ADS (12017/2018): Pointers

Problem 1

CATCH THE BUG:

The following listings show some of the most common bugs when using pointers. Try to find
them without executing the code. Note that some of them will not always cause a runtime

error (sometimes they do, but sometimes they don’t).

Deallocated pointers (1):

#include <iostream> #include <iostream>

using namespace std; using namespace std;

int main() { int xgetPtrToFive() {
int xp; int x = 5;
if (true) { return &x;
int x = 5; }
p = &x;
} int main() {
cout << xp << endl; int xp = getPtrToFive();
1 cout << *p << endl;
}

Deallocated pointers (2):

#include <iostream> #include <iostream>

using namespace std; using namespace std;

int main() { int main() {

int *x = new int (4); int *x = new int (4);
delete x; int xy = x;
cout << #*x << endl; delete x;

} cout << *y << endl;

#include <iostream>

using namespace std;

int main() {
int *x = new int (4);
int xy = x;

delete x;

delete y;
}

Problem 1 [Deallocated pointers (2):] continued on next page. .. Page 1 of 6

ADS (2017/2018): Pointers Problem 1

Leaked memory:

#include <iostream>

#include <iostream >
using namespace std;

using namespace std;

int main() { struct Node {

int xp; int val;
for (int i = 0; 1 < 3; ++i) { Node s*next;
p = new int(i); s

cout << *p << endl;

int main() {

Node xhead = new Node;
head—>next
delete head;

new Node;
#include <iostream>

using namespace std; }

int main() {

. #include <iostream >
int xp; .
.) .) using namespace std;
for (int i = 0; 1 < 3; ++i) {
= new int(1i); .
P (1) int main() {
cout << *xp << endl; . .
) int xp = new int (3);
p = NULL;
delete p;
) delete p;

Uninitialized and non-dynamic memory:

#include <iostream> #include <iostream>

using namespace std; using namespace std;

int main() { int main() {

Node xhead; int x = 5;

int *p = &x;

cout << xp << endl;
delete p;

cout << head—>value << endl;

Problem 1 continued on next page. .. Page 2 of 6

ADS (2017/2018): Pointers Problem 1 (continued)

Reference and pointer parameters:

#include <iostream>

using namespace std;

void swap(int a, int b) {

int aux = a;
a = b;
b = aux;
}
int main() {
int x = 5;
int vy = 7;
swap(x, vy);
cout << x << 7 7 << y << endl;

Problem 2

SINGLY-LINKED LISTS:

In this problem we will consider the classic singly linked list structure:

e a single head pointer points to the first node in the list (the empty list is represented
by a NULL head pointer);

e cach node is a tuple with two fields: the data value, and a single next pointer to the
next node;

struct Node {

int data;

Node *xnext;

I
e the next pointer of the last node is NULL.

The following code creates a list with four nodes having values 1, 2, 3, and 4, respectively.

Problem 2 continued on next page. .. Page 3 of 6

ADS (12017/2018): Pointers

Problem 2 (continued)

Listing 1: mylist.h
#ifndef MYLIST H
#define MYLIST_H

struct Node {
int data;

Node *next;

}s

void push(Node s#xheadRef, int newValue);
#endif

Listing 2: mylist.cpp
#include ”"mylist.h”

void push(Node *xheadRef, int newValue) {
Node #*n = new Node;
n—>next = xheadRef;
n—>data = newValue;
theadRef = n;

Listing 3: testlist.cpp
#include <iostream>
#include ”mylist.h”

using namespace std;

int main() {
Node xhead = NULL; // empty list
for (int i = 4; 1 > 0; —1i) push(&head, i);

modifying the testlist.cpp file.

count

int count(Node #xhead, int searchFor) {
// Your code here

Modify mylist.h and mylist.cpp to include each of the following functionalities. Test them

Write a count function that counts the number of times a given int occurs in a list.

Problem 2 continued on next page. ..

Page 4 of 6

ADS (2017/2018): Pointers Problem 2 (continued)

getNth

Write a getNth function that takes a linked list and an integer index and returns the data
value stored in the node at that index position. We will use the usual C++ numbering
convention that the first node is index 0, the second is index 1, and so on. In case the index

is not valid, the function should return -1.

int getNth(Node #xhead, int index) {
// Your code here

}

deleteList

Write a function deleteList that takes a list, deallocates all of its memory and sets its head

pointer to the empty list.

void deletelList(Node xxheadRef) {
// Your code here

}

pop

Write a pop function that takes a non-empty list, deletes the head node, and returns the
head node’s data.

int pop(Node #xheadRef) {
// Your code here

}

insertNth

Write a function insertNth that inserts a new node at a given index within a list. The index

is in the range [0, ..., length], and the new node should be inserted so as to be at that index.

void insertNth(Node #xheadRef, int index, int newValue) {

// Your code here

}

Problem 2 continued on next page. .. Page 5 of 6

ADS (2017/2018): Pointers Problem 2 (continued)

append

Write a function append that takes two lists Ist1 and 1st2, appends 1st2 onto the end of Ist1,
and then sets Ist2 to the empty list.

void append(Node *%lstlRef, Node #x1lst2Ref) {
// Your code here

}

sortedInsert

Write a function sortedInsert that given a list that is sorted in increasing order, and a single

node, inserts the node into the correct sorted position in the list.

void sortedInsert(struct nodexx headRef, struct node* newNode) {

// Your code here

}

reverse

Write an iterative function reverse that reverses a list by rearrenging all the next pointers

and the head pointer. Ideally, reverse should only need to make one pass of the list.

void reverse(Node #xheadRef) {
// Your code here

}

Bonus: Try a recursive solution to this problem.

Page 6 of 6

