A triad-based architecture for a multipurpose Lustre filesystem at /rdlab
The research and development Lab (context)

- Founded in 2010 at the Computer Science department
- IT support for research groups only
- National and European Projects (FP7, H2020…)
- Technology transfer

The research and development Lab (Infrastructure)

- 160 researchers, 18 research groups
- HPC and Cloud services for research projects
- 400TBytes Lustre (2.12.5 + ZFS) storage
SQUARING THE CIRCLE

• **Why not Lustre?**

 - Well-known project
 - Using Lustre since 2010 (HPC service)
 - Most of our data was already in Lustre
 - Lustre provides a flexible architecture to play

• **OK, but...**

 - Misconceptions (expensive, difficult to understand...)
 - Compatibility issues (vendors and technologies)
 - Who is using Lustre as a general purpose filesystem? (Early adopter panic)
 - Undocumented experiences and good practices
• **Classical Lustre setups**

- **Type A**: Several n-disk volumes OST governed by a single dedicated OSS

- **Type B (HA)**: A multiple-disk OST pair attached to a couple of OSS
THE SCIENTIFIC METHOD

• Cooking the idea

- Identify the main ingredients, goal(s) and constraints
- Set metrics and baselines
- Play: Combine, test and “taste”
THE SCIENTIFIC METHOD II

• Milestones

2015
Just an idea

2018
Lustre ZFS
Deployment

2021
LUG2021

https://rdlab.cs.upc.edu/
• **Ingredients for a triad based recipe**

- 3 physical dedicated disk servers (different model/vendors?)
- Same disk technology layout
- Dedicated high-speed low-latency network (IB + iSER)

High speed Local Area Network

- Point to Point dedicated low latency network (IB) for iSER device export

ZFS mirror

ZFS mirror

ZFS mirror

ZFS mirror

ZFS mirror

ZFS mirror

LUG2021

https://rdlab.cs.upc.edu/
• **Spicing the triad**

- Group alike ZFS mirrors into ZFS Stripes
- Group ZFS stripes into a 3 OST setup
- “Serve” every OST with HA and a Zpool cache disk

High speed Local Area Network

- OSS 1
- OSS 2
- OSS 3

- **OST 0**
 - ZFS mirror (1+1'+1'") A
 - ZFS mirror (2+2'+2") B
 - ZFS mirror (3+3'+3") C
 - ZFS mirror (4+4'+4") D
 - ZFS mirror (5+5'+5") E
 - ZFS mirror (6+6'+6") F
 - ZFS mirror (7+7'+7") G
 - ZFS mirror (8+8'+8") H
 - ZFS mirror (9+9'+9") I
 - ZFS mirror (10+10'+10") J
 - ZFS mirror (11+11'+11") K
 - ZFS mirror (12+12'+12") L

- **OST 1**

- **OST 2**

- **OST 3**

Zpool cache (active OST only)

Point to Point dedicated low latency network (IB) for iSER device export

Point to Point dedicated low latency network (IB) for iSER device export

ZFS Stripes (A,B,C,D)

ZFS Stripes (E,F,G,H)

ZFS Stripes (I,J,K,L)
WHY A TRIAD-BASED ARCHITECTURE?

• Features and flavors

- Customization

- Performance (dedicated network + I/O split)

- Data cost vs redundancy

- Reliability (data CRC + Quorum)

- Isolation (maintenance, disaster)

- Rebuild impact

- Big File support (in Lustre, size matters)

- ZFS benefits (compression, deduplication, cache…)

LUG2021
https://rdlab.cs.upc.edu/
50 anys sense limits
REFERENCES

[10] https://www.upc.edu

[12] https://rdlab.cs.upc.edu

LUG2021