
ADS (2017/2018): STL: maps, queues and priority queues

Problem 1

You have an initially empty bag, where you can store words, and from where you can delete

words. Words can be repeated. Deleting a word means removing one of its appearances.

Deleting a nonexistent word does not have any effect. At any moment you can be asked for

the (lexicographically) greatest word of the bag, and how many times it is repeated. You

can also be asked for the same about the smallest word.

The input consists of several lines. Each line contains either ’store w’, where w is a word,

or ’delete w’, where w is a word, or ’maximum?’, or ’minimum?’. Every word is made up of

only one or more lowercase letters.

For each query, print the greatest word (or the smallest) contained in the bag at that moment.

If, at the moment of answering any query, the bag is empty, tell so. Follow the format of the

example.

Input

minimum?

store hi

minimum?

delete bye

store hi

maximum?

minimum?

store bye

minimum?

delete bye

delete hi

delete hi

maximum?

delete hi

maximum?

Output

indefinite minimum

minimum: hi, 1 time(s)

maximum: hi, 2 time(s)

minimum: hi, 2 time(s)

minimum: bye, 1 time(s)

indefinite maximum

indefinite maximum

Page 1 of 6

ADS (2017/2018): STL: maps, queues and priority queues Problem 1

Problem 2

Let us define sequences similar to those of Collatz with two parameters x and y. Given a

number n, the algorithm to get the next number is:

• if n is even, we move to n/2 + x;

• otherwise, we move to 3n + y.

The standard Collatz sequence corresponds to x = 0 and y = 1.

Given x, y and a starting number n, compute the length of the cycle reached by applying

the above algorithm. For example, if x = 1, y = 5 and n = 8, then the defined sequence is

8, 5, 20, 11, 38, 20, 11, 38, so the cycle has length 3.

Since numbers can become very large, and we have no mathematical guarantee that we will

reach a cycle, we will stop if at some point the sequence reaches a number greater than 108.

The input consists of several cases, each with three natural numbers x, y and n. Assume

that both x and y do not exceed 1000, that y is odd (for the sequence to have some interest),

and that the initial n is not larger than 108. For every case, print the length of the cycle, or

the first number that strictly exceeds 108.

Observation: take into account that the sequences usually reach fast a short cycle.

// INCLUDE ANY LIBRARY YOU MAY NEED

in t max_cycle(i n t n , i n t x , i n t y) {
// WRITE YOUR CODE HERE

}

i n t main () {
i n t n , x , y ;

wh i l e (cin >> n >> x >> y) {
cout << max_cycle(n , x , y) << endl ;

}
}

Page 2 of 6

ADS (2017/2018): STL: maps, queues and priority queues Problem 2

Problem 3

We want to build an inverted index from a sequence of words. An inverted index maps each

of the words in the sequence with its positions. For example, given the following sequence

of words:

house cat dog cat cat pet

its corresponding inverted index is:

• cat: 1 3 4

• dog: 2

• house: 0

• pet: 5

Write a program that reads a sequence of words and prints its corresponding inverted index

in lexicografical ordered as shown in the previous example.

Problem 4

A football club does not usually have enough tickets for all its supporters, so some method is

needed to distribute them: When a supporter asks for a ticket, if there is any available at that

moment, the supporter immediately gets one. Otherwise, the supporters code is recorded.

When a ticket is available, if there is no recorded code at that moment, the ticket is stored.

Otherwise, the ticket is given to the first supporter who has asked for the ticket. Write

a program to distribute tickets among supporters according to the method just described

above.

The input consists of several events: T for an available ticket, and S for a supporter asking

for a ticket. In the latter case, it follows the supporter’s code (a non-empty string with

lowercase letters). The same supporter can ask for more than one ticket.

Print the codes of the supporters who get tickets, in the order in which this happens. Print

two lines with final information: count how many tickets are left and count the number of

supporters who unsuccessfully asked for tickets.

Problem 4 continued on next page. . . Page 3 of 6

ADS (2017/2018): STL: maps, queues and priority queuesProblem 4 (continued)

Input

S abcdef

S zyxwvu

S rr

S aaaaaaaa

S aabbccdd

S aabbccdc

S aabbcd

T

T

T

T

T

T

E

Output

abcdef

zyxwvu

rr

aaaaaaaa

aabbccdd

aabbccdc

0 ticket(s) left

1 supporter(s) with no ticket

BONUS: what would change if tickets, when available, are given to the supporter with the

lexicographycally greatest code? And if it is given to the lexicographycally smallest code?

Problem 5

We have a queue of N robots of which only X are to be selected. Each robot has some power

associated with it. There are X iterations on the queue. In each iteration, X robots are

dequeued (if queue has less than X entries, all of them will be dequeued) and the one with

maximum power is selected and remaining robots are enqueued back to the queue (in the

order they were dequeued) but their power is decreased by one unit. If there are multiple

robots with maximum power in those dequeued robots, the one which comes first in the

queue is selected. If at any moment power of any robot becomes 0, it can’t be decremented

any further so it remains the same.

Write a program that, in each iteration, tells us the position of each selected robot in the

current queue.

The first line of the input consists of two integers N and X, denoting the number of robots

in the queue and the number of robots that have to be selected, respectively. Then, it follows

a sequence p1, . . . , pN of N naturals where pi denotes the power of robot at position i.

For each of the X iterations, output the position of the selected robot in that iteration.

Position refers to the index at which the robot is present in the current queue (1 based

Problem 5 continued on next page. . . Page 4 of 6

ADS (2017/2018): STL: maps, queues and priority queuesProblem 5 (continued)

indexing).

Input 1

6 5

1 2 2 3 4 5

Output 1

5

1

4

1

1

Input 2

3 4

1 2 4

Output 2

3

2

1

0

Problem 6

Write a program to keep a collection of integer numbers, perhaps with repetitions, while

performing the following operations:

• S x : Stores a copy of the given number x.

• A : Asks for the greatest number.

• R : Removes the greatest number (one of them, if it is repeated).

• I x : Increases the greatest number (one of them, if it is repeated) in x units.

• D x : Decreases the greatest number (one of them, if it is repeated) in x units.

The input consists of several operations. For every query, the current greatest number. Print

also an error line for each operation (except storing) when the collection is empty.

Problem 6 continued on next page. . . Page 5 of 6

ADS (2017/2018): STL: maps, queues and priority queuesProblem 6 (continued)

Input

A

S 10 A

S -7 A

S 20 A

I 3 A

D 15 A

R A

S 30 A

D 37 R A

R A

R I 1

A

R

D 3

S 4 A

Output

error!

10

10

20

23

10

8

30

-7

-7

error!

error!

error!

error!

4

Page 6 of 6

