
ADS (2017/2018): STL: lists and stacks

Problem 1

Given two ordered lists A and B, write a function intersection that returns a new ordered

list with their common elements. None of the two lists have repeated elements.

For example, given the lists 2, 3, 6, 9 and 2, 5, 9, the result should be 2, 9.

#inc lude < l i s t >

list<int> intersection(const list<int>& A , const list<int>& B) {
// WRITE YOUR CODE HERE

}

Problem 2

Given an ordered list of integers, write a function largest null segment that returns the size

of its largest null segment. A null segment of the list is a compact sublist in which the sum

of its elements is 0.

For example, given the list: −9,−7,−6,−4,−3,−1, 3, 5, 6, 8, 9, its largest null segment con-

tains seven elements (i.e., −6,−4,−3,−1, 3, 5, 6). Note that the segment −4,−3,−1, 3, 5 is

also null, but it’s not the largest one.

#inc lude < l i s t >

i n t largest_null_segment(const list<int>& A) {
// WRITE YOUR CODE HERE

}

Problem 3

Given a list of n integers, we want to play the following game:

• initialy, all integers are 1;

• each time the user introduces a pair of values (x, y) where x is an integer and y is a

boolean, you have to find the first integer i in the list such that the sum from the first

element in the list to that element is bigger than x. Then, if y is true, you have to

increase that integer by 1, and if y is false, you have to decrease that integer by 1.

• as we want to avoid elements in the list equal to zero, when this happens you have to

add one to each integer.

Problem 3 continued on next page. . . Page 1 of 4

ADS (2017/2018): STL: lists and stacks Problem 3 (continued)

Complete the code given below taking into account that x is in the range [0, s) (s being

the current sum of integers in the list), and assuming that we will always have at least one

element in the list.

#inc lude < l i s t >

#inc lude <iostream>

us ing namespace std ;

// Pre : n >= 0

// Post : r e tu rn s a l i s t o f n 1 ’ s .

list<int> create_list_with_1(i n t n) {
// WRITE YOUR CODE HERE

}

// Pre : l s t i s a va l i d l i s t ,

// x in the range [0 , s) , where s i s the sum of e lements in the l i s t

// y i s 0/1

// Post : l s t i s modi f i ed as de s c r ibed in the statement

void modify_list(list<int>& lst , i n t x , bool y) {
// WRITE YOUR CODE HERE

}

void print(const list<int>& l) {
list<int > : :const_iterator i = l .begin () ;

whi l e (i != l .end ()) {
cout << ∗i << endl ;

++i ;

}
}

// The input i s the number o f e lements o f the l i s t (at l e a s t one) ,

// and then as many pa i r s o f i n t e g e r s x y as you want

i n t main () {
i n t n ;

cin >> n ;

list<int> lst = create_list_with_1(n) ;

i n t x ;

bool y ;

wh i l e (cin >> x >> y) {
modify_list(lst , x , y) ;

}
print(lst) ;

}

Page 2 of 4

ADS (2017/2018): STL: lists and stacks Problem 3

Problem 4

Write a function that checks the correct parenthesization of a given word by using a stack

of characters.

#inc lude <stack>

bool correct(const s t r i n g& w) {
// WRITE YOUR CODE HERE

// you can ac c e s s each char as w[p o s i t i o n]

// the s i z e o f w i s w. s i z e ()

}

i n t main () {
s t r i n g word ;

wh i l e (cin >> word) {
i f (correct(word)) cout << word << ” i s c o r r e c t . ” << endl ;

e l s e cout << word << ” i s not c o r r e c t . ” << endl ;

}
}

Problem 5

Consider this program (whose inclusions have been removed):

void print(i n t n) {
i f (n > 0) {

cout << ’ ’ << n ;

print(n − 1) ;

print(n − 1) ;

}
}

i n t main () {
i n t n ;

wh i l e (cin >> n) {
print(n) ;

cout << endl ;

}
}

Take a look at the sample input and sample output to see what this program prints for every

given number.

Problem 5 continued on next page. . . Page 3 of 4

ADS (2017/2018): STL: lists and stacks Problem 5 (continued)

Without modifying the main(), reimplement the procedure print(n) with no calls at all,

recursive or not, so that the output of the program does not change.

The input consists of several strictly positive natural numbers. For every number, print a

line identical to the one written by the program above.

Observation: to solve this exercise, the only containers that you should use are stacks.

Input

1

2

3

4

Output

1

2 1 1

3 2 1 1 2 1 1

4 3 2 1 1 2 1 1 3 2 1 1 2 1 1

Page 4 of 4

