03-02.

2 The development of the project BASURDE (
Spontaneus-Speech Dialogue System In Limited
Domains) has been supported by the CICYT and
registered as TIC98-423-C06-06.

3 1997 SGR 00051

1 Introduction

Natural language (NL) is generally considered one
of the most suitable modes of communication. It
seems an appropriate mode especially for interaction
with knowledge base systems (KBSs) due to the
complexity and diversity of the concepts and actions
involved in the communication process. However,
few systems incorporate natural language interfaces
(NLIs). The main reasons are the high cost of the
development and maintenance of the linguistic
knowledge sources needed, the large space and run-
time requirements and the problem of the user lack
of knowledge about the system capabilities. For
dealing with the first two problems, an automatic
procedure for adapting general linguistic knowledge
to applications in order to obtain the NLIs is
proposed. For dealing with the second, a restricted
menu-based form of communication, guiding the
user to introduce the correct utterances, is
incorporated. The generated interfaces, once
included in the overall application, could be
responsible for all the communicative tasks between
the user and the application.
The use of large coverage linguistic resources for
specific domain-restricted applications (as NL
interfaces) has proved generally unsatisfactory due
to the space and run-time requirements. Application-
restricted grammars improve efficiency in language
processing but are expensive to develop and difficult
to reuse. Several ways have been attempted to
reduce the cost of creating application-dependent
grammars. Most approaches adapt general linguistic
resources to specific applications in order to obtain
application-tuned grammars. The coverage of these
grammars depends on the application domain and
the complexity of the communicative tasks. The
process of tuning general linguistic resources to
applications can be performed by generating a
specific application subgrammar or by providing the
more general grammar of a dynamic mechanism to
restrict the grammatical options at run-time. The
cost of generating application-tuned subgrammars is
reduced when done automatically, as is the case in
some recent works, such as Henschel and Bateman
[7]. Using dynamic mechanisms is also an efficient
way to restrict grammars, as is proved in the
dynamic rule pruning mechanism, described in [3].
This pruning mechanism uses information available
at run-time to reduce the grammatical options that
must be considered.
In this paper, a general mechanism for
obtaining application-restricted grammars
and lexicons from application specification
and general linguistic resources is

described. Both mentioned strategies in
adapting general linguistic resources have
been considered in order to obtain the
specific grammar for each application.
Application-tuned subgrammars and
lexicons are generated from general sources
and incorporate dynamic restriction
mechanisms. The process of obtaining the
subgrammars is based on the performance
of a set of control rules relating the
application knowledge to the general
linguistic knowledge.
A study of an efficient representation of the
different types of knowledge relevant in the
communication and its reusability in
different applications has been done. An
architecture organizing this knowledge in
four separate data structures has been
designed. Two ontologies have been used to
enable the conceptual and linguistic
knowledge sharing and reuse. The general
knowledge involved in the communication
process is described in a conceptual
ontology (CO). This general knowledge is
the skeleton for anchoring the domain and
functional application knowledge. General
linguistic information needed to cover the
linguistic realization of communication is
represented in a linguistic ontology (LO)
and a general lexicon (GL). Finally, the
control information to relate application
knowledge to linguistic knowledge in order
to generate the application-restricted
interfaces is described by a set of
production rules.
Building an interface requires the representation of
the application specifications in terms of the CO and
the incorporation of the new application-dependent
lexical entries to the general lexicon. The general
control rules are then applied over the CO and the
LO in order to generate the interface grammar and
lexicon. Although there is a basic set of control rules
providing the basic linguistic coverage, the user is
able to extend this coverage adding (or modifying)
the basic control set and enriching the LO. The
process of obtaining an application-restricted
interface is described in Figure 1.

GISE

APPLICATION LEXICON

CONTROL DESCRIPTION

CONCEPTUAL ONTOLOGY

LINGUISTIC ONTOLOGY

GENERAL LEVEL

APPLICATION LEVEL

GENERAL LEXICON

DATA DESCRIPTION
CONTROL RULES

APPLICATION GRAMMAR

NL INTERFACE

CONTROL INFORMATION

Figure 1: The process of obtaining an application-
restricted interface

GISE (Generador de Interfaces a Sistemas
Expertos), a system incorporating the proposed
knowledge organization has been designed. This
system generates domain-restricted task-guided NL-
interfaces from expert systems specifications
represented in the CO and the LO. The generated
interfaces use an unambiguous and concise
sublanguage adapted to the functionality of the
expert systems (ESs) and regarding efficient
guidance about system capabilities. A menu-based
mode, similar to the used in [9], is also integrated
into the interface. During the communication
process, all NL available options are displayed in
windows and the user chooses from among those
options to incrementally construct a complete
statement. A prototype of the system was
implemented and applied to an expert system in law,
SIREDOJ.

2 Representing the general
conceptual and linguistic
knowledge involved in the NL
communication

As described in the introduction, in the proposed
architecture the linguistic sources needed in the
communication process are obtained from the

application knowledge represented in the CO and
the general linguistic knowledge represented in the
LO. Only the concepts relevant to the
communication process and their natural language
expression are included in the conceptual and
linguistic ontologies. This knowledge covers the
concepts and relations describing the application and
operations over these concepts.
The CO is organized on two levels: the general level
and the application level. The general level describes
the basic concepts, attributes and operations
common to all applications. In the application level,
application specifications are represented on the
basis of the general level. The application
information is organized, following [6] and [10], in
domain ontology and process ontology. Two
sublevels are distinguished on application level: the
application description level, where all application
information is represented, and the case level, where
information about specific cases are represented.
During the communication process, only the case
level is modified.
The basic classes in the CO general level are
concepts, attributes describing concepts and
operations. These three basic objects are organized
in separate taxonomies.
An important problem in ontologies for NL
processing is the representation of the general
relations between conceptual knowledge and its
expression in NL. Many of the ontologies present in
these systems are mixed ontologies, where
additional specific linguistic information is
incorporated into the conceptual representation. A
major problem in mixed ontologies is that
conceptually motivated and linguistically motivated
classes are mixed in a taxonomy. To avoid this
problem, in the proposed CO, the concept
classification is only conceptually motivated, and
the attributes describing the concepts are classified
according to their linguistic behaviour. Only the
linguistic coverage of the operations of the ontology
is considered. Because these operations are concept-
based operations, considering the linguistic
realization of the attributes describing the concept is
very important.

ENTITY

PERSON
lex: person
age
father

heigth

ATTRIBUTE
domain
range
cardinality
default_value

OF_QUANTITY_ADJ_AOF_PERSON_SIM_A SINGLE_Arange: quantity
unit
adj

range
person
sim

cardinality:[1,1]

SINGLE_OF_QUANTITY_ADJ_A SINGLE_OF_PERSON_SIM_A

AGE
 unit:year
 lex: age
 adj: old

HEIGHT
 unit: cm
 lex: height
 adj: tall

FATHER
sim: son,
 daughter

isa

isa

isa

 instance_ofinstance_of instance_of

isa isa

...

isa isa isa

...

...

JUAN

instance_of

lex: juan
age: 30
father:Pedro
heigth: 170

 sdirect link

 simplified link

 Figure 2: A fragment of the conceptual ontology

The attribute classification makes possible a variety
of linguistic coverage for each attribute class. This
classification is reusable. The basic attribute
taxonomy was obtained by considering existing
classifications of attributes of concepts, such as that
by Perkins [8] and the Penman Upper Model [2],
and by means of an empirical evaluation of the
utterances used in different ES applications. All the
attribute classes distinguished are necessary to
reflect different surface realizations. These basic
attribute classes are associated with grammatical
roles: participants (who_does, who_object,
what_object), being (is, includes identifying and
attributive), possession (has), circumstances and
other relationships between two or more objects (of)
and related processes (does). Subclasses are
obtained from basic classes considering other
information relevant for the linguistic realization of
attributes. For example, the class of_quantity, a
subclass of the class attribute of, is used to describe
attributes referring to quantities. Attributes in this
class always involve the use of a unit of measure.
The class of_quantity_adj, a subclass of the class
attribute of_quantity, represents attributes having an
associated adjective (in Spanish these attributes have
an associated verb instead of an adjective).
Compound attributes are also considered. For
instance, the class is_subject, is a subclass of the
class is representing attributes composed of two
words: the first word representing an entity
describing the concept and the second representing a
property or state of this entity.

The taxonomy of attributes is based on Spanish
linguistic distinctions. However, it is intended to be
reusable across several languages because most
linguistic considerations in classifying attributes are
relevant in other languages. An example adapted to
English, given in Figure 2, shows how linguistic
information is represented in the taxonomy of
attributes. Only the relevant classes and instances for
a particular example are represented in the figure.
The plain arrows represent a link between a class (or
instance) and its direct upper class. The dash arrows
represent a link between a class and an upper class
indicating that the direct upper class is not shown in
the figure.
The values of the attributes of concepts are classify
in closed values, open values, menu values (values
consisting of a set of predefined options that will be
displayed in the screen at run-time) and values
representing instances of concepts.
All operations performed over the conceptual
objects are represented as objects in the CO and
organized in a taxonomy. Description of operations
includes both the signature (number and class of the
operands) and the conditions of applicability
(preconditions). Two types of preconditions are
considered: class preconditions, conditions to be
applied during the generation phase and case
preconditions, conditions to be applied at run-time.
The linguistic information covering the
communication with different types of applications
is represented in the LO. Only the sublanguage
necessary to express the CO operations is
considered. In LO, objects representing linguistic
classes are assumed to be common to all
applications. Objects representing the specific
aspects of the information to be expressed for each
application are represented as instances of the
linguistic classes.
The basic linguistic classes in the LO were obtained
from the Penman Upper Model ontology. Linguistic
classes were organized depending on their rank. The
top class is rank. Within the top class, three main
subclasses were defined: the class clause (having a
subject and a finite verb), the class group (having a
head and a variable number of modifiers) and the
class word (representing verbs, nouns, articles, etc).
A fragment of the LO is represented in Figure 3.
The linguistic classes having only one constituent
are classified as terminal classes, and those having
more than one constituent as non-terminal classes.
The instances of terminal classes represent lexical
entries and the instances of non-terminal classes
grammar rules. The terminal classes are further
subclassified in closed and open classes. Closed
classes represent always the same lexical entries for
all applications. Examples of these classes are the
class article and the class preposition. Open
classes, such as the class noun, represent a wide
range of lexical entries, different for each
application.

 RANK

CLAUSE GROUP/PHRASE

ATTRIBUTIVE_SENTENCE

isa ...

NOMINAL_GROUP

...

isa isa

isa isa
...

ATTRIBUTIVE_SENTENCE_CREATE_I

NOMINAL_GROUP_CONCEPT

isa

WORD

NOUN

NOUN_CONCEPT

isa

isa

isa

...

Figure 3: A fragment of the linguistic ontology

LO classes and instances are described by a set of
attributes. These attributes represent the syntactic
and semantic information associated with each
class. In Figure 4, the description of the class
attributive_sentence is shown. Each linguistic
class has an associated linguistic category,
represented in the attribute cat. The sequence of the
syntactic constituents of each class is represented in
the attribute cset (constituent set). For reasons of
efficiency, the information on the superficial
presentations of the class is represented by means of
a different attribute, named pattern. The value of
the attribute pattern is the set of the presentations
allowed for the constituents of a class. Information
for further semantic interpretation is represented by
numbers indicating the order of interpretation of the
constituents associated with each possible pattern.
Each constituent is represented by an attribute
whose value belongs to an existing linguistic class.
The syntactic and semantic agreement between the
constituents of a linguistic class is represented by
the attribute agreement. The value of this attribute

is a list in which constituents are associated with its
syntactic and semantic features. The semantic
information is based on a typified lambda calculus.
In terminal classes, the semantic interpretation
consists of a lambda function and is represented by
an attribute. Functional information associated with
the class is represented in the attributes simple,
polarity, mood, voice and theme. The range of
these attributes is a closed set of values.

ATTRIBUTIVE_SENTENCE

cat: attributive_sentence
cset: subject neg verb attribute
pattern:
(((subject verb neg attribute)(3 ((2 1) 4)))
 ((subject verb attribute)((2 1) 3))...)
subject: nominal_group
verb: copulative_verb
attribute: nominal_like_group
neg: no
agreement: subject (num) verb (num)
simple: yes/no
polarity: positive/negative
mood: declarative/interrogative
voice: active

Figure 4: The class attributive_sentence

As can be seen in the Figure 4, the value of the
attribute cset of the class attributive_sentence is
the sequence of its constituents: subject, neg, verb
and attribute.
There is an attribute representing each of these
constituents, its value being a linguistic class
belonging to the LO. The linguistic classes
nominal_like_group and nominal_group belong
to the class group. The linguistic classes
copulative_verb and no are terminal closed classes,
representing always the same lexical entries. The
attribute pattern represents all the possible
superficial representations of an attributive
sentence, <subject neg verb attribute> and
<subject verb attribute> are being two of them.
The numbers associated with each pattern give the
order of interpretation of the constituents. The
attribute agreement indicates that the number of
the constituent subject and the number of the
constituent verb must be the same. The value of
the attribute simple is yes/no, indicating that the
attributive sentences can be simple or complex. The
attribute polarity indicates that the elements
belonging to the class can be expressed both in a
positive and in a negative form. The value of the

attribute mood is indicative/interrogative ,
indicating that the modality of an attributive
sentence can be indicative and interrogative.
Finally, the attribute voice indicates that only the
value active is allowed for attributive sentences.
In terminal instances, the lexical semantic
interpretation, the lexical realization and the
category are represented in attributes. For
each application, instances of the linguistic
classes necessary to represent CO concepts
and operations are created. Instances of the
class clause are created to represent the NL
expression of CO operations. Application concepts
and their attributes are represented in instances
belonging to the class group. For each application,
the non-terminal instances are represented as the
interface grammar rules and the terminal instances
as the interface lexical entries.
The grammar generated is represented as a Definite
Clause Grammar (DCG) augmented with syntactic
and semantic features. Each grammar rule
incorporates semantic information indicating the
interpretative order of its components. This
information is based on a typified lambda calculus.
Dynamic mechanisms were incorporated to adapt
these resources dynamically to the application
performance during the communication process.
These mechanisms improve the functionality of the
interface by reducing the space and time for
processing user interventions. The needs of these
mechanisms depend on the application complexity
and size. The dynamic mechanisms are implemented
as preconditions attached to the grammar rules that
are evaluated at run-time and categories whose value
is set during the communication process.
Grammar preconditions are obtained from the case
preconditions represented in the operation classes.
For example, the operations to modify an instance
have an associated precondition governing the
existence of the instance. When performing the
linguistic realization of these operations, this
precondition is attached to the corresponding
grammar rules. The grammar preconditions are
evaluated dynamically, restricting the grammar rules
to be considered to the ones representing the
possible operations at each step of the
communication process.
Dynamic categories were incorporated into the
generated grammar to obtain the proper values
associated with these categories at run-time. Two
different types of dynamic categories are
distinguished: dynamic categories representing
instances of concepts generated at run-time and
those representing a proper noun and a number that
will be introduced by the user at run-time.

3 Relating the conceptual ontology
to the linguistic ontology in order
to obtain application-restricted
interfaces

One of the most important goals in this work is the
study of how general relations between two
ontologies representing different types of knowledge
can be established. This study have been focused on
the relations between the application specifications
represented in the CO, described in previous section,
and the general linguistic knowledge represented in
the LO. A general process relating the CO to the LO
in order to obtain application-restricted NL
interfaces is described in this section.
The general scheme of the process of generating the
interface linguistic sources is described in Figure 5.

for each CONCEPT in APPLICATION_ONTOLOGY do
 generate_CO_instance_operations_modifying_concept_instance (CONCEPT)
 generate_CO_instance_operations_consulting_concept_instance (CONCEPT)
endfor
for each OPERATION_INSTANCE in CASE_ONTOLOGY do
 generate_LO_non_terminal_instances (OPERATION_INSTANCE)
 for each ARGUMENT in OPERATION_INSTANCE do
 generate_LO_terminal_instances (OPERATION_INSTANCE,ARGUMENT)
 endfor
endfor
obtaining_grammar_rules_from_LO_non_terminal_instances
obtaining_lexical_entries_from_LO_terminal_instances

Figure 5: The general scheme of the generation
procedure

Basically, this process consists of relating the
possible operations for an application represented in
the CO to the LO. The process is performed in three
steps. The first step consists of generating instances
of the CO operations for the application concepts
represented in the ontology. Instances of operations
creating, modifying and consulting instances are
generated for each ontology concept. Different
operations are generated considering the classes of
the concepts and the attributes.
The second step of the generating process consists of
creating the LO instances supporting the expression
of the operations generated in the first step. For each
operation, one or more instances of the class clause

and instances of the class group are created.
Finally, the third step consists of representing the
LO instances created in the second step as DCG
rules and lexical entries. The linguistic instances
expressing the conceptual operations are represented
as interface grammar rules. The linguistic instances
representing the operation arguments (these are the
concepts and their attributes) are represented as the
interface lexical entries.
The first two steps of the process are performed by a
set of control rules. Rules are of the form:
conditions --> actions. Conditions basically consist
of descriptions of objects. Rules are applied over
objects in the CO and the LO satisfying required
descriptions. The actions performed by the rules are
operations consulting and modifying the objects in
the CO and LO4 . Rules are grouped in rulesets.
Each ruleset performs a different action and each
rule in the ruleset considers a different type of
object. A mechanism controlling the activation of
the rulesets and the rules in the rulesets has been
incorporated.
Control rules are implemented in the Production
Rules Environment (PRE), a rule-oriented
environment specially built for NL, described in [1].
It incorporates the capabilities necessary for the
control rules performance: the use of rulesets, a
powerful and flexible control mechanism and a
working memory where objects can be created,
consulted and modified. In PRE the rulesets are
organized in a multilevel hierarchy allowing
inheritance. Each ruleset ensures the activation of
the rules that belong to it. The top of the hierarchy is
the TOP ruleset. This ruleset must be present in any
PRE application, whilst other rulesets are optional.
All rules in PRE consist of two sets: the condition
set and the action set. The condition set consists of
all the statements describing the conditions
governing the application of the rule5 . The action
set consists of all the actions to be performed when
applying the rule. Each object in the working
memory (WM) is described by a word describing the
type of the object and a variable number of attribute-
value pairs. Only four operations are used in the
action part of the rule: creation and deletion of

4 For the sake of effectiveness, ontologies objects
are represented in an active data storage device,
the working memory, where these objects can be
consulted, created and deleted.

5 In addition, other features are provided in the
condition set describing the rule. These are: rule,
identifying the rule; ruleset, identifying the ruleset
to which the rule belongs; control, stating the rule
application mode; priority, controlling the
application rule order within the rule set and the
statements establishing the conditions governing the
working memory objects to apply the rule.

objects, activation of a rule set and assignment of
values to variables. The assignment operation allows
the use of LISP functions. In the general set of
control rules designed and implemented to generate
NL interfaces for different applications, only six
different LISP functions are used.
An example of a control rule, implemented in PRE,
is shown in Figure 6. This rule ensures the
generation of an instance of the operation create-
instance-with-no-name (ocinn) for each concept in
the CO. Previously to the application of this rule,
the CO concepts had been represented in the
working memory. Each CO concept is described by
the word object, its name (represented by the
attribute ^name and the variable ?name, with the
concept name) and the preconditions associated
with the concept (̂ pcobject ?pcc). This rule is
applied over all WM objects satisfying this
description. The action part of the rule consists of
five statements. In the first statement, the result of
the function create-name, concatenating the name
of the operation ocnni to the concept name
(represented in the variable ?name), is assigned the
to the variable ?op. The second statement creates an
instance of the CO operation ocnni by calling to the
predicate create-object. The third statement calls to
the function add-slots to fill the instance attributes
concept and pcc. A WM object representing the
generated instance is created in the fourth
statement. Finally, the last statement uses the
operator delete to remove the WM object
representing the CO concept that has been
previously matched.
The user can define different control rules
considering different levels of linguistic coverage.
Current implementation makes possible, through
the performance of the appropriate control rules, the
generation of grammars covering ellipsis,
subordinate clauses, a variety of anaphoric
references and other linguistic phenomenon.
However, to define a new rule it is necessary to
know the rules formalism as well as the details
about the CO and LO implementation. In order to
make the implementation of the system transparent
to the user and facilitate its use, a general basic set
of control rules for generating application-restricted
NLIs was defined and implemented. This basic set
of rules establish general relations between the CO
and the LO in order to obtain the linguistic
resources necessary for application-restricted
interfaces. The same basic set of control rules can
be used for different types of applications.
Three different types of interfaces have been taken
into account when defining the basic set. These
types are interfaces guiding the users to describe
particular cases of the application general
knowledge, interfaces allowing the users to consult
the application knowledge, and interfaces
supporting both, consults and descriptions.

The rules in the basic set have been revised
to generate the minimum number of
grammar rules to express, in a natural way,
all possible operations over the CO. Several
linguistic realizations for the same
operation are considered. Current
implementation ensures the generation of
grammars covering ellipsis, coordination,
direct and indirect interrogation and other
linguistic phenomenon. The basic set of
control rules has been applied to an expert
system in law for generating an application-
restricted NL interface. This set is described
bellow.

(rule instance_operation
 ruleset creating_instance
 priority 1
 control forever
 (object ^name ?name ^pcobject ?pcc)
 ->
 (?op := (create-name 'ocinn ?name))
 (?COop := (create-object ?op 'ocinn))
 (?opsnarg := (add-slots ?op '((con ?name) (pcc ?pcc))))
 (create ocisn ^name ?op ^concept ?name ^pcobject ?pcc)
 (delete 1))

 Figure 6: The rule instance_operation

In the basic control rules proposed, rules are
grouped in 8 rulesets. The first ruleset is the TOP
ruleset, responsible for the initialization process.
This ruleset checks the initial conditions, describing
the type of the interface to be generated, and
activates the appropriate ruleset for each case. Four
different rulesets are in charge of the first step of the
process, when instances of CO operations are
created. These rulesets are: the ruleset
creating_instance, the ruleset modifying_instance,
the ruleset consulting_instance and the ruleset
consulting_attribute. The set creating_instance is
responsible for generating instances of the
operations creating case ontology objects: the
operation create-instance-with-no-name, for
creating anonymous instances and the operation
create-instance-with-name, for creating instances
with a proper noun. This set is applied over all WM
objects representing the CO concepts. For each
concept, instances of the two operations are created
in the case ontology as well as in the WM. A

simplification of the rule instance_operation,
belonging to this ruleset is described in the Figure 6.
The ruleset modifying_instance is responsible for
generating instances of the operations modifying
case ontology objects.
Three different rulesets are responsible for the
second step of the process, when instances of LO
objects supporting the NL expression of the
application operations are created. These rulesets are
the ruleset grammar, the ruleset argument , and the
ruleset lexical_entries. The first ruleset performs the
creation of the LO instances representing the
different operations generated for an application.
The ruleset argument ensures the different types of
operation parameters. The ruleset lexical_entries
performs the creation of the LO terminal instances
representing the operation parameters. These
instances correspond to the interface lexical entries.
The linguistic instances created in this step
of the process incorporate conceptual
information related to the possible
operations for the application. For each
operation class, several linguistic instances
are created. The operation arguments are
represented as the constituents of the LO
instances generated. The operation
preconditions are represented as the
dynamic conditions associated with these
linguistic instances. The syntactic
information is inherited from the linguistic
instances classes. This information consists
of the pattern (all possible presentations of
the constituents) and the syntactic and
semantic agreement between the
constituents. These linguistic instances are
represented as DCG rules.
Terminal linguistic instances representing
each operation argument are generated. In
this process, the different types of arguments
are considered. The types of arguments
distinguished are concepts (classes and instances),
attributes (represented by simples names or
compound names) and values (close values, open
values, menu values and values representing concept
instances).
The four attributes representing each interface
lexical entry, the string, the category, the semantic
interpretation and the general linguistic class the
category belongs, are described in terminal
instances. The semantic information, semantic
restrictions associated with the category and the
semantic interpretation, is obtained from the
operation arguments. The syntactic information, the
category, the syntactic restrictions (number and
gender) and the string, is obtained from the general
lexicon.

Control rules considering different types of user
(casual or habitual, expert or novice) can also be
incorporated to the basic set. New rules can also be
added to the basic set when new information in
relating conceptual knowledge to linguistic
knowledge has to be considered. Different control
rules can be created to encode the conceptual
information representing the application
functionality in the grammar rules and lexical
categories, following different criteria.

4 Applying the proposed
architecture to an expert system on
law

 The proposed organization has been applied to an
expert system on law specializing in building
agreements, SIREDOJ (Intelligent System for Legal
Information Retrieval). The basic function of the
system is to classify the legal cases introduced by
the user according to the knowledge base of the
system in order to obtain the legal conclusions. In its
first review, SIREDOJ was originally built as a
monolithic system with communicative and
functional tasks fully integrated. By incorporating
the described knowledge organization and thus
controlling the user-application communication,
major improvements have been achieved in
efficiency and friendliness.
In order to obtain the appropriate NL-interface for
SIREDOJ, the expert system has been represented
on the basis of the CO general level. 33 concepts (15
belonging to the general level and 18 to the
application level) and 31 different attributes are
required to represent the expert system. All these
attributes have been classified according to the basic
attribute taxonomy. The 31 attributes used in the
application representation belong to 7 different
classes. 10 different menus representing values of
concept attributes are also defined in the CO. New
lexical entries referring to all application concepts
and attributes are incorporated into the general
lexicon. 183 classes are distinguished in the
implemented general LO. 23 of these classes are
closed classes (articles, prepositions, conjunctions
and auxiliary verbs) and 160 are open classes. The

control rules described in previous section are
applied over the CO and LO in order to generate the
interface linguistic resources. Using the current
implementation of the basic set of control rules, only
the 23 closed classes and 17 open classes of the LO
are used for generating the linguistic resources
needed in the interface to SIREDOJ. The generated
grammar contains 28 rules and the generated lexicon
96 lexical entries. The linguistic coverage
considered corresponds to all information the users
were asked for by the system in previous interface.
The generated interface guides the user to introduce
NL sentences containing any required information
by the system in any state. Information requiring a
long menu chain in the original ES interface can be
expressed in one simple sentence in the new
interface.

5 Conclusions

As was pointed out in the introduction, the natural
language mode is an appropriate mode for person-
machine communication because NL is a friendly
mode for expressing complex and diverse
knowledge. There are, however, major problems to
be solved in NL communication. This work is
devoted to providing solutions to these problems and
thus improving efficiency in the development and
performance of NLIs. For this reason, a mechanism
based on the performance of a set of control rules
relating general linguistic knowledge to the
applications specifications in order to obtain
automatically the NL best suited for each
application, is proposed. The representation of the
relevant knowledge in the process of generating an
interface in separate data structures (conceptual
ontology, linguistic ontology, general lexicon and
control rules) gives a great flexibility in adapting
linguistic resources to different applications and
users. Reusing the general knowledge bases and
control rules reduces the high cost of the process of
developing NL interfaces. Encoding application
domain and functionality in the generated grammar
and lexicon plus guiding of the user to introduce the
required information, substantially improves the
functionality of the interface. Dynamic mechanisms
have been incorporated to use information available
at run-time in order to reduce dynamically the
number of interface grammar rules and lexical
entries that must be considered. As a result, the
space and time for processing user interventions is

not large, even when the meanings expressed are
complex.
Applying the designed architecture to an expert
system in law has proved how interfaces to KBSs
can improve their functionality by incorporating NL.
Once the main shortcomings inherent in the use of
NL have been solved, the semantic complexity and
friendliness of the NL mode can improve
communication. Following the proposed generation
process, the cost of creating an application-restricted
grammar is reduced to the cost of adapting the
applications specifications to the general CO plus
introducing the application vocabulary in the
general lexicon. The process of
representing the application knowledge in
the CO could be simplified by the
incorporation of various aids. In particular, guidance
in adapting the representation of the domain and
functionality of the application to the CO would
facilitate this task.

References

[1] Ageno A., Ribas F., Rigau G., Rodr’guez H.,
Verdejo F. “TGE: Tlinks Generation Environment.”
Acquilex II .WP Num. 8, UPC, Dept. LSI, 1993.
[2] Bateman J. et alt. “A General Organization of
Knowledge for Natural Language Processing: the
Penman Upper Model”. Penman Development Note,
USC/Information Sciences Institute, 1990.
[3] Dowing, J. and Hirschman, L. (1988) “A
Dynamic Translator for Rule Pruning in Restriction
Grammar”. V. Dahl and P. Saint-Dizier (eds.)
“Natural Language Understanding and Logic
Programming, II. Elsevier Science Publishers B.V.
(North-Holland), 1988
[4] Gatius M., Rodr’guez H. “Automatically
generating linguistic knowledge sources from
application specifications”. Proceedings of The
Cognitive Science of Natural Language Processing
(CSNLP). Dublin, 1994.
[5] Gatius M., Rodr’guez H. “A domain-restricted
task-guided Natural Language Interface Generator.”
Proceedings of the second edition of the workshop
Flexible Query Answering Systems 96 (FQAS’96).
Roskilde University (Danmark), 1996.
[6] G—mez-P�rez, A. et alt. “Towards a Method to
Conceptualize Domain Ontologies”. Proceedings of

the ECAI workshop on Ontological Engineering.
Budapest, 1996.
[7] Henshel, R. and Bateman J. “Application-driven
automatic subgrammar extraction”. ACL workshop
on Computational Environments for Grammar
Development and Linguistic Engineering. Madrid,
1997.
[8] Perkins, W.A.: “Generation of Natural Language
from information in a frame structure” Data &
Knowledge Engineering Vol. 4, pp 101-114, 1989.
[9] Thomson, G. “ Menu based N.L. interfaces to
DB”. Database Engineering, 1985.
[10] Yen J., Lee J. “A Task-Based Methodology
for Specifying Expert System”. IEEE EXPERT,
Vol. 8, pp 8-15, n_1 1993

