Automatic Generation of Polynomial Invariants for System Verification

Enric Rodríguez-Carbonell

Technical University of Catalonia
Plan of the Talk

- **Introduction**
 - Need for program verification
 - Invariants and abstract interpretation
 - Polynomial invariants
Plan of the Talk

- Introduction

- Generation of Invariant Polynomial Equalities
 (with D. Kapur: ISSAC’04, SAS’04)
 - Related work
 - Abstract domain of ideals
 - Particular case: loops without nesting
Plan of the Talk

- Introduction
- Generation of Invariant Polynomial Equalities
- Applications of Polynomial Equality Invariants
 - Imperative programs
 (with D. Kapur: ICTAC’04)
 - Petri nets
 (with R. Clarisó, J. Cortadella: ATPN’05)
 - Hybrid systems
 (with A. Tiwari: HSCC’05)
Plan of the Talk

- Introduction
- Generation of Invariant Polynomial Equalities
- Applications of Polynomial Equality Invariants
- Generation of Invariant Polynomial Inequalities
 (with R. Bagnara, E. Zaffanella: SAS’05)
 - Abstract domain of polynomial cones
Plan of the Talk

- Introduction
- Generation of Invariant Polynomial Equalities
- Applications of Polynomial Equality Invariants
- Generation of Invariant Polynomial Inequalities
- Conclusions and Future Work
Introduction

Generation of Invariant Polynomial Equalities

Applications of Polynomial Equality Invariants

Generation of Invariant Polynomial Inequalities

Conclusions and Future Work
Need for Software Verification

- Critical systems
 - safety
 - security
 - ...

Fundamental finding errors asap. Invariants are crucial for program verification!
Need for Software Verification

- Critical systems
 - safety
 - security
 - ...

Failure of the Ariane 5 launcher in 1996
Need for Software Verification

- Critical systems
 - safety
 - security
 - ...

Failure of the Ariane 5 launcher in 1996

- Fundamental finding errors asap.
- Invariants are crucial for program verification!
CORRECTNESS OF THE SYSTEM:
\[\text{SYSTEM STATES} \cap \text{BAD STATES} = \emptyset \]
CORRECTNESS OF THE SYSTEM:

\[\text{SYSTEM STATES } \cap \text{BAD STATES } = \emptyset \]

SUFFICIENT CONDITION:

\[\text{INVARIANT } \cap \text{BAD STATES } = \emptyset \]
Abstract interpretation allows computing invariants:
Abstract interpretation allows computing invariants:

- intervals (Cousot & Cousot 1976, Harrison 1977)

\[x \in [0, 1] \land y \in [0, \infty) \]
Overview of Abstract Interpretation

Abstract interpretation allows computing invariants:

- **Intervals** (Cousot & Cousot 1976, Harrison 1977)
 \[x \in [0, 1] \land y \in [0, \infty) \]

- **Linear inequalities** (Cousot & Halbwachs 1978, Colón & Sankaranarayanan & Sipma 2003)
 \[x + 2y - 3z \leq 3 \]
Abstract interpretation allows computing invariants:

- **intervals** (Cousot & Cousot 1976, Harrison 1977)
 \[x \in [0, 1] \land y \in [0, \infty) \]

- **linear inequalities** (Cousot & Halbwachs 1978, Colón & Sankaranarayanan & Sipma 2003)
 \[x + 2y - 3z \leq 3 \]

- **polynomial equalities and inequalities**
 \[x = y^2 \quad (a + 1)^2 > b^2 \geq a^2 \]
Sets of variable values overapproximated by abstract values

- Intervals
- Linear Inequalities
- Polynomial Equalities
Abstract Interpretation: Operations

- Invariants computed by symbolic execution of the system with abstract values
- This requires abstracting concrete operations on states:
 - Image
 - Projection
 - Union
 - Intersection

assignments
assignments
merging in loops and conditionals
guards in loops and conditionals
Abstract Interpretation: Extrapolation

- Termination is not guaranteed in general
- Widening operators ensure termination by extrapolating union
- Termination is not guaranteed in general
- Widening operators ensure termination by extrapolating union
- Termination is not guaranteed in general
- Widening operators ensure termination by extrapolating union
Why Care about Polynomial Invariants?

- Linear invariants used to verify many classes of systems:
 - Imperative programs
 - Logic programs
 - Hybrid systems
 - ...
Why Care about Polynomial Invariants?

- Linear invariants used to verify many classes of systems:
 - Imperative programs
 - Logic programs
 - Hybrid systems
 - …

- But some applications require polynomial invariants:

The abstract interpreter ASTRÉE employs polynomial invariants to verify absence of run-time errors in flight control software
Introduction

Generation of Invariant Polynomial Equalities
- Related work
 - Abstract domain of ideals
 - Particular case: loops without nesting

Applications of Polynomial Equality Invariants

Generation of Invariant Polynomial Inequalities

Conclusions and Future Work
Related Work (1)

- Iterative fixpoint approaches
 - Forward propagation
 - Rodríguez-Carbonell & Kapur 2004
 - Colón 2004
 - Backward propagation
 - Müller-Olm & Seidl 2004

- Constraint-based approaches
 - Sankaranarayanan & Sipma & Manna 2004
<table>
<thead>
<tr>
<th>Work</th>
<th>Restrictions</th>
<th>Conds =</th>
<th>Conds ≠</th>
<th>Complete</th>
</tr>
</thead>
<tbody>
<tr>
<td>MOS, POPL’04</td>
<td>bounded deg</td>
<td>no</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>SSM, POPL’04</td>
<td>fixed form</td>
<td>yes</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>MOS, IPL’04</td>
<td>fixed form</td>
<td>no</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>COL, SAS’04</td>
<td>bounded deg</td>
<td>yes</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>RCK, SAS’04</td>
<td>bounded deg</td>
<td>yes</td>
<td>yes</td>
<td>yes*</td>
</tr>
<tr>
<td>RCK, ISSAC’04</td>
<td>no restriction</td>
<td>no</td>
<td>no</td>
<td>yes</td>
</tr>
</tbody>
</table>
Introduction

Generation of Invariant Polynomial Equalities
 - Related work
 - Abstract domain of ideals
 - Particular case: loops without nesting

Applications of Polynomial Equality Invariants

Generation of Invariant Polynomial Inequalities

Conclusions and Future Work
States abstracted to ideal of polynomials evaluating to 0
Overview of our Method

- States abstracted to ideal of polynomials evaluating to 0
- Programming language admits
 - Polynomial assignments: \(\text{variable} := \text{polynomial} \)
 - Polynomial equalities and disequalities in conditions:
 \[
 \text{polynomial} = 0, \quad \text{polynomial} \neq 0
 \]
Overview of our Method

- States abstracted to ideal of polynomials evaluating to 0
- Programming language admits
 - Polynomial assignments: \(\text{variable} := \text{polynomial} \)
 - Polynomial equalities and disequalities in conditions: \(\text{polynomial} = 0 \), \(\text{polynomial} \neq 0 \)
- Implementation successfully applied to many programs
Overview of our Method

- States abstracted to ideal of polynomials evaluating to 0
- Programming language admits
 - Polynomial assignments: $\text{variable} := \text{polynomial}$
 - Polynomial equalities and disequalities in conditions:
 \[
 \text{polynomial} = 0 \quad , \quad \text{polynomial} \neq 0
 \]
- Implementation successfully applied to many programs
- Ideals of polynomials represented by special finite bases of generators: Gröbner bases
Overview of our Method

- States abstracted to ideal of polynomials evaluating to 0
- Programming language admits
 - Polynomial assignments: \texttt{variable := polynomial}
 - Polynomial equalities and disequalities in conditions:
 \[
 \text{polynomial} = 0 \ , \ \text{polynomial} \neq 0
 \]
- Implementation successfully applied to many programs
- Ideals of polynomials represented by special finite bases of generators: Gröbner bases
- Many tools available manipulating ideals, Gröbner bases, e.g. Macaulay 2, Maple
Intuitively, an ideal is a set of polynomials and all their consequences.
Intuitively, an ideal is a set of polynomials and all their consequences

An ideal is a set of polynomials I such that

1. $0 \in I$
2. If $p, q \in I$, then $p + q \in I$
3. If $p \in I$ and q any polynomial, $pq \in I$
Ideals of Polynomials (2)

E.g. polynomials evaluating to 0 on a set of points S
E.g. polynomials evaluating to 0 on a set of points \(S \)

- 0 evaluates to 0 everywhere

\[\forall \omega \in S, \quad 0(\omega) = 0 \]
Ideals of Polynomials (2)

- E.g. polynomials evaluating to 0 on a set of points S
 - 0 evaluates to 0 everywhere

$$\forall \omega \in S, \quad 0(\omega) = 0$$

- If p, q evaluate to 0 on S, then $p + q$ evaluates to 0 on S

$$\forall \omega \in S, \quad p(\omega) = q(\omega) = 0 \implies p(\omega) + q(\omega) = 0$$
Ideals of Polynomials (2)

- E.g. polynomials evaluating to 0 on a set of points \(S \)
 - 0 evaluates to 0 everywhere

\[
\forall \omega \in S, \quad 0(\omega) = 0
\]

- If \(p, q \) evaluate to 0 on \(S \), then \(p + q \) evaluates to 0 on \(S \)

\[
\forall \omega \in S, \quad p(\omega) = q(\omega) = 0 \implies p(\omega) + q(\omega) = 0
\]

- If \(p \) evaluates to 0 on \(S \), then \(pq \) evaluates to 0 on \(S \)

\[
\forall \omega \in S, \quad p(\omega) = 0 \implies p(\omega) \cdot q(\omega) = 0
\]
Ideals of Polynomials (3)

- E.g. multiples of a polynomial p, $\langle p \rangle$
 - $0 = 0 \cdot p \in \langle p \rangle$
 - $q_1 \cdot p + q_2 \cdot p = (q_1 + q_2)p \in \langle p \rangle$
 - If q_2 is any polynomial, then $q_2 \cdot q_1 \cdot p \in \langle p \rangle$
Ideals of Polynomials (3)

- E.g. multiples of a polynomial p, $\langle p \rangle$
 - $0 = 0 \cdot p \in \langle p \rangle$
 - $q_1 \cdot p + q_2 \cdot p = (q_1 + q_2)p \in \langle p \rangle$
 - If q_2 is any polynomial, then $q_2 \cdot q_1 \cdot p \in \langle p \rangle$

- In general, ideal generated by p_1, \ldots, p_k:

$$\langle p_1, \ldots, p_k \rangle = \{ \sum_{j=1}^{k} q_j \cdot p_j \text{ for arbitrary } q_j \}$$
Ideals of Polynomials (3)

- E.g. multiples of a polynomial \(p, \langle p \rangle \)
 - \(0 = 0 \cdot p \in \langle p \rangle \)
 - \(q_1 \cdot p + q_2 \cdot p = (q_1 + q_2)p \in \langle p \rangle \)
 - If \(q_2 \) is any polynomial, then \(q_2 \cdot q_1 \cdot p \in \langle p \rangle \)

- In general, ideal generated by \(p_1, \ldots, p_k \):
 \[
 \langle p_1, \ldots, p_k \rangle = \left\{ \sum_{j=1}^k q_j \cdot p_j \text{ for arbitrary } q_j \right\}
 \]

- Hilbert’s basis theorem: all ideals are finitely generated
 \(\longrightarrow \) there is finite representation for ideals
Several operations available. Given ideals I, J in the variables x_1, \ldots, x_n:
Several operations available. Given ideals I, J in the variables x_1, \ldots, x_n:

- **projection**: $I \cap \mathbb{C}[x_1, \ldots, x_{i-1}, x_{i+1}, \ldots, x_n]$
Operations with Ideals

Several operations available. Given ideals I, J in the variables x_1, \ldots, x_n:

- **projection**: $I \cap \mathbb{C}[x_1, \ldots, x_{i-1}, x_{i+1}, \ldots, x_n]$
- **addition**: $I + J = \{ p + q | p \in I, q \in J \}$
Several operations available. Given ideals I, J in the variables x_1, \ldots, x_n:

- **projection**: $I \cap \mathbb{C}[x_1, \ldots, x_{i-1}, x_{i+1}, \ldots, x_n]$
- **addition**: $I + J = \{ p + q \mid p \in I, q \in J \}$
- **quotient**: $I : J = \{ p \mid \forall q \in J, p \cdot q \in I \}$
Several operations available. Given ideals I, J in the variables x_1, \ldots, x_n:

- **projection**: $I \cap \mathbb{C}[x_1, \ldots, x_{i-1}, x_{i+1}, \ldots, x_n]$
- **addition**: $I + J = \{ p + q \mid p \in I, q \in J \}$
- **quotient**: $I : J = \{ p \mid \forall q \in J, p \cdot q \in I \}$
- **intersection**: $I \cap J$
Operations with Ideals

Several operations available. Given ideals I, J in the variables x_1, \ldots, x_n:

- **projection:** $I \cap \mathbb{C}[x_1, \ldots, x_{i-1}, x_{i+1}, \ldots, x_n]$
- **addition:** $I + J = \{p + q \mid p \in I, q \in J\}$
- **quotient:** $I : J = \{p \mid \forall q \in J, p \cdot q \in I\}$
- **intersection:** $I \cap J$

All operations implemented using **Gröbner bases**

These are used in abstraction of concrete semantics
Our Widening Operator

- Parametric widening \(I \nabla_d J \)
- Based on taking polynomials of \(I \cap J \) of degree \(\leq d \)
Our Widening Operator

- Parametric widening $I \nabla_d J$
- Based on taking polynomials of $I \cap J$ of degree $\leq d$
- Termination guaranteed
Example

\begin{verbatim}
 a := 0; b := 0;
 while b \neq c do
 a := a + 2b + 1; b := b + 1;
 end while
\end{verbatim}
Example

\[
a := 0; b := 0;
\]

while \(b \neq c \) do

\[
a := a + 2b + 1; b := b + 1;
\]

end while

\[
F_0(I) = \langle 0 \rangle \\
F_1(I) = (\langle a \rangle + \langle I_0(a \leftarrow a') \rangle) \cap \mathbb{C}[a, b, c] \\
F_2(I) = (\langle b \rangle + \langle I_1(b \leftarrow b') \rangle) \cap \mathbb{C}[a, b, c] \\
F_3(I) = I_3 \nabla_2 (I_2 \cap I_6) \\
F_4(I) = \langle I_3 \rangle : \langle b - c \rangle \\
F_5(I) = I_4(a \leftarrow a - 2b - 1) \\
F_6(I) = I_5(b \leftarrow b - 1) \\
F_7(I) = I(V(I_3 + \langle b - c \rangle))
\]
Example

\[a := 0; b := 0; \]

while \(b \neq c \) do
\[a := a + 2b + 1; b := b + 1; \]
end while

\[
F_0(I) = \langle 0 \rangle \\
F_1(I) = (\langle a \rangle + \langle I_0(a \leftarrow a') \rangle) \cap \mathbb{C}[a, b, c] \\
F_2(I) = (\langle b \rangle + \langle I_1(b \leftarrow b') \rangle) \cap \mathbb{C}[a, b, c] \\
F_3(I) = I_3 \nabla_2 (I_2 \cap I_6) \\
F_4(I) = \langle I_3 \rangle : \langle b - c \rangle \\
F_5(I) = I_4(a \leftarrow a - 2b - 1) \\
F_6(I) = I_5(b \leftarrow b - 1) \\
F_7(I) = I(V(I_3 + \langle b - c \rangle))
\]

In 6 steps found loop invariant:

\[a = b^2 \]
Introduction

Generation of Invariant Polynomial Equalities
 - Related work
 - Abstract domain of ideals
 - Particular case: loops without nesting

Applications of Polynomial Equality Invariants

Generation of Invariant Polynomial Inequalities

Conclusions and Future Work
Particular case: loops without nesting

Are there programs for which no widening is required?
Particular case: loops without nesting

- Are there programs for which no widening is required?
- Yes: unnested loops with solvable assignments with eigenvalues in \mathbb{Q}^+
Are there programs for which no widening is required?

Yes: unnested loops with solvable assignments with eigenvalues in \mathbb{Q}^+

Solvable assignments generalize linear assignments
Particular case: loops without nesting

- Are there programs for which no widening is required?
- Yes: unnested loops with solvable assignments with eigenvalues in \mathbb{Q}^+
- Solvable assignments generalize linear assignments

```plaintext
a := 0;
b := 0;
while $b \neq c$ do
  $a := a + 2b + 1$;
  $b := b + 1$;
end while
```
Overview of the Method

\((a_n, b_n, c_n) \equiv \text{program state after } n \text{ loop iterations} \)

\[
\begin{aligned}
 a_{n+1} &= a_n + 2b_n + 1 \\
 b_{n+1} &= b_n + 1 \\
\end{aligned}
\]

\[
\begin{aligned}
 a_0 &= 0 \\
 b_0 &= 0 \\
\end{aligned}
\]
Overview of the Method

- \((a_n, b_n, c_n) \equiv \text{program state after } n \text{ loop iterations}\)

\[
\begin{aligned}
a_{n+1} &= a_n + 2b_n + 1 \\
b_{n+1} &= b_n + 1
\end{aligned}
\]

\[
\begin{aligned}
a_0 &= 0 \\
b_0 &= 0
\end{aligned}
\]

- Solution to recurrence:

\[
\begin{aligned}
a_n &= n^2 \\
b_n &= n
\end{aligned}
\]

- Program states characterized by \(\exists n (a = n^2 \land b = n)\)
Overview of the Method

- \((a_n, b_n, c_n) \equiv \text{program state after } n \text{ loop iterations}\)

\[
\begin{aligned}
\begin{cases}
a_{n+1} &= a_n + 2b_n + 1 \\
b_{n+1} &= b_n + 1
\end{cases}
\end{aligned}
\]

- Solution to recurrence:

\[
\begin{aligned}
\begin{cases}
a_n &= n^2 \\
b_n &= n
\end{cases}
\end{aligned}
\]

- Program states characterized by \(\exists n (a = n^2 \land b = n)\)

- Quantifier elimination: \(b = n \implies a = b^2\) is loop invariant
Overview of the Method

\((a_n, b_n, c_n) \equiv \text{program state after } n \text{ loop iterations} \)

\[
\begin{align*}
 a_{n+1} &= a_n + 2b_n + 1 \\
 b_{n+1} &= b_n + 1
\end{align*}
\]

\[
\begin{align*}
 a_0 &= 0 \\
 b_0 &= 0
\end{align*}
\]

Solution to recurrence:
\[
\begin{align*}
 a_n &= n^2 \\
 b_n &= n
\end{align*}
\]

Program states characterized by \(\exists n (a = n^2 \land b = n) \)

Quantifier elimination: \(b = n \implies a = b^2 \) is loop invariant

Gröbner bases can be used to eliminate loop counters
Our Handling of Conditional Statements (1)

\[x := R; \]
\[y := 0; \]
\[r := R^2 - N; \]

while \(? \) do
 if \(? \) then
 \[r := r + 2x + 1; \]
 \[x := x + 1; \]
 else
 \[r := r - 2y - 1; \]
 \[y := y + 1; \]
 end if
end while
1st idea:
1st idea:

1. Compute invariants for two distinct loops:

\[
\begin{align*}
\text{while } \ ? \ \text{do} & \quad \text{while } \ ? \ \text{do} \\
\quad r & := r + 2x + 1; \quad r := r - 2y - 1; \\
\quad x & := x + 1; \quad y := y + 1; \\
\text{end while} & \quad \text{end while}
\end{align*}
\]
1st idea:

1. Compute invariants for two distinct loops:

 while ? do
 r := r + 2x + 1;
 x := x + 1;
 end while

 while ? do
 r := r - 2y - 1;
 y := y + 1;
 end while

2. Compute common invariants for both loops
1st idea:

1. Compute invariants for two distinct loops:

\[
\text{while } ? \text{ do }
\]
\[
\begin{align*}
 r &:= r + 2x + 1; \\
 x &:= x + 1;
\end{align*}
\]
\[
\text{end while}
\]

\[
\text{while } ? \text{ do }
\]
\[
\begin{align*}
 r &:= r - 2y - 1; \\
 y &:= y + 1;
\end{align*}
\]
\[
\text{end while}
\]

2. Compute common invariants for both loops

Finding common invariants \equiv
Finding intersection of invariant ideals
Our Handling of Conditional Statements (2)

1st idea:

1. Compute invariants for two distinct loops:

 while ? do
 while ? do

 \[r := r + 2x + 1; \quad r := r - 2y - 1; \]

 \[x := x + 1; \quad y := y + 1; \]

 end while
 end while

2. Compute common invariants for both loops

 Finding common invariants \(\equiv \)
 Finding intersection of invariant ideals

 But this is not sound!
2nd idea: take intersection as initial condition and repeat
Our Handling of Conditional Statements (3)

- 2nd idea: take intersection as initial condition and repeat

<table>
<thead>
<tr>
<th>Program</th>
<th>Algorithm</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\bar{x} := \bar{\alpha}$;</td>
<td>$I' := \langle 1 \rangle$; $I := \langle x_1 - \alpha_1, \ldots, x_m - \alpha_m \rangle$;</td>
</tr>
<tr>
<td>while ? do</td>
<td>while $I' \neq I$ do</td>
</tr>
<tr>
<td>$\bar{x} := f(\bar{x})$;</td>
<td>$I' := I$;</td>
</tr>
<tr>
<td>or</td>
<td>$I := \bigcap_{n=0}^{\infty} \left[I(\bar{x} \leftarrow f^{-n}(\bar{x})) \right.$</td>
</tr>
<tr>
<td>$\bar{x} := g(\bar{x})$;</td>
<td>$\left. \bigcap I(\bar{x} \leftarrow g^{-n}(\bar{x})) \right]$;</td>
</tr>
<tr>
<td>end while</td>
<td>end while</td>
</tr>
</tbody>
</table>
Properties of our Algorithm

- No widening employed!
- Termination in $n + 1$ steps, where $n =$ number of variables
Properties of our Algorithm

- No widening employed!
- **Termination** in $n + 1$ steps, where n = number of variables
- Correct and complete:
 finds all polynomial equality invariants
Properties of our Algorithm

- No widening employed!
- Termination in $n + 1$ steps, where n = number of variables
- Correct and complete: finds all polynomial equality invariants
- Implemented in Maple:
 1. Solving recurrences
 2. Eliminating variables
 3. Intersecting ideals

\{ Gröbner bases \}
Example

\[
x := R;
y := 0;
r := R^2 - N;
\]

while \(? \) do
 if \(? \) then
 \[
 r := r + 2x + 1;
x := x + 1;
 \]
 else
 \[
 r := r - 2y - 1;
y := y + 1;
 \]
 end if
end while
Example

\begin{align*}
x &:= R; \\
y &:= 0; \\
r &:= R^2 - N; \\
\text{while } ? \text{ do} \\
 \text{if } ? \text{ then} \\
 r &:= r + 2x + 1; \\
 x &:= x + 1; \\
 \text{else} \\
 r &:= r - 2y - 1; \\
 y &:= y + 1; \\
 \text{end if} \\
\text{end while}
\end{align*}

Invariant polynomial equality:

\[x^2 - y^2 = r + N \]
Introduction

Generation of Invariant Polynomial Equalities

Applications of Polynomial Equality Invariants
 - Imperative programs
 - Petri nets
 - Hybrid systems

Generation of Invariant Polynomial Inequalities

Conclusions and Future Work
Imperative Programs

Pre: \(\{ N \geq 1 \} \)

\[x := R; \ y := 0; \ r := R^2 - N; \]

Inv: \(\{ N \geq 1 \land x^2 - y^2 = r + N \} \)

while \(r \neq 0 \) **do**

if \(r < 0 \) **then**

\[r := r + 2x + 1; \]

\[x := x + 1; \]

else

\[r := r - 2y - 1; \]

\[y := y + 1; \]

end if

end while

Post: \(\{ x \neq y \land N \mod (x - y) = 0 \} \)
Imperative Programs

Pre: \{ N \geq 1 \}

\begin{align*}
x &:= R; \ y := 0; \ r := R^2 - N; \\
\text{Inv:} \ &\{ N \geq 1 \land x^2 - y^2 = r + N \}
\end{align*}

while \(r \neq 0 \) do

if \(r < 0 \) then

\begin{align*}
r &:= r + 2x + 1; \\
x &:= x + 1;
\end{align*}

else

\begin{align*}
r &:= r - 2y - 1; \\
y &:= y + 1;
\end{align*}

end if

end while

Post: \{ x \neq y \land N \mod (x - y) = 0 \}
Imperative Programs

Pre: \(\{ N \geq 1 \} \)

\[x := R; \ y := 0; \ r := R^2 - N; \]

Inv: \(\{ N \geq 1 \land x^2 - y^2 = r + N \} \)

while \(r \neq 0 \) **do**

if \(r < 0 \) **then**

\[r := r + 2x + 1; \]

\[x := x + 1; \]

else

\[r := r - 2y - 1; \]

\[y := y + 1; \]

end if

end while

Post: \(\{ x \neq y \land \text{mod} (x - y) = 0 \} \)

\[N \geq 1 \implies R^2 - 0^2 = (R^2 - N) + N \]

\[x^2 - y^2 = r + N \land r < 0 \implies (x + 1)^2 - y^2 = (r + 2x + 1) + N \]
Imperative Programs

Pre: \(\{ N \geq 1 \} \)

\[
x := R; \quad y := 0; \quad r := R^2 - N;
\]

Inv: \(\{ N \geq 1 \land x^2 - y^2 = r + N \} \)

while \(r \neq 0 \) do

if \(r < 0 \) then

\[
r := r + 2x + 1;
\]

\[
x := x + 1;
\]

else

\[
r := r - 2y - 1;
\]

\[
y := y + 1;
\]

end if

end while

Post: \(\{ x \neq y \land N \mod (x - y) = 0 \} \)

- \(N \geq 1 \implies \)
 \[
 R^2 - 0^2 = (R^2 - N) + N
 \]

- \(x^2 - y^2 = r + N \land r < 0 \implies \)
 \[
 (x + 1)^2 - y^2 = (r + 2x + 1) + N
 \]

- \(x^2 - y^2 = r + N \land r > 0 \implies \)
 \[
 x^2 - (y + 1)^2 = (r - 2y - 1) + N
 \]
The image contains a section of text explaining an imperative program written in a mix of natural language and code. The program is designed to perform certain operations under specific preconditions and invariants, with a postcondition to verify its correctness. The text is as follows:

Pre: \{ \(N \geq 1 \) \}

\[x := R; \quad y := 0; \quad r := R^2 - N; \]

Inv: \{ \(N \geq 1 \land x^2 - y^2 = r + N \) \}

while \(r \neq 0 \) do
 if \(r < 0 \) then
 \[r := r + 2x + 1; \]
 \[x := x + 1; \]
 else
 \[r := r - 2y - 1; \]
 \[y := y + 1; \]
 end if
end while

Post: \{ \(x \neq y \land N \mod (x - y) = 0 \) \}

The text also includes some mathematical equations and logical implications to validate the invariants and postcondition of the program.
Introduction

Generation of Invariant Polynomial Equalities

Applications of Polynomial Equality Invariants
- Imperative programs
- Petri nets
- Hybrid systems

Generation of Invariant Polynomial Inequalities

Conclusions and Future Work
Petri Nets: Introduction

- Petri nets: mathematical model for studying systems
 - concurrency
 - parallelism
 - non-determinism
Petri Nets: Introduction

- **Petri nets**: mathematical model for studying systems
 - concurrency
 - parallelism
 - non-determinism

- **Applications**:
 - Manufacturing and Task Planning
 - Communication Networks
 - Hardware Design
A Petri net is a bipartite directed graph where:

- Nodes partitioned into places (○) and transitions (⏐)
- Arcs are labelled with weights
- A marking maps a number of tokens to each place
Dynamics of a Petri net described by

- initial marking
- firing of transitions
Dynamics (1)

- Dynamics of a Petri net described by
 - initial marking
 - firing of transitions

- A transition is enabled if there are \(\geq \) tokens in each input place than indicated in the arcs
Dynamics of a Petri net described by

- initial marking
- firing of transitions

A transition is enabled if there are \(\geq \) tokens in each input place than indicated in the arcs

When a transition is enabled, it can fire:
the number of tokens indicated in the arcs is

1. removed from input places
2. added to output places
Enabling of transitions may also depend on inhibitor arcs.

An inhibitor arc is an arc connecting place p to transition t so that there cannot be tokens in p for t to be enabled.
Enabling of transitions may also depend on inhibitor arcs. An inhibitor arc is an arc connecting place p to transition t so that there cannot be tokens in p for t to be enabled.
Dynamics (4)

- **Deadlocks** are markings for which all transitions are disabled.
Deadlocks are markings for which all transitions are disabled.

Given a Petri net with an initial marking:
- Invariant properties of reachable states?
- Any deadlocks?
Define variable x_i meaning number of tokens at place p_i.
Translation into Loop Programs

- Define variable x_i meaning number of tokens at place p_i
- Initial marking transformed into initializing assignments
Translation into Loop Programs

- Define variable x_i meaning number of tokens at place p_i
- Initial marking transformed into initializing assignments
- Transitions transformed into conditional statements
Translation into Loop Programs

- Define variable x_i meaning number of tokens at place p_i
- Initial marking transformed into initializing assignments
- Transitions transformed into conditional statements
- Enabling of a transition with input place p_i and label c_i:
 \[
 \cdots (x_i \neq 0) \land (x_i \neq 1) \land \cdots \land (x_i \neq c_i - 1) \cdots
 \]
Translation into Loop Programs

- Define variable x_i meaning number of tokens at place p_i
- Initial marking transformed into initializing assignments
- Transitions transformed into conditional statements
- Enabling of a transition with input place p_i and label c_i:
 $$\cdots (x_i \neq 0) \land (x_i \neq 1) \land \cdots \land (x_i \neq c_i - 1) \cdots$$
- Enabling of a transition with inhibitor place p_i: $x_i = 0$
Translation into Loop Programs

- Define variable x_i meaning number of tokens at place p_i
- Initial marking transformed into initializing assignments
- Transitions transformed into conditional statements
- Enabling of a transition with input place p_i and label c_i:
 $$\cdots (x_i \neq 0) \land (x_i \neq 1) \land \cdots \land (x_i \neq c_i - 1) \cdots$$
- Enabling of a transition with inhibitor place p_i: $x_i = 0$
- Firing of a transition
 - with input place p_i and label c_i: $x_i := x_i - c_i$
 - with output place p_i and label c_i: $x_i := x_i + c_i$
Abstract interpretation is applied to the loop program to obtain polynomial invariants of the Petri net.
Abstract interpretation is applied to the loop program to obtain polynomial invariants of the Petri net

Example:
Polynomial invariants obtained:

\[
Inv = \begin{cases}
5x_1 + 3x_2 + x_3 - 10 &= 0 \\
5x_3^2 + 2x_2 - 11x_3 &= 0 \\
x_2x_3 + 2x_3^2 - 5x_3 &= 0 \\
5x_2^2 - 17x_2 + 6x_3 &= 0
\end{cases}
\]
Polynomial invariants obtained:

\[\text{Inv} = \begin{cases}
5x_1 + 3x_2 + x_3 - 10 = 0 \\
5x_3^2 + 2x_2 - 11x_3 = 0 \\
x_2x_3 + 2x_3^2 - 5x_3 = 0 \\
5x_2^2 - 17x_2 + 6x_3 = 0
\end{cases} \]

In this example invariants characterize reachability set

\[\text{Inv} \iff (x_1, x_2, x_3) \in \{(0, 3, 1), (1, 1, 2), (2, 0, 0)\} \]
Generating Polynomial Invariants (2)

- Polynomial invariants obtained:

\[\text{Inv} = \left\{ \begin{array}{l}
5x_1 + 3x_2 + x_3 - 10 = 0 \\
5x_3^2 + 2x_2 - 11x_3 = 0 \\
x_2x_3 + 2x_3^2 - 5x_3 = 0 \\
5x_2^2 - 17x_2 + 6x_3 = 0
\end{array} \right. \]

- In this example invariants characterize reachability set

\[\text{Inv} \Leftrightarrow (x_1, x_2, x_3) \in \{(0, 3, 1), (1, 1, 2), (2, 0, 0)\} \]

- In general overapproximation of reach set is obtained
• Introduction

• Generation of Invariant Polynomial Equalities

• Applications of Polynomial Equality Invariants
 • Imperative programs
 • Petri nets
 • Hybrid systems

• Generation of Invariant Polynomial Inequalities

• Conclusions and Future Work
Hybrid Systems: Introduction

- Hybrid System: discrete system in analog environment
Hybrid System: discrete system in analog environment

Examples:

- A thermostat that heats/cools depending on the temperature in the room
Hybrid Systems: Introduction

- Hybrid System: discrete system in analog environment

- Examples:
 - A thermostat that heats/cools depending on the temperature in the room
 - A robot controller that changes the direction of movement if the robot is too close to a wall.
A hybrid system is a finite automaton with real-valued variables that change continuously according to a system of differential equations at each location.
A hybrid system is a finite automaton with real-valued variables that change continuously according to a system of differential equations at each location.
A hybrid system is a finite automaton with real-valued variables that change continuously according to a system of differential equations at each location.

We restrict to linear differential equations at locations.
A computation is a sequence of states
(discrete location, valuation of variables)

\[(l_0, x_0), (l_1, x_1), (l_2, x_2), \ldots\]

such that
A computation is a sequence of states (discrete location, valuation of variables)

\((l_0, x_0), (l_1, x_1), (l_2, x_2), \ldots\)

such that

1. Initial state \((l_0, x_0)\) satisfies the initial condition
A computation is a sequence of states (discrete location, valuation of variables)

\[(l_0, x_0), (l_1, x_1), (l_2, x_2), \ldots\]

such that

1. Initial state \((l_0, x_0)\) satisfies the initial condition
2. For each consecutive pair of states \((l_i, x_i), (l_{i+1}, x_{i+1})\):
 - Discrete transition: there is a transition of the automaton \((l_i, l_{i+1}, \rho)\) such that \((x_i, x_{i+1}) \models \rho\)
A computation is a sequence of states (discrete location, valuation of variables)

\[(l_0, x_0), (l_1, x_1), (l_2, x_2), \ldots\]

such that

1. Initial state \((l_0, x_0)\) satisfies the initial condition
2. For each consecutive pair of states \((l_i, x_i), (l_{i+1}, x_{i+1})\):
 - Discrete transition: there is a transition of the automaton \((l_i, l_{i+1}, \rho)\) such that \((x_i, x_{i+1}) \models \rho\)
 - Continuous evolution: there is a trajectory going from \(x_i\) to \(x_{i+1}\) along the flow determined by the differential equation \(\dot{x} = Ax + B\) at location \(l_i = l_{i+1}\)
Goal: generate invariant polynomial equalities
Goal: generate invariant polynomial equalities

- We know how to deal with discrete systems
- How to handle continuous evolution?
Goal: generate invariant polynomial equalities
 - We know how to deal with discrete systems
 - How to handle continuous evolution?

Problem:
 computing polynomial invariants of linear systems of differential equations
Form of the Solution

Solution to $\dot{x} = Ax + B$ can be expressed as polynomials in t, $e^{\pm at}$, $\cos(bt)$, $\sin(bt)$, where $\lambda = a + bi$ are eigenvalues of matrix A.

\[
\begin{pmatrix}
\dot{x} \\
\dot{y} \\
\dot{v}_x \\
\dot{v}_y
\end{pmatrix} =
\begin{pmatrix}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & -1/2 \\
0 & 0 & 1/2 & 0
\end{pmatrix}
\begin{pmatrix}
x \\
y \\
v_x \\
v_y
\end{pmatrix}
\]

\[
\begin{align*}
 x &= x^* + 2 \sin(t/2) \: v_x^* + (2 \cos(t/2) - 2) \: v_y^* \\
y &= y^* + (-2 \cos(t/2) + 2) \: v_x^* + 2 \sin(t/2) \: v_y^* \\
v_x &= \cos(t/2) \: v_x^* - \sin(t/2) \: v_y^* \\
v_y &= \sin(t/2) \: v_x^* + \cos(t/2) \: v_y^*
\end{align*}
\]
Elimination of Time

Idea: eliminate terms depending on t from solution:

- transform solution into polynomials using new variables
- eliminate by means of Gröbner bases using auxiliary equations
Elimination of Time

Idea: eliminate terms depending on t from solution:

- transform solution into polynomials using new variables
- eliminate by means of Gröbner bases using auxiliary equations

SOLUTION

\[
\begin{align*}
x &= x^* + 2zv_x^* + (2w - 2)v_y^* \\
y &= y^* + (-2w + 2)v_x^* + 2zv_y^* \\
v_x &= wv_x^* - zv_y^* \\
v_y &= zv_x^* + wv_y^*
\end{align*}
\]

INITIAL CONDITIONS

\[
\begin{align*}
v_x^* &= 2 \\
v_y^* &= -2
\end{align*}
\]

AUXILIARY EQUATIONS

\[
\begin{align*}
w^2 + z^2 &= 1
\end{align*}
\]

\[
v_x^2 + v_y^2 = 8 \text{ (conservation of energy)}
\]
Example

INITIAL CONDITIONS
- $v_x = 2$
- $v_y = -2$
- $x = y = b = 0$

RIGHT
- $\dot{x} = v_x$
- $\dot{y} = v_y$
- $\dot{v}_x = \dot{v}_y = 0$
- $\dot{b} = 0$

MAGNETIC
- $\dot{x} = v_x$
- $\dot{y} = v_y$
- $\dot{v}_x = -\frac{v_y}{2}$
- $\dot{v}_y = \frac{v_x}{2}$
- $\dot{b} = 0$

LEFT
- $\dot{x} = v_x$
- $\dot{y} = v_y$
- $\dot{v}_x = \dot{v}_y = 0$
- $\dot{b} = 0$

RIGHT
- $v_y = -2 \land v_x = 2 \land 2db - 8b + y + x = 0$

MAGNETIC
- $x - 2v_y - d = 4 \land v_x^2 + v_y^2 = 8 \land 2v_x + y + 2db - 8b + d = 4$

LEFT
- $v_y = -2 \land v_x = -2 \land 2db - 8b + y - x = 8$
Introduction

Generation of Invariant Polynomial Equalities

Applications of Polynomial Equality Invariants

Generation of Invariant Polynomial Inequalities

Conclusions and Future Work
Linear equalities
[Karr’76]

\[\rightarrow\]

Polynomial equalities
[Colon’04]
Drawing a Parallel from Equalities

Linear equalities
[Karr’76]

Polynomial equalities
[Colon’04]

Linear inequalities
[Cousot & Halbwachs’78]

Polynomial inequalities
[Bagnara & Rodríguez-Carbonell & Zaffanella’05]
\begin{verbatim}
 a := 0 ;
 b := 0 ;
 c := 1 ;

 while ? do
 a := a + 1 ;
 b := b + c ;
 c := c + 2 ;
 end while
\end{verbatim}
From Linear to Polynomial Equalities

\[a := 0 ; \]
\[b := 0 ; \]
\[c := 1 ; \]

\[
\{ \ c = 2a + 1 \ \}
\]
while \ ? do

\[a := a + 1 ; \]
\[b := b + c ; \]
\[c := c + 2 ; \]

end while

Loop invariant

\[
\{ \ c = 2a + 1 \ \}
\]
From Linear to Polynomial Equalities

\[a := 0 \; ; \]
\[b := 0 \; ; \]
\[c := 1 \; ; \]
\[s := 0 \; ; \]

while ? do

\[a := a + 1 \; ; \]
\[b := b + c \; ; \]
\[c := c + 2 \; ; \]
\[s := s + 2a + 1 \; ; \]

end while

Introduce new variable \(s \) standing for \(a^2 \)

Extend program with new variable \(s \)

\[a := 0 \quad \rightarrow \quad s := 0 \]
\[a := a + 1 \quad \rightarrow \quad s := s + 2a + 1 \]
From Linear to Polynomial Equalities

\begin{align*}
 a &:= 0 ; \\
 b &:= 0 ; \\
 c &:= 1 ; \\
 s &:= 0 ; \\
 \{ b = s \land c = 2a + 1 \} \\
\textbf{while} \quad \text{"?"} \quad \textbf{do} \\
 a &:= a + 1 ; \\
 b &:= b + c ; \\
 c &:= c + 2 ; \\
 s &:= s + 2a + 1 ; \\
\textbf{end while}
\end{align*}

Loop invariant
\[
\{ b = a^2 \land c = 2a + 1 \}
\]
is more precise
\[
\{ \text{Pre : } b \geq 0 \} \\

a := 0 ;
\]

\textbf{while } (a + 1)^2 \leq b \textbf{ do}

\[
a := a + 1 ;
\]

\textbf{end while}

\[
\{ \text{Post : } (a + 1)^2 > b \land b \geq a^2 \}
\]
From Linear to Polynomial Inequalities

\{ \text{Pre: } b \geq 0 \}\}

\begin{align*}
a &:= 0 ; \\
\text{while } (a + 1)^2 &\leq b \text{ do} \\
&\quad a := a + 1 ; \\
\text{end while}
\end{align*}

Linear analysis cannot deal with the quadratic condition

\((a + 1)^2 \leq b\)

\{ \text{Post: } (a + 1)^2 > b \land b \geq a^2 \}\}
From Linear to Polynomial Inequalities

{ Pre: \(b \geq 0 \) }

\[a := 0 ; \]

{ \(a \geq 0 \land b \geq 0 \) }

\[\text{while } \ (a + 1)^2 \leq b \ \text{do} \]

\[a := a + 1 ; \]

end while

\[\text{Loop invariant } \{ a \geq 0 \land b \geq 0 \} \]

not precise enough

{ Post: \((a + 1)^2 > b \land b \geq a^2 \) }
From Linear to Polynomial Inequalities

\{ \text{Pre} : b \geq 0 \} \n
a := 0 ; \\
s := 0 ; \hspace{1cm} \text{Introduce new variable } s \text{ standing for } a^2 \n\\
\text{while } (a + 1)^2 \leq b \text{ do} \n\\
a := a + 1 ; \hspace{1cm} a := a + 1 \rightarrow s := s + 2a + 1 ; \hspace{1cm} \text{Extend program with new variable } s \n\\
\text{end while} \n\\
\{ \text{Post} : (a + 1)^2 > b \land b \geq a^2 \} \n\\

a := 0 \rightarrow s := 0 \n\\
a := a + 1 \rightarrow s := s + 2a + 1
From Linear to Polynomial Inequalities

{ Pre: $b \geq 0$ }

$a := 0$;
$s := 0$;
{ $b \geq s \land \cdots$ }
while $(a + 1)^2 \leq b$ do

\[
a := a + 1 ;
\]
\[
s := s + 2a + 1 ;
\]
end while

{ Post: $(a + 1)^2 > b \land b \geq a^2$ }

Loop invariant
{ $b \geq a^2 \land \cdots$ }

enough to prove partial correctness
Abstract values = sets of constraints

Given a degree bound d, all terms x^α with $\text{deg}(x^\alpha) \leq d$ are considered as different and independent variables.
Vector Spaces \leftrightarrow Polynomial Cones

- Vector space = set of polynomials closed under
- $0 = 0$
- $p = 0$ \quad $q = 0$ \quad $\lambda, \mu \in \mathbb{R}$
- $\lambda p + \mu q = 0$
Vector Spaces ↔ Polynomial Cones

<table>
<thead>
<tr>
<th>Polynomial $= 0$</th>
<th>Polynomial ≥ 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>\forall polynomial $p, p \sim p = 0$</td>
<td>\forall polynomial $p, p \sim p \geq 0$</td>
</tr>
<tr>
<td>Vector space = set of polynomials closed under</td>
<td>Polynomial cone = set of polynomials closed under</td>
</tr>
<tr>
<td>$0 = 0$</td>
<td>$1 \geq 0$</td>
</tr>
<tr>
<td>$p = 0$ $q = 0$ $\lambda, \mu \in \mathbb{R}$</td>
<td>$p \geq 0$ $q \geq 0$ $\lambda, \mu \in \mathbb{R}_+$</td>
</tr>
<tr>
<td>$\lambda p + \mu q = 0$</td>
<td>$\lambda p + \mu q \geq 0$</td>
</tr>
</tbody>
</table>
polynomial = 0

\[p = 0 \quad \text{deg}(pq) \leq d \]

\[pq = 0 \]
Explicitly Adding Other Inference Rules

\[
\text{polynomial} = 0
\]

\[
p = 0 \quad \deg(pq) \leq d
\]

\[
pq = 0
\]

\[
\text{polynomial} \geq 0
\]

\[
p = 0 \quad \deg(pq) \leq d
\]

\[
pq = 0
\]

\[
p \geq 0 \quad q \geq 0 \quad \deg(pq) \leq d
\]

\[
pq \geq 0
\]
Introduction

Generation of Invariant Polynomial Equalities

Applications of Polynomial Equality Invariants

Generation of Invariant Polynomial Inequalities

Conclusions and Future Work
Conclusions

- Designed a new abstract domain for generating invariant polynomial equalities based on ideals of polynomials.
Conclusions

- Designed a new abstract domain for generating invariant polynomial equalities based on ideals of polynomials
- Identified a class of programs for which all polynomial equality invariants can be generated
Conclusions

- Designed a new abstract domain for generating invariant polynomial equalities based on ideals of polynomials
- Identified a class of programs for which all polynomial equality invariants can be generated
- Applied polynomial equality invariants to verifying imperative programs, Petri nets and hybrid systems
Conclusions

- Designed a new abstract domain for generating invariant polynomial equalities based on ideals of polynomials
- Identified a class of programs for which all polynomial equality invariants can be generated
- Applied polynomial equality invariants to verifying imperative programs, Petri nets and hybrid systems
- Designed a new abstract domain for generating invariant polynomial inequalities based on polynomial cones
Future Work

- Extend the techniques to interprocedural analyses
Future Work

- Extend the techniques to interprocedural analyses
- Develop methods for tuning the precision/efficiency trade-off
Future Work

- Extend the techniques to **interprocedural** analyses
- Develop methods for **tuning the precision/efficiency trade-off**
- Find **new areas of application** for polynomial invariants
Future Work

- Extend the techniques to interprocedural analyses
- Develop methods for tuning the precision/efficiency trade-off
- Find new areas of application for polynomial invariants
- ...

But I am now working on something different: Satisfiability Modulo Theories (SMT) See http://www.barcelogic.org
Future Work

- Extend the techniques to interprocedural analyses
- Develop methods for tuning the precision/efficiency trade-off
- Find new areas of application for polynomial invariants
- ...
- But I am now working on something different: Satisfiability Modulo Theories (SMT)
 See http://www.barcelologic.org
Thank you!